Contents lists available at ScienceDirect

# Theoretical Computer Science

www.elsevier.com/locate/tcs

# Theoretical Computer Science

# Restricted connectivity and good-neighbor diagnosability of split-star networks



Limei Lin<sup>a,c,\*</sup>, Yanze Huang<sup>a,b</sup>, Xiaoding Wang<sup>a,c</sup>, Li Xu<sup>a,c</sup>

<sup>a</sup> College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian, 350117, PR China

<sup>b</sup> School of Mathematics and Physics, Fujian University of Technology, Fuzhou, Fujian, 350118, PR China

<sup>c</sup> Key Laboratory of Network Security and Cryptology, Fujian Normal University, Fuzhou, Fujian, 350007, PR China

# ARTICLE INFO

Article history: Received 30 October 2019 Received in revised form 20 February 2020 Accepted 18 April 2020 Available online 27 April 2020 Communicated by S.-Y. Hsieh

Keywords: Good-neighbor diagnosability Computer network reliability Fault tolerance Restricted connectivity Split-star networks

# ABSTRACT

The restricted connectivity and the *g*-good-neighbor diagnosability are two important indicators of the robustness for a multi-processor system in presence of failing processors. The *g*-good-neighbor diagnosability of a graph guarantees that the number of fault-free neighbors of every fault-free vertex is greater or equal to *g* in the graph. We first establish the 3-restricted connectivity of an *n*-dimensional split-star network  $S_n^2$ . Then we propose the upper bound of the {1, 2, 3}-good-neighbor diagnosability of  $S_n^2$  under the MM\* model. Moreover, we show that when deleting two indistinguishable good-neighbor faulty vertexsets from  $S_n^2$ , the remaining connected subgraph has no isolated vertex. Furthermore, we give a complete proof for the lower bound of the {1, 2, 3}-good-neighbor diagnosability of  $S_n^2$ , and prove that the lower and upper bounds of the {1, 2, 3}-good-neighbor diagnosability of  $S_n^2$  are accurate.

© 2020 Elsevier B.V. All rights reserved.

#### 1. Introduction

Failure of processor is inevitable in a multiprocessor system with a great quantity of processors. A novel diagnostic model, the *comparison model* (*MM model*), was established by Malek and Maeng [26]. Under the MM model, a test contains a vertex u and two of its neighbors v, w. The vertex u sends the same input to v, w and then compares their feedbacks. If u is faulty, then the test result is not reliable. When u is fault-free, the test result is 0 if v, w are both fault-free and 1 otherwise. In 1992, Sengupta and Dahbura [28] proposed the MM\* model, which is a special MM model. Under the MM\* model, every vertex must compare every pair of its neighbors. Fan [11,12] proposed the diagnosability of the Möbius cubes and crossed cubes under the MM\* model. Moreover, Chen and Hsieh [3] gave the (t, k)-diagnosis for component-composition graphs under the MM\* model. To better reflect a network's true self fault-diagnosing capability, Chang and Hsieh [2] studied the conditional diagnosability of augmented cubes.

In 2012, Peng et al. [27] proposed the *g*-good-neighbor diagnosability of a graph, which assumes that the number of faultfree neighbors of every fault-free vertex is greater or equal to *g* in the graph under the PMC model. Since this conception was raised, a lot of works have been done on it. Yuan et al. [34] gave the *g*-good-neighbor diagnosability of *k*-ary *n*-cubes. In 2016, Wang et al. [29] proposed the *g*-good-neighbor diagnosability of *n*-hypercubes under the MM\* model. We [25] established the *g*-good-neighbor diagnosability of arrangement graphs by exploring the known *g*-restricted connectivity and the size of  $K_{g+1}$ . Xu et al. [33] also proposed the *g*-good-neighbor diagnosability of (*n*, *k*)-star graphs by combining



<sup>\*</sup> Corresponding author at: College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian, 350117, PR China. *E-mail address:* putianlinlimei@163.com (L. Lin).

the known g-restricted connectivity with the size of the (g + 1)-dimensional complete graph  $(K_{g+1})$  for  $0 \le g \le n - k$ . In 2017, Wei and Xu [31] extended the result for (n, k)-star networks to  $0 \le g \le n - 1$ . Gu et al. [13] gave a short note on the {1,2}-good-neighbor diagnosability of balanced hypercubes. Guo et al. [15] studied the g-good-neighbor diagnosability of crossed cubes. Li and Lu [21] proposed g-good-neighbor conditional diagnosability of star graphs. In 2019, we studied the g-good-neighbor diagnosability for exchanged hypercubes [35] and alternating group graphs [18].

Moreover, there exist some general works about the g-good-neighbor diagnosability. Gu et al. [14] studied the 1-goodneighbor diagnosability of some regular graphs. Then, Wei and Xu [32] explored the {1,2}-good-neighbor conditional diagnosability of some special regular graphs, including BC graphs, folded hypercubes and four classes of Cayley graphs. Hu et al. [17] established the equal relationship between g-good-neighbor diagnosability under the PMC model and MM\* model. Furthermore, in 2018, we [22] established the relationship between g-restricted connectivity and g-good-neighbor fault diagnosability of general triangle-free regular networks. Then, Cheng [4], Wang et al. [30] and Cheng et al. [10] also provided a relationship between g-good-neighbor diagnosability and g-restricted connectivity in regular graphs with different conditions.

These related works do not involve the study of the g-good-neighbor diagnosability for the split-star networks. In this paper, we aim to solve the problem for the structure called an *n*-dimensional split-star network  $S_n^2$ , which was proposed by Cheng et al. [7] as an alternative to the popular n-dimensional star graph  $S_n$  [1]. The construction of the split-star network is rather different from the hypercubes, k-ary n-cubes, star graphs, arrangement graph, (n, k)-star graphs, balanced hypercubes, crossed cubes, exchanged hypercube and alternating group graphs, and it has many advantages compared with these above networks. Moreover, the split-star network has many 3-cycles in it, which is different from our reference [22]. The 3-good-neighbor diagnosability and 3-restricted connectivity also have not been presented. Hence, the above general related works for g-good-neighbor diagnosability are not applicable to the work of this paper. We will give a complete method for 3-restricted connectivity. Moreover, we will propose the  $\{1, 2, 3\}$ -good-neighbor diagnosability by considering a unified approach.

To highlight our contributions, we summarize them as follows:

- We establish the 3-restricted connectivity of an *n*-dimensional split-star network  $S_n^2$ .
- We propose the upper bound of the {1,2,3}-good-neighbor diagnosability of S<sup>2</sup><sub>n</sub> by construction under the MM\* model.
  When deleting two indistinguishable good-neighbor faulty vertex-sets from S<sup>2</sup><sub>n</sub>, the remaining connected subgraph has no isolated vertex.
- We prove that the upper and lower bounds of the  $\{1, 2, 3\}$ -good-neighbor diagnosability of  $S_n^2$  are accurate.

This paper is divided into four parts. Section 2-Section 5 establish the preliminaries used throughout the paper, the 3-restricted connectivity of  $S_n^2$ , the {1, 2, 3}-good-neighbor diagnosability of  $S_n^2$  under the MM\* model, and the conclusion, respectively.

#### 2. Preliminaries

We give some preparing works to establish the 3-restricted connectivity and the g-good-neighbor diagnosability of  $S_n^2$ under the MM\* model.

#### 2.1. Terminology

In this subsection, we give some basic terminologies, which were included in our previous works [18],[22],[23],[24],[25] and [35].

- G = (V(G), E(G)): a graph with the vertex-set V(G) and the edge-set E(G).
- $u \in V(G)$ : a vertex *u* from the vertex-set V(G).
- $uv \in E(G)$ : an edge uv from the edge-set E(G).
- |*A*|: the size of a set *A*.
- $M \subseteq G$ : *M* is a subgraph of *G*, in which  $V(M) \subseteq V(G)$  and  $E(M) \subseteq E(G)$ .
- G[B]: an induced subgraph of G by the vertex-set B with V(G[B]) = B and  $E(G[B]) = \{xy \mid xy \in E(G), x, y \in B\}$ .
- $\bigcup_{i=1}^{m} G_i = G[\bigcup_{i=1}^{m} V(G_i)]$  and  $\bigcap_{i=1}^{m} G_i = G[\bigcap_{i=1}^{m} V(G_i)]$ . G B: a subgraph of G by deleting all vertices of the vertex-set B from a graph G and all edges connecting at least one vertex in the vertex-set *B*.
- A B: a set of vertices who are in the vertex-set A and not in the vertex-set B.
- $E[V(G_1), V(G_2)] = \{xy \mid x \in V(G_1) \text{ and } y \in V(G_2)\}.$
- $N_G(x) = \{ y \in V(G) \mid xy \in E(G) \}.$
- $N_G(B) = (\bigcup_{u \in B} N_G(x)) B.$
- $\delta(G)$ : the minimum value of degrees of all vertices in a graph *G*.
- $P_k$  (or  $C_k$ ): a path (or cycle) with length k, called a k-path (or k-cycle).



**Fig. 1.** The 4-dimensional split-star network  $S_4^2$ .

# 2.2. Split-star network

In subsection 2.2, we give the definition of the *n*-dimensional split-star network  $S_n^2$  (Definition 1) and some basic properties of  $S_n^2$  (Remark 1, Remark 2 and Lemma 1).

**Definition 1.** [7,8] Given two positive integers *n* and *k* with n > k, let  $\langle n \rangle = \{1, 2, ..., n\}$ , and let  $\mathbb{P}_n$  be a set of *n*! permutations on  $\langle n \rangle$ . The *n*-dimensional split-star network, denoted by  $S_n^2$ , such that

- $V(S_n^2) = \mathbb{P}_n;$
- $E(S_n^2) = \{pq \mid p \text{ (resp. } q) \text{ can be obtained from } q \text{ (resp. } p) \text{ by either a 2-exchange or a 3-rotation}\}.$
- (1) A 2-exchange interchanges the symbols in 1st position and 2nd position.
- (2) A 3-rotation rotates the symbols in 1st, 2nd and *k*th for some  $k \in \{3, 4, ..., n\}$ .

**Remark 1.** For any vertex u and a fixed  $k \in \{3, 4, ..., n\}$ , there are two 3-rotations  $\binom{123 \cdots k \cdots n}{2k3 \cdots 1 \cdots n}$  and  $\binom{123 \cdots k \cdots n}{k13 \cdots 2 \cdots n}$ , so the vertex u has two neighbors by the 3-rotations for this k. Hence,  $S_n^2$  is a (1 + 2(n - 2))-regular graph with n! vertices. We use  $x = x_1x_2 \cdots x_i \cdots x_n$  to denote a permutation where  $x_i$  is in *i*th position. Fig. 1 gives the structure of  $S_4^2$ .

**Remark 2.** For any  $i \in \{1, 2, ..., n-2, n-1, n\}$ , let  $S_n^{2:i} = S_n^2[V(S_n^{2:i})]$  where the set  $V(S_n^{2:i}) = \{x_1x_2 \cdots x_{n-2}x_{n-1}i \mid x_{j_1} \neq x_{j_2} \in \{1, 2, ..., n-2, n-1, n\} - \{i\}$  where  $1 \le j_1 \ne j_2 \le n-1\}$ . Every vertex v in  $S_n^{2:i}$  has exactly two neighbors not in  $S_n^{2:i}$ , who are called as the *external-neighbors* of v. A pair of elements  $x_i$  and  $x_j$  is called an inversion of x if  $x_i < x_j$  whenever i > j.

The *n*-dimensional split-star network can be decomposed to two different networks by *even permutation* and the *odd permutation*, in which the former and the latter contain an even and an odd number of inversions, respectively. Let  $S_{n,E}^2$  be an induced subgraph  $S_n^2[V(S_{n,E}^2)]$  with  $V(S_{n,E}^2) = \{u \mid u \text{ is an even permutation in } V(S_n^2)\}$ . It can be found that  $S_{n,E}^2$  is an *n*-dimensional alternating group graph  $AG_n$  [19]. Let  $S_{n,O}^2$  be an induced subgraph  $S_n^2[V(S_{n,O}^2)]$  with  $V(S_{n,O}^2) = \{u \mid u \text{ is an odd permutation in } V(S_n^2)\}$ . Hence,  $S_{n,O}^2$  is isomorphic to  $S_{n,E}^2$  by a 2-exchange and there are n!/2 disjointed edges between the subgraphs  $S_{n,E}^2$  and  $S_{n,O}^2$ . Fig. 2 gives the subgraphs  $S_{4,E}^2$  and  $S_{4,O}^2$ .

**Lemma 1.** [5,6,23] (1) The n-dimensional split-star network  $S_n^2$  is (2n - 3)-regular and the connectivity of  $S_n^2$  is 2n - 3 for  $n \ge 2$ . (2) Every vertex in  $S_n^{2:i}$  has two external-neighbors, which are in distinct subgraphs and adjacent.



**Fig. 2.** The subgraphs  $S_{4,E}^2$  and  $S_{4,O}^2$ .

(3) Any two vertices in  $S_n^{2:i}$  have different external-neighbors. (4) Let  $\zeta, \eta \in V(S_n^2)$ . If  $\zeta \eta \notin E(S_n^2)$ , then  $|N_{S_n^2}(\zeta) \cap N_{S_n^2}(\eta)| \le 2$ . If  $\zeta \eta \in E(S_n^2)$ , then  $|N_{S_n^2}(\zeta) \cap N_{S_n^2}(\eta)| = 1$ .

(5) There is one to one correspondence between the subgraph  $S_{n=0}^2$  and the subgraph  $S_{n=F}^2$ .

### 3. The 3-restricted connectivity of $S_n^2$

In this section, we will establish the sufficient conditions to determine the 3-restricted connectivity of  $S_a^2$ .

**Definition 2.** [20] Given a graph G, a subset D in V(G) and an nonnegative integer g.

(1) If G - D is disconnected, then D is called a vertex-cut of G. The maximal connected subgraph in G - D is called a component.

(2) If *D* is a vertex-cut and  $\delta(G - D) \ge g$ , then *D* is called a *g*-restricted vertex-cut of *G*.

(3) The *g*-restricted connectivity of G, denoted by  $\kappa^{g}(G)$ , is the minimum cardinality over all g-restricted vertex-cuts of G. A g-restricted vertex-cut is called to be the minimum if the cardinality of the g-restricted vertex-cut is  $\kappa^{g}(G)$ .

We [24] have obtained the {1, 2}-restricted connectivity of  $S_n^2$ .

**Lemma 2.** [24] Let  $S_n^2$  be an n-dimensional split-star network, then the following properties hold. (1)  $\kappa^1(S_n^2) = 4n - 9$  ( $n \ge 4$ ). Furthermore, let *S* be a 1-path in  $S_{n,E}^2$ , then  $N_{S_n^2}(V(S))$  is a minimum 1-restricted vertex-cut of  $S_n^2$ . (2)  $\kappa^2(S_n^2) = 6n - 15$   $(n \ge 5)$ . Furthermore, let  $C_3$  be a 3-cycle in  $S_{n,E}^2$ , then  $N_{S_n^2}(V(C_3))$  is a minimum 2-restricted vertex-cut of  $S_n^2$ .

Because the *n*-dimensional split-star network can be viewed as "companion graphs" of the *n*-dimensional alternating group graphs  $AG_n$ . We introduce the following some basic properties, which can be used to study the 3-restricted connectivity of  $S_n^2$ .

**Lemma 3.** [9] Let D be a vertex-cut of  $AG_n$  ( $n \ge 5$ ) such that  $|D| \le 6n - 20$ . Then,  $AG_n - D$  satisfies one of the following conditions. (1)  $AG_n - D$  has two components, one of which is a singleton, or an edge;

(2)  $AG_n - D$  has three components, two of which are singletons.

**Lemma 4.** [16] Let D be a subset of  $V(AG_n)$  ( $n \ge 5$ ) such that  $|D| \le 6n - 19$ . Then,  $AG_n - D$  satisfies one of the following conditions. (1)  $AG_n - D$  is connected;

- (2)  $AG_n D$  has two components, one of which is a singleton, an edge or a 2-path;
- (3)  $AG_n D$  has three components, two of which are both singletons, respectively.

**Lemma 5.** [18] Let  $AG_n$   $(n \ge 5)$  be an n-dimensional alternating group graph. Then, the 2-restricted connectivity is  $\kappa^2(AG_n) =$ 6n - 18. Furthermore, let  $C_3 = \{u, v, w\}$  be a 3-cycle in  $AG_n$   $(n \ge 5)$  such that  $u = 1234 \cdots i \cdots n$ ,  $v = 2431 \cdots i \cdots n$  and  $w = 1234 \cdots i \cdots n$ .  $4132 \cdots i \cdots n$ . It can be deduced that  $N_{AG_n}(V(C_3))$  is a minimum 2-restricted vertex-cut of  $AG_n$ .

**Theorem 1.** Let  $S_n^2$  be an n-dimensional split-star network. Let  $S_3^2$  be a 3-dimensional split-star subnetwork in  $S_n^2$  for  $n \ge 5$ . Then the 3-restricted connectivity  $\kappa^3(S_n^2) = 12n - 36$  and  $N_{S_n^2}(V(S_3^2))$  is a minimum 3-restricted vertex-cut of  $S_n^2$  for  $n \ge 5$ .

**Proof.** First, we prove that  $\kappa^3(S_n^2) \le 12n - 36$ .

Let  $S_3^2$  be a 3-dimensional split-star subnetwork in  $S_n^2$   $(n \ge 5)$ . Without loss of generality, assume that  $V(S_{3,E}^2) = \{u, v, w\}$  such that  $u = 1234 \cdots i \cdots n$ ,  $v = 2431 \cdots i \cdots n$  and  $w = 4132 \cdots i \cdots n$  and  $V(S_{3,O}^2) = \{u', v', w'\}$  such that  $u' = 2134 \cdots i \cdots n$ ,  $v' = 4231 \cdots i \cdots n$  and  $w' = 1432 \cdots i \cdots n$ . Obviously,  $S_{3,E}$  is a minimum 2-restricted vertex-cut of  $S_{n,E}^2$  by Lemma 5 and the fact that  $S_{n,E}^2$  is an *n*-dimensional alternating group graph  $AG_n$ . Hence,  $|N_{S_{n,E}^2}(V(S_{3,E}^2))| = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,E}^2 - N_{S_{n,E}^2}(V(S_{3,E}^2)) - V(S_{3,E}^2)$  has at least two neighbors in  $S_{n,E}^2 - N_{S_{n,E}^2}(V(S_{3,E}^2)) - V(S_{3,E}^2)$  and every vertex of  $V(S_{3,E}^2)$  has exactly two neighbors in  $V(S_{3,E}^2) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2$  by Lemma 5. Hence,  $|N_{S_{n,O}^2}(V(S_{3,O}^2))| = 6n - 18$  by Lemma 2-restricted vertex-cut of  $S_{n,O}^2$  by Lemma 5. Hence,  $|N_{S_{n,O}^2}(V(S_{3,O}^2))| = 6n - 18$  by Lemma 5. Moreover, every vertex of  $V(S_{3,E}^2)$  has exactly two neighbors in  $V(S_{3,O}^2) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2 + N_{S_{n,O}^2}(V(S_{3,O}^2)) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2 + N_{S_{n,O}^2}(V(S_{3,O}^2)) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2 + N_{S_{n,O}^2}(V(S_{3,O}^2)) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2 + N_{S_{n,O}^2}(V(S_{3,O}^2)) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2 + N_{S_{n,O}^2}(V(S_{3,O}^2)) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2 + N_{S_{n,O}^2}(V(S_{3,O}^2)) = 6n - 18$  by Lemma 5. Moreover, every vertex of  $S_{n,O}^2 + N_{S_{n,O}^2}(V(S_{3,O}^2)) = 0$  and every vertex of  $V(S_{3,O}^2) + V(S_{3,O}^2)$  has at least two neighbors in  $S_{n,O}^2 - N_{S_{n,O}^2}(V(S_{3,O}^2)) - V(S_{3,O}^2)$  and every vertex of  $V(S_{3,O}^2)$  has exactly two neighbors in  $V(S_{3,O}^2)$ .

By Lemma 1 (5), there is one to one correspondence between the subgraph  $S_{3,0}^2$  (resp.  $S_{n,0}^2 - N_{S_{n,0}^2}(V(S_{3,0}^2)) - V(S_{3,0}^2)$ ) and the subgraph  $S_{3,E}^2$  (resp.  $S_{n,E}^2 - N_{S_{n,E}^2}(V(S_{3,E}^2)) - V(S_{3,E}^2)$ ). Thus, every vertex of  $S_n^2 - N_{S_n^2}(V(S_3^2)) - V(S_3^2)$  has at least three neighbors in  $S_n^2 - N_{S_n^2}(V(S_3^2)) - V(S_3^2)$  and every vertex of  $V(S_3^2)$  has exactly three neighbors in  $V(S_3^2)$ . Therefore,  $N_{S_n^2}(V(S_3^2))$  is a 3-restricted vertex-cut of  $S_n^2$ . By Definition 2 (3),

$$\kappa^{3}(S_{n}^{2}) \leq |N_{S_{n}^{2}}(V(S_{3}^{2}))| = |N_{S_{n,0}^{2}}(V(S_{3,0}^{2}))| + |N_{S_{n,E}^{2}}(V(S_{3,E}^{2}))| = 2 \times (6n - 18) = 12n - 36.$$
(3.1)

Next, we prove that  $\kappa^3(S_n^2) \ge 12n - 36$ .

Suppose that  $\kappa^3(S_n^2) \le 12n - 37$ . Let *D* be a minimum 3-restricted vertex-cut of  $S_n^2$ ,  $|D| = \kappa^3(S_n^2) \le 12n - 37$ . Let  $D_0 = D \cap V(S_{n,0}^2)$  and  $D_E = D \cap V(S_{n,E}^2)$ . Hence,  $|D_0| + |D_E| = |D| \le 12n - 37$ . Hence, there exists at least one of  $|D_0|$  and  $|D_E|$  with that the size is less than 6n - 18. Without loss of generality, assume that  $|D_E| \le 6n - 19$ . By Lemma 4,  $S_{n,E}^2 - D_E$  is connected; or has two components, one of which is a singleton, an edge or a 2-path; has three components, two of which are both singletons, respectively.

When  $|D_0| \le 6n - 19$ , by Lemma 4,  $S_{n,0}^2 - D_0$  is connected; or has two components, one of which is a singleton, an edge or a 2-path; has three components, two of which are both singletons, respectively. When  $S_{n,E}^2 - D_E$  is connected and  $S_{n,0}^2 - D_0$  is connected, by Lemma 1 (5), there exactly n!/2 disjoint edges between  $S_{n,0}^2$  and  $S_{n,E}^2$ . Because n!/2 > 12n - 37 for  $n \ge 5$ . Hence, there exists at least one edge between  $S_{n,E}^2 - D_E$  and  $S_{n,0}^2 - D_0$ . It can be implied that  $S_n^2 - D$  is connected, which contradicts that D is a 3-restricted vertex-cut of  $S_n^2$ .

Without loss of generality, assume that  $S_{n,E}^2 - D_E$  is disconnected, there exists one vertex u such that its degree in  $S_{n,E}^2 - D_E$  is less than two. By Lemma 1 (5), u has exactly one neighbor in  $S_{n,O}^2$ . Hence, u has at most two neighbors in  $S_n^2 - D$ . It contradicts that D is a 3-restricted vertex-cut of  $S_n^2$ . When  $|D_0| \ge 6n - 18$ , we will deduce a contradiction. If  $S_{n,E}^2 - D_E$  is disconnected, there exists one vertex u such that

When  $|D_0| \ge 6n - 18$ , we will deduce a contradiction. If  $S_{n,E}^2 - D_E$  is disconnected, there exists one vertex u such that its degree in  $S_{n,E}^2 - D_E$  is less than two. By Lemma 1 (5), u has exactly one neighbor in  $S_{n,0}^2$ . Hence, u has at most two neighbors in  $S_n^2 - D$ . It contradicts that D is a 3-restricted vertex-cut of  $S_n^2$ . If  $S_{n,E}^2 - D_E$  is connected, let  $D'_E$  be a subset in  $S_{n,0}^2$  such that there is one to one correspondence between  $D'_E$  and  $D_E$ . Let  $D'_E \cap D_0 = D'_0$ . Hence,  $|D'_0| \le |D'_E| = |D_E| \le$ 6n - 19. If  $|D'_0| = |D'_E|$ , by Lemma 1 (5),  $S_n^2 - D$  is connected. It contradicts that D is a 3-restricted vertex-cut of  $S_n^2$ . If  $|D'_0| < |D'_E| \le 6n - 19$ . By Lemma 3,  $S_{n,0}^2 - D'_0$  is connected; or has two components, one of which is a singleton, or an edge; or has three components, two of which are singletons. By Lemma 1 (5), every vertex of  $S_{n,0}^2 - (D'_E \cup D_0)$  connects to  $S_{n,E}^2 - D_E$ .

If there exists one vertex v in  $D'_E - D'_0$  such that v can not be connected to  $S^2_{n,0} - D'_0$ , then this vertex v must be the union of small components in  $S^2_{n,0} - D'_0$ . Hence, v has at most one neighbor in  $S^2_n - D$ . It contradicts that D is a 3-restricted vertex-cut of  $S^2_n$ . Hence, every vertex in  $D'_E - D'_0$  can be connected to  $S^2_{n,0} - D'_0$ . If every vertex in  $D'_E - D'_0$  can be connected to  $S^2_{n,0} - D'_0$ . If every vertex in  $D'_E - D'_0$  can be connected to  $S^2_{n,0} - D'_0$ . If every vertex in  $D'_E - D'_0$  can be connected to  $S^2_{n,0} - D'_0$ . If every vertex in  $D'_E - D'_0$  such that X connects that D is a 3-restricted vertex-cut of  $S^2_n$ . Thus, there exists some vertices, say X, in  $D'_E - D'_0$  such that X connects to  $D_0 - D'_0$ . Therefore,  $N_{S^2_{n,0}}(X) \subseteq D_0$  and the minimum degree of X is three. According to the structure of  $AG_n$ ,  $|X| \ge 9$  and  $|D_E| \ge 9$ . By the proof of Lemma 5,  $|D_0| \ge |N_{S^2_{n,0}}(X)| \ge 8n - 28 + 6n - 18 - 5 = 14n - 51$ . Hence,  $|D| = |D_0| + |D_E| \ge 14n - 51 + 9 = 14n - 42 > 12n - 37 \ge |D|$ , which is a contradiction.

Therefore, the 3-restricted connectivity  $\kappa^3(S_n^2) = 12n - 36$  for  $n \ge 5$ . By Equation (3.1),  $|N_{S_n^2}(V(S_3^2))| = 12n - 36 = \kappa^3(S_n^2)$ . By Definition 2 (3),  $N_{S_n^2}(V(S_3^2))$  is a minimum 3-restricted vertex-cut of  $S_n^2$ .  $\Box$ 



**Fig. 3.** Two subsets  $D_1$  and  $D_2$  in the graph *G* are distinguishable under the MM<sup>\*</sup> model.

# 4. The {1, 2, 3}-good-neighbor diagnosability of $S_n^2$ under the MM<sup>\*</sup> model

We first introduce the concept of the faulty vertex-set of a graph (Remark 3), the development of the good-neighbor diagnosability of a graph (Remark 4), the definition of the *g*-good-neighbor diagnosability of a graph (see Definition 3), the distinguishable faulty vertex-sets (Remark 5 and Lemma 6), which were included in our previous works [22],[25],[35].

**Remark 3.** The faulty vertex-set of a graph *G* is the set of all faulty vertices of *G*. A vertex could test another vertex if and only if there is an edge between them.

**Remark 4.** In 2012, Peng et al. [27] proposed the *g*-good-neighbor diagnosability of a graph by assuming that the number of fault-free neighbors of every fault-free vertex is greater or equal to *g* in the graph.

**Definition 3.** [27] Let *G* be a graph.

(1) A faulty vertex-set *D* is called a *g*-good-neighbor faulty vertex-set of *G* if  $|N_G(x) \cap (V(G-D))| \ge g$  for  $x \in V(G-D)$ .

(2) A system *G* is *g*-good-neighbor *t*-diagnosable if  $D_1$  and  $D_2$  are distinguishable for any two *g*-good-neighbor faulty vertex-sets  $D_1$  and  $D_2$  with  $|D_1| \le t$ ,  $|D_2| \le t$ .

(3) The *g*-good-neighbor diagnosability of a graph *G* under the MM<sup>\*</sup> model, denoted by  $t_g^m(G)$ , is the maximum value of *t* such that *G* is *g*-good-neighbor *t*-diagnosable.

**Remark 5.** Sengupta and Dahbura [28] proposed an equivalent condition for that two subsets  $D_1$  and  $D_2$  in a graph G are distinguishable under the MM<sup>\*</sup> model.

**Lemma 6.** [28] Let *G* be a graph. Two subsets  $D_1$  and  $D_2$  in the graph *G* are distinguishable under the MM<sup>\*</sup> model iff one of the following conditions holds (see Fig. 3):

- (1) There exist  $yz \in E(G)$  and  $xz \in E(G)$  with  $x, z \in V(G D_1 D_2)$  and  $y \in (D_1 D_2) \cup (D_2 D_1)$ ;
- (2) There exist  $yz \in E(G)$  and  $xz \in E(G)$  with  $x, y \in D_1 D_2$  and  $z \in V(G (D_1 \cup D_2))$ ;

(3) There exist  $yz \in E(G)$  and  $xz \in E(G)$  with  $x, y \in D_2 - D_1$  and  $z \in V(G - (D_1 \cup D_2))$ .

Let the *g*-good-neighbor diagnosability of  $S_n^2$  under the MM<sup>\*</sup> model be  $t_g^m(S_n^2)$ . We then show that the upper bound of  $t_{\sigma}^m(S_n^2)$  by construction.

**Theorem 2.** Let  $S_n^2$   $(n \ge 5)$  be an n-dimensional split-star network. The upper bound of  $t_g^m(S_n^2)$  is  $2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$  for  $1 \le g \le 3$ .

**Proof.** For  $1 \le g \le 3$ , let  $\mathbb{M}_g$  be a subgraph of  $S_n^2$  such that  $\mathbb{M}_1$  is a 1-path  $P_1$  in  $S_{n,E}^2$ ,  $\mathbb{M}_2$  is a 3-cycle  $C_3$  in  $S_{n,E}^2$ , and  $\mathbb{M}_3$  is a 3-dimensional split-star subnetwork  $S_3^2$  in  $S_n^2$  for  $n \ge 5$ . Let  $D_1 = N_{S_n^2}(V(\mathbb{M}_g))$  and  $D_2 = N_{S_n^2}(V(\mathbb{M}_g)) \cup V(\mathbb{M}_g)$  be two faulty vertex-sets of  $S_n^2$  (see Fig. 4). By Lemma 2,  $|N_{S_n^2}(V(\mathbb{M}_1))| = 4n - 9$  and  $|N_{S_n^2}(V(\mathbb{M}_2))| = 6n - 15$ . By Theorem 1,  $|N_{S_n^2}(V(\mathbb{M}_3))| = 12n - 36$ . Hence, we use the uniform expression to represent  $|N_{S_n^2}(V(\mathbb{M}_g))|$  for  $1 \le g \le 3$  as follows:

$$|D_1| = |N_{S_a^2}(V(\mathbb{M}_g))| = 2 \times (2^g - g + 1) \times n - 15/2 \times g^2 + 33/2 \times g - 18.$$

Since  $N_{S_n^2}(V(\mathbb{M}_g)) \cap V(\mathbb{M}_g) = \emptyset$ , hence

$$\begin{split} |D_2| &= |N_{S_n^2}(V(\mathbb{M}_g)) \cup V(\mathbb{M}_g)| \\ &= |N_{S_n^2}(V(\mathbb{M}_g))| + |V(\mathbb{M}_g)| - |N_{S_n^2}(V(\mathbb{M}_g)) \cap V(\mathbb{M}_g)| \\ &= |N_{S_n^2}(V(\mathbb{M}_g))| + |V(\mathbb{M}_g)| \\ &= 2 \times (2^g - g + 1) \times n - 15/2 \times g^2 + 33/2 \times g - 18 + (g^2 - 2 \times g + 3) \\ &= 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 15. \end{split}$$



**Fig. 4.** The illustrations of  $D_1 = N_{S^2_n}(V(\mathbb{M}_g))$  and  $D_2 = N_{S^2_n}[V(\mathbb{M}_g)]$ .



**Fig. 5.** An illustration of  $E[V(S_n^2 - (D_1 \cup D_2)), (D_1 - D_2) \cup (D_2 - D_1)] = \emptyset$ .

and the minimum degree of  $S_n^2 - D_2$  is  $\delta(S_n^2 - D_2) \ge g$  for  $1 \le g \le 3$ . By Definition 3 (1),  $D_1$  and  $D_2$  are two g-good-neighbor faulty vertex-sets of  $S_n^2$  with

$$|D_1| \le 2 \times (2^g - g + 1) \times n - \frac{13}{2} \times g^2 + \frac{29}{2} \times g - \frac{15}{|D_2|} \le 2 \times (2^g - g + 1) \times n - \frac{13}{2} \times g^2 + \frac{29}{2} \times g - \frac{15}{15}.$$

Moreover, since  $V(\mathbb{M}_g) = D_2 - D_1$ ,  $N_{S_n^2}(V(\mathbb{M}_g)) = D_1$  and  $D_1 \subset D_2$ , there is no edge between  $V(S_n^2 - (D_1 \cup D_2))$  and  $(D_1 - D_2) \cup (D_2 - D_1)$  (see Fig. 5). By Lemma 6,  $D_1$  and  $D_2$  are two indistinguishable faulty vertex-sets of  $S_n^2$  under the MM\* model. By Definition 3 (2), the split-star network  $S_n^2$  is not g-good-neighbor  $(2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 15)$ diagnosable under the MM\* model. By Definition  $\frac{n}{3}$  (3), the upper bound of the g-good-neighbor diagnosability of  $S_n^2$  under the MM\* model is

$$t_{\sigma}^{m}(S_{n}^{2}) \le 2 \times (2^{g} - g + 1) \times n - \frac{13}{2} \times g^{2} + \frac{29}{2} \times g - 16$$

for  $n \ge 5$  and  $1 \le g \le 3$ . Hence, the theorem holds.  $\Box$ 

**Lemma 7.** [23] Let D be a faulty vertex-set of  $S_n^2$  with  $|D| \le 6n - 17$ . Then,  $S_n^2 - D$   $(n \ge 4)$  has a large component C and  $|V(S_n^2 - D - C)| \le 2$ .

**Lemma 8.** [23] Let D be a faulty vertex-set of  $S_n^2$  with  $|D| \le 8n - 25$ . Then,  $S_n^2 - D$   $(n \ge 4)$  has a large component C and  $|V(S_n^2 - D - C)| \le 3$ .

**Theorem 3.** Let  $S_n^2$   $(n \ge 5)$  be an n-dimensional split-star network. Let  $D_1$  and  $D_2$  be two indistinguishable g-good-neighbor faulty vertex-sets of  $S_n^2$  under the MM\* model with  $|D_1| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ ,  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ , and  $1 \le g \le 3$ . If  $V(S_n^2) \ne D_1 \cup D_2$ , then  $S_n^2 - (D_1 \cup D_2)$  has no isolated vertex.

**Proof.** If  $2 \le g \le 3$ , then  $D_1$  is a g-good-neighbor faulty vertex-set of  $S_n^2$ . Hence,  $|N_{S_n^2-D_1}(x)| \ge g \ge 2$  for any  $x \in V(S_n^2-D_1)$ . The faulty vertex-sets  $D_1$  and  $D_2$  of  $S_n^2$  do not satisfy any condition in Lemma 6. Hence,  $|N_{S_n^2[D_2-D_1]}(w)| \le 1$  for any

 $w \in V(S_n^2 - (D_1 \cup D_2))$ . Thus, for any  $w \in V(S_n^2 - (D_1 \cup D_2))$ , the number of all neighbors of w in the subgraph  $S_n^2 - (D_1 \cup D_2)$  is equal to the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of all neighbors of w in the subgraph  $S_n^2 - D_1$  minus the number of w in the subgraph  $S_n^2 - D_1$  minus the number of w in the subgraph  $S_n^2 - D_1$  minus the number of w in the subgraph  $S_n^2 - D_1$  minus the number of w in the subgraph  $S_n^2 - D_1$  minus the number of w in the subgraph  $S_n^2 - D_1$  minus the number of w in the subgraph  $S_n^2 - D_1$  minus the number of w is the number of w in the subgraph W is the number of w in the number of w in the subgraph W is the number of w in the number of w in the number of w is the number of w in the n

$$|N_{S_n^2 - (D_1 \cup D_2)}(w)| = |N_{S_n^2 - D_1}(w)| - |N_{S_n^2 [D_2 - D_1]}(w)| \ge g - 1 \ge 1 \text{ for } 2 \le g \le 3$$

By the arbitrariness of  $w \in V(S_n^2 - (D_1 \cup D_2))$ , every vertex of  $V(S_n^2 - (D_1 \cup D_2))$  is not isolated. Hence, the theorem holds. If g = 1 and  $D_1 \subset D_2$ , then  $S_n^2 - (D_1 \cup D_2) = S_n^2 - D_2$ . Because  $D_2$  is a 1-good-neighbor faulty vertex-set of  $S_n^2$ ,  $S_n^2 - D_2$ has no isolated vertices. When  $D_1 \not\subseteq D_2$ , suppose that there exists one isolated vertex in  $S_n^2 - (D_1 \cup D_2)$ . Let  $W \subseteq V(S_n^2 - (D_1 \cup D_2))$  consist of isolated vertices and let  $H = V(S_n^2 - (D_1 \cup D_2) - W)$ . Let  $w \in W$ . Since  $D_1$  is a 1-good-neighbor faulty vertex-set of  $S_n^2$ , thus there exists a vertex u in  $D_2 - D_1$  with  $uw \in E(S_n^2)$ . Moreover, the faulty vertex-sets  $D_1$  and  $D_2$  of  $S_n^2$  do not satisfy Lemma 6, hence there exists just one vertex  $u \in D_2 - D_1$  with  $uw \in E(S_n^2)$ . In the same way, there exists just one vertex  $v \in D_1 - D_2$  with  $vw \in E(S_n^2)$ . Hence,  $|N_{S_n^2[D_1 \cap D_2]}(w)| = 2n - 5$  for  $w \in W$  by Lemma 1 (4). Since  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$  and g = 1, we have  $|D_2| \le 4n - 8$ .

Therefore, the number of all neighbors of any vertex *w* in the vertex-set *W* in the subgraph  $S_n^2[D_1 \cap D_2]$  is equal to the size of *W* multiply by 2n - 5. Hence,

$$\begin{split} & \sum_{w \in W} |N_{S_n^2[D_1 \cap D_2]}(w)| \\ & = \sum_{w \in W} [|N_{S_n^2}(w)| - |N_{S_n^2[D_1 - D_2)}(w)| - |N_{S_n^2[D_2 - D_1]}(w)|] \\ & = |W|(|N_{S_n^2}(w)| - 2) \\ & = |W|(2n - 5). \end{split}$$

Moreover, the number of all neighbors of any vertex w in the vertex-set W in the subgraph  $S_n^2[D_1 \cap D_2]$  is no more than the number of all neighbors of any vertex v in the vertex-set  $D_1 \cap D_2$  in the subgraph  $S_n^2$ . Thus,

$$\begin{split} \sum_{w \in W} |N_{S_n^2[D_1 \cap D_2]}(w)| &\leq \sum_{v \in D_1 \cap D_2} |N_{S_n^2}(v)| \\ &\leq |D_1 \cap D_2|(2n-3) \\ &\leq (|D_2| - |D_1|)(2n-3) \\ &\leq (|D_2| - 1)(2n-3) \\ &\leq (4n-9)(2n-3). \end{split}$$

Therefore,  $|W|(2n-5) \le (4n-9)(2n-3)$ . It follows that  $|W| \le 4n-4$  for  $n \ge 5$ .

Assume that  $H = \emptyset$ , then  $V(S_n^2) = (D_1 \cup D_2) \cup W$ . Since  $(D_1 \cup D_2) \cap W = \emptyset$ , for  $n \ge 5$  and g = 1, the proof that the size of  $S_n^2$  is less than n! is listed as follows:

$$n! = |V(S_n^2)|$$
  
=  $|(D_1 \cup D_2) \cup W|$   
=  $|(D_1 \cup D_2)| + |W| - |(D_1 \cup D_2) \cap W|$   
 $\leq |D_1| + |D_2| - |D_1 \cap D_2| + |W|$   
 $\leq 2 \times (4n - 8) - (2n - 5) + (4n - 4)$   
 $< n!,$ 

which contradicts to  $|V(S_n^2)| = n!$ . Hence,  $H \neq \emptyset$ . Since the faulty vertex-sets  $D_1$  and  $D_2$  of  $S_n^2$  do not satisfy the condition (1) of Lemma 6 and V(H) has no isolated vertex, there is no edge between H and  $(D_1 - D_2) \cup (D_2 - D_1)$ ]. Therefore,  $D_1 \cap D_2$  is a 1-restricted vertex-cut of  $S_n^2$  (see Fig. 6).

By Lemma 2 (1),  $|D_1 \cap D_2| \ge 4n - 9$ . Note that  $|D_1| \le 4n - 8$ ,  $|D_2| \le 4n - 8$  and  $D_1 - D_2 \ne \emptyset$ ,  $D_2 - D_1 \ne \emptyset$ . Thus,  $|D_1 - D_2| = |D_2 - D_1| = 1$ . Let  $D_1 - D_2 = \{v_1\}$  and  $D_2 - D_1 = \{v_2\}$ . Hence,  $wv_1 \in E(S_n^2)$  and  $wv_2 \in E(S_n^2)$  for any  $w \in W$ . By Lemma 1 (4),  $|N_{S_n^2}(v_1) \cap N_{S_n^2}(v_2)| \le 2$ . Hence,  $1 \le |W| \le 2$ .

When |W| = 1, by Lemma 7, we have  $|D_1 \cap D_2| \ge 6n - 16$  (see Fig. 7). Hence, for  $n \ge 5$ ,  $|D_2| = |D_2 - D_1| + |D_1 \cap D_2| \ge 6n - 15 > 4n - 8 \ge |D_2|$ , which is a contradiction.

If |W| = 2, by Lemma 8,  $|D_1 \cap D_2| \ge 8n - 24$  (see Fig. 8). Hence, for  $n \ge 5$ ,  $|D_2| = |D_2 - D_1| + |D_1 \cap D_2| \ge 8n - 23 > 4n - 8 \ge |D_2|$ , which is a contradiction.

Therefore, the theorem holds.  $\Box$ 

Next, we will prove that the lower bound of  $t_g^m(S_n^2)$  is  $2 \times (2^g - g + 1) \times n - \frac{13}{2} \times g^2 + \frac{29}{2} \times g - 16$  for  $1 \le g \le 3$  by the above theorems.



**Fig. 6.** An illustration that  $D_1 \cap D_2$  is a 1-restricted vertex-cut of  $S_n^2$  when  $W \neq \emptyset$ .



**Fig. 7.** An illustration of  $|D_1 \cap D_2| \ge 6n - 16$ .



**Fig. 8.** An illustration of  $|D_1 \cap D_2| \ge 8n - 24$ .

**Theorem 4.** Let  $S_n^2$   $(n \ge 5)$  be an n-dimensional split-star network. The lower bound of  $t_g^m(S_n^2)$  is  $2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$  for  $1 \le g \le 3$ .

**Proof.** Suppose that  $t_g^m(S_n^2) < 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$  for  $n \ge 5$  and  $1 \le g \le 3$  under the MM\* model. By Definitions 3 (2)–(3), there exist two indistinguishable g-good-neighbor faulty vertex-sets  $D_1$  and  $D_2$  of  $S_n^2$  with

$$\begin{aligned} |D_1| &\leq 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16, \\ |D_2| &\leq 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16. \end{aligned}$$

By Lemma 6, the faulty vertex-sets  $D_1$  and  $D_2$  of  $S_n^2$  do not satisfy Lemma 6. Assume that  $D_2 - D_1 \neq \emptyset$ . If  $V(S_n^2) = D_1 \cup D_2$ , then

$$n! = |V(S_n^2)| \le |D_1| + |D_2| \le 2[2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16] < n!$$

for  $n \ge 5$  and  $1 \le g \le 3$ , which is a contradiction.



**Fig. 9.** An illustration that  $D_1 \cap D_2$  is also a g-restricted vertex-cut of  $S_n^2$ .

Hence,  $V(S_n^2) \neq D_1 \cup D_2$ . Let *u* be a vertex in  $S_n^2 - (D_1 \cup D_2)$ . By Theorem 3, there exists at least one vertex *v* in  $S_n^2 - (D_1 \cup D_2)$  such that  $uv \in E(S_n^2)$ . Since the faulty vertex-sets  $D_1$  and  $D_2$  of  $S_n^2$  do not satisfy Lemma 6, u and v have no neighbor in  $(D_1 - D_2) \cup (D_2 - D_1)$ . By the arbitrariness of  $u \in V(S_n^2 - (D_1 \cup D_2))$ , there is no edge between  $V(S_n^2 - (D_1 \cup D_2))$ and  $(D_1 - D_2) \cup (D_2 - D_1)$ .

Since  $D_1$  is a g-good-neighbor faulty vertex-set of  $S_n^2$  and  $D_2 - D_1 \neq \emptyset$ ,  $\delta(S_n^2[D_2 - D_1]) \ge g^2 - 2g + 3$ . Hence,  $|D_2 - D_1| \ge g + 1$ . Since  $D_1$  and  $D_2$  are two g-good-neighbor faulty vertex-sets of  $S_n^2$  and there is no edge between  $V(S_n^2 - (D_1 \cup D_2))$ and  $(D_1 - D_2) \cup (D_2 - D_1)$ ,  $D_1 \cap D_2$  is also a g-restricted vertex-cut of  $S_n^2$  for  $1 \le g \le 3$  (see Fig. 9). By Lemma 2 and Theorem 1.

$$|D_1 \cap D_2| \ge 2 \times (2^g - g + 1) \times n - 15/2 \times g^2 + 33/2 \times g - 18.$$

Therefore.

$$\begin{aligned} |D_2| &= |D_2 - D_1| + |D_1 \cap D_2| \\ &\geq (g^2 - 2g + 3) + (2 \times (2^g - g + 1) \times n - 15/2 \times g^2 + 33/2 \times g - 18) \\ &= 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 15, \end{aligned}$$

which contradicts to  $|D_2| \le 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ . In conclusion, the lower bound of  $t_g^m(S_n^2)$  is  $2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$  for  $1 \le g \le 3$ . Hence, the theorem holds.  $\Box$ 

According to Theorems 2 and 4, the following theorem holds.

**Theorem 5.** Let  $S_n^2$   $(n \ge 5)$  be an n-dimensional split-star network. Then  $t_g^m(S_n^2) = 2 \times (2^g - g + 1) \times n - 13/2 \times g^2 + 29/2 \times g - 16$ for  $1 \le g \le 3$ .

#### 5. Conclusion

In this paper, we propose a simple and complete proof to show that, under the MM\* model, the g-good-neighbor diagnosability of  $S_n^2$  is  $2 \times (2^g - g + 1) \times n - \frac{13}{2} \times g^2 + \frac{29}{2} \times g - 16$  for  $1 \le g \le 3$ , which is several times higher than the original diagnosability. In the future, we will establish a universal method for the general g-restricted connectivity and the *g*-good-neighbor diagnosability of  $S_n^2$  where  $g \ge 4$ .

#### **Declaration of competing interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgements

This work was supported by the Fok Ying Tung Education Foundation (No. 171061), National Natural Science Foundation of China (No. 61702100, No. U1905211, No. 61702103, No. 61771140).

### References

- [1] S.B. Akers, D. Harel, B. Krishnamurthy, The star graph: an attractive alternative to the *n*-cube, in: Proceedings of the International Conference on Parallel Processing, 1987, pp. 393–400.
- [2] N.-W. Chang, S.-Y. Hsieh, Conditional diagnosability of augmented cubes under the PMC model, IEEE Trans. Dependable Secure Comput. 9 (1) (2012) 46–60.
- [3] C.-A. Chen, S.-Y. Hsieh, (t, k)-Diagnosis for component-composition graphs under the MM\* model, IEEE Trans. Comput. 60 (12) (2011) 1704–1717.
- [4] D. Cheng, A relationship between g-good-neighbour conditional diagnosability and g-good-neighbour connectivity in regular graphs, Int. J. Comput. Math.: Comput. Syst. Theory 3 (2018) 47–52.
- [5] E. Cheng, M.J. Lipman, Orienting split-stars and alternating group graphs, Networks 35 (2) (2000) 139-144.
- [6] E. Cheng, M.J. Lipman, Vulnerability issues of star graphs, alternating group graphs and split-stars: strength and toughness, Discrete Appl. Math. 118 (2002) 163–179.
- [7] E. Cheng, M.J. Lipman, H.A. Park, An attractive variation of the star graphs: split-stars, Technical Report 98 (3), 1998.
- [8] E. Cheng, M.J. Lipman, H.A. Park, Super connectivity of star graphs, alternating group graph networks and split-stars, Ars Combinatoria 59 (2001) 107–116.
- [9] E. Cheng, L. Lipták, F. Sala, Linearly many faults in 2-tree-generated networks, Networks 55 (2010) 90-98.
- [10] E. Cheng, K. Qiu, Z. Shen, A general approach to deriving the g-good-neighbor conditional diagnosability of interconnection networks, Theor. Comput. Sci. 757 (2019) 56–67.
- [11] J. Fan, Diagnosability of the Möbius cubes, IEEE Trans. Parallel Distrib. Syst. 9 (9) (1998) 923–928.
- [12] J. Fan, Diagnosability of crossed cubes under the comparison diagnosis model, IEEE Trans. Parallel Distrib. Syst. 13 (7) (2002) 687–692.
- [13] M.-M. Gu, R.-X. Hao, D.-X. Yang, A short note on the 1, 2-good-neighbor diagnosability of balanced hypercubes, J. Interconnect. Netw. 16 (02) (2016) 1650001.
- [14] M.-M. Gu, R.-X. Hao, A.-M. Yu, The 1-good-neighbor conditional diagnosability of some regular graphs, J. Interconnect. Netw. 17 (3n04) (2017) 1741001.
- [15] J. Guo, D. Li, M. Lu, The g-good-neighbor conditional diagnosability of the crossed cubes under the PMC and MM\* model, Theor. Comput. Sci. 755 (2019) 81–88.
- [16] R.-X. Hao, Y.-Q. Feng, J.-X. Zhou, Conditional diagnosability of alternating group graphs, IEEE Trans. Comput. 62 (4) (2013) 827-831.
- [17] X. Hu, W. Yang, Y. Tian, J. Meng, Equal relation between g-good-neighbor diagnosability under the PMC model and g-good-neighbor diagnosability under the MM\* model of a graph, Discrete Appl. Math. 262 (2019) 96–103.
- [18] Y. Huang, L. Lin, L. Xu, X. Wang, Extra diagnosability and good-neighbor diagnosability of n-dimensional alternating group graph AG<sub>n</sub> under the PMC model, Theor. Comput. Sci. 795 (2019) 36–49, https://doi.org/10.1016/j.tcs.2019.05.034.
- [19] J.S. Jwo, S. Lakshmivarahan, S.K. Dhall, A new class of interconnection networks based on the alternating group, Networks 23 (1993) 315-326.
- [20] S. Latifi, M. Hegde, M. Naraghi-Pour, Conditional connectivity measures for large multiprocessor systems, IEEE Trans. Comput. 43 (2) (1994) 218–222.
- [21] D. Li, M. Lu, The g-good-neighbor conditional diagnosability of star graphs under the PMC and MM\* model, Theor. Comput. Sci. 674 (2017) 53–59.
   [22] L. Lin, S.-Y. Hsieh, R. Chen, L. Xu, C.-W. Lee, The relationship between g-restricted connectivity and g-good-neighbor fault diagnosability of general regular networks, IEEE Trans. Reliab. 67 (1) (2018) 285–296.
- [23] L. Lin, L. Xu, S. Zhou, Conditional diagnosability and strong diagnosability of Split-Star Networks under the PMC model, Theor. Comput. Sci. 562 (2015) 565–580.
- [24] L. Lin, L. Xu, S. Zhou, S.-Y. Hsieh, The extra, restricted connectivity and conditional diagnosability of split-star networks, IEEE Trans. Parallel Distrib. Syst. 27 (2) (2016) 533–545.
- [25] L. Lin, L. Xu, D. Wang, S. Zhou, The g-good-neighbor conditional diagnosability of arrangement graphs, IEEE Trans. Dependable Secure Comput. 15 (3) (2018) 542–548.
- [26] J. Maeng, M. Malek, A comparison connection assignment for self-diagnosis of multiprocessors systems, in: Proceedings of the 11th International Symposium on Fault-Tolerant Computing, 1981, pp. 173–175.
- [27] S.-L. Peng, C.-K. Lin, J.J.M. Tan, L.-H. Hsu, The g-good-neighbor conditional diagnosability of hypercube under PMC model, Appl. Math. Comput. 218 (2012) 10406–10412.
- [28] A. Sengupta, A. Dahbura, On self-diagnosable multiprocessor systems: diagnosis by the comparison approach, IEEE Trans. Comput. 41 (11) (1992) 1386–1396.
- [29] S. Wang, W. Han, The g-good-neighbor conditional diagnosability of n-dimensional hypercubes under the MM\* model, Inf. Process. Lett. 116 (9) (2016) 574–577.
- [30] S. Wang, M. Wang, The g-good-neighbor and g-extra diagnosability of networks, Theor. Comput. Sci. 773 (2019) 107-114.
- [31] Y. Wei, M. Xu, On g-good-neighbor conditional diagnosability of (n,k)-star networks, Theor. Comput. Sci. 697 (2017) 79–90.
- [32] Y. Wei, M. Xu, The 1, 2-good-neighbor conditional diagnosabilities of regular graphs, Appl. Math. Comput. 334 (2018) 295-310.
- [33] X. Xu, X. Li, S. Zhou, R.-X. Hao, M.-M. Gu, The g-good-neighbor diagnosability of (n, k)-star graphs, Theor. Comput. Sci. 659 (2017) 53–63.
- [34] J. Yuan, A. Liu, X. Ma, X. Liu, X. Qin, J. Zhang, The g-good-neighbor conditional diagnosability of k-ary n-cubes under the PMC model, and comparison model, IEEE Trans. Parallel Distrib. Syst. 26 (4) (2015) 1165–1177.
- [35] Y. Zhai, L. Lin, L. Xu, X. Zhang, Y. Huang, The conditional diagnosability with g-good-neighbor of exchanged hypercubes, Comput. J. 62 (5) (2019) 747–756.