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The restricted connectivity and the g-good-neighbor diagnosability are two important in-
dicators of the robustness for a multi-processor system in presence of failing processors. 
The g-good-neighbor diagnosability of a graph guarantees that the number of fault-free 
neighbors of every fault-free vertex is greater or equal to g in the graph. We first establish 
the 3-restricted connectivity of an n-dimensional split-star network S2

n . Then we propose 
the upper bound of the {1, 2, 3}-good-neighbor diagnosability of S2

n under the MM* model. 
Moreover, we show that when deleting two indistinguishable good-neighbor faulty vertex-
sets from S2

n , the remaining connected subgraph has no isolated vertex. Furthermore, we 
give a complete proof for the lower bound of the {1, 2, 3}-good-neighbor diagnosability of 
S2

n , and prove that the lower and upper bounds of the {1, 2, 3}-good-neighbor diagnosabil-
ity of S2

n are accurate.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Failure of processor is inevitable in a multiprocessor system with a great quantity of processors. A novel diagnostic 
model, the comparison model (MM model), was established by Malek and Maeng [26]. Under the MM model, a test contains a 
vertex u and two of its neighbors v, w . The vertex u sends the same input to v, w and then compares their feedbacks. If u is 
faulty, then the test result is not reliable. When u is fault-free, the test result is 0 if v, w are both fault-free and 1 otherwise. 
In 1992, Sengupta and Dahbura [28] proposed the MM* model, which is a special MM model. Under the MM* model, every 
vertex must compare every pair of its neighbors. Fan [11,12] proposed the diagnosability of the Möbius cubes and crossed 
cubes under the MM* model. Moreover, Chen and Hsieh [3] gave the (t, k)-diagnosis for component-composition graphs 
under the MM* model. To better reflect a network’s true self fault-diagnosing capability, Chang and Hsieh [2] studied the 
conditional diagnosability of augmented cubes.

In 2012, Peng et al. [27] proposed the g-good-neighbor diagnosability of a graph, which assumes that the number of fault-
free neighbors of every fault-free vertex is greater or equal to g in the graph under the PMC model. Since this conception 
was raised, a lot of works have been done on it. Yuan et al. [34] gave the g-good-neighbor diagnosability of k-ary n-cubes. 
In 2016, Wang et al. [29] proposed the g-good-neighbor diagnosability of n-hypercubes under the MM* model. We [25]
established the g-good-neighbor diagnosability of arrangement graphs by exploring the known g-restricted connectivity 
and the size of K g+1. Xu et al. [33] also proposed the g-good-neighbor diagnosability of (n, k)-star graphs by combining 

* Corresponding author at: College of Mathematics and Informatics, Fujian Normal University, Fuzhou, Fujian, 350117, PR China.
E-mail address: putianlinlimei@163.com (L. Lin).
https://doi.org/10.1016/j.tcs.2020.04.015
0304-3975/© 2020 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.tcs.2020.04.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2020.04.015&domain=pdf
mailto:putianlinlimei@163.com
https://doi.org/10.1016/j.tcs.2020.04.015


82 L. Lin et al. / Theoretical Computer Science 824–825 (2020) 81–91
the known g-restricted connectivity with the size of the (g + 1)-dimensional complete graph (K g+1) for 0 ≤ g ≤ n − k. In 
2017, Wei and Xu [31] extended the result for (n, k)-star networks to 0 ≤ g ≤ n − 1. Gu et al. [13] gave a short note on the 
{1, 2}-good-neighbor diagnosability of balanced hypercubes. Guo et al. [15] studied the g-good-neighbor diagnosability of 
crossed cubes. Li and Lu [21] proposed g-good-neighbor conditional diagnosability of star graphs. In 2019, we studied the 
g-good-neighbor diagnosability for exchanged hypercubes [35] and alternating group graphs [18].

Moreover, there exist some general works about the g-good-neighbor diagnosability. Gu et al. [14] studied the 1-good-
neighbor diagnosability of some regular graphs. Then, Wei and Xu [32] explored the {1, 2}-good-neighbor conditional 
diagnosability of some special regular graphs, including BC graphs, folded hypercubes and four classes of Cayley graphs. 
Hu et al. [17] established the equal relationship between g-good-neighbor diagnosability under the PMC model and MM* 
model. Furthermore, in 2018, we [22] established the relationship between g-restricted connectivity and g-good-neighbor 
fault diagnosability of general triangle-free regular networks. Then, Cheng [4], Wang et al. [30] and Cheng et al. [10] also 
provided a relationship between g-good-neighbor diagnosability and g-restricted connectivity in regular graphs with differ-
ent conditions.

These related works do not involve the study of the g-good-neighbor diagnosability for the split-star networks. In this 
paper, we aim to solve the problem for the structure called an n-dimensional split-star network S2

n , which was proposed 
by Cheng et al. [7] as an alternative to the popular n-dimensional star graph Sn [1]. The construction of the split-star 
network is rather different from the hypercubes, k-ary n-cubes, star graphs, arrangement graph, (n, k)-star graphs, balanced 
hypercubes, crossed cubes, exchanged hypercube and alternating group graphs, and it has many advantages compared with 
these above networks. Moreover, the split-star network has many 3-cycles in it, which is different from our reference [22]. 
The 3-good-neighbor diagnosability and 3-restricted connectivity also have not been presented. Hence, the above general 
related works for g-good-neighbor diagnosability are not applicable to the work of this paper. We will give a complete 
method for 3-restricted connectivity. Moreover, we will propose the {1, 2, 3}-good-neighbor diagnosability by considering a 
unified approach.

To highlight our contributions, we summarize them as follows:

• We establish the 3-restricted connectivity of an n-dimensional split-star network S2
n .

• We propose the upper bound of the {1, 2, 3}-good-neighbor diagnosability of S2
n by construction under the MM* model.

• When deleting two indistinguishable good-neighbor faulty vertex-sets from S2
n , the remaining connected subgraph has 

no isolated vertex.
• We prove that the upper and lower bounds of the {1, 2, 3}-good-neighbor diagnosability of S2

n are accurate.

This paper is divided into four parts. Section 2–Section 5 establish the preliminaries used throughout the paper, the 
3-restricted connectivity of S2

n , the {1, 2, 3}-good-neighbor diagnosability of S2
n under the MM* model, and the conclusion, 

respectively.

2. Preliminaries

We give some preparing works to establish the 3-restricted connectivity and the g-good-neighbor diagnosability of S2
n

under the MM* model.

2.1. Terminology

In this subsection, we give some basic terminologies, which were included in our previous works [18],[22],[23],[24],[25]
and [35].

• G = (V (G), E(G)): a graph with the vertex-set V (G) and the edge-set E(G).
• u ∈ V (G): a vertex u from the vertex-set V (G).
• uv ∈ E(G): an edge uv from the edge-set E(G).
• |A|: the size of a set A.
• M ⊆ G: M is a subgraph of G , in which V (M) ⊆ V (G) and E(M) ⊆ E(G).
• G[B]: an induced subgraph of G by the vertex-set B with V (G[B]) = B and E(G[B]) = {xy | xy ∈ E(G), x, y ∈ B}.
• ⋃m

i=1 Gi = G[⋃m
i=1 V (Gi)] and 

⋂m
i=1 Gi = G[⋂m

i=1 V (Gi)].
• G − B: a subgraph of G by deleting all vertices of the vertex-set B from a graph G and all edges connecting at least one 

vertex in the vertex-set B .
• A − B: a set of vertices who are in the vertex-set A and not in the vertex-set B .
• E[V (G1), V (G2)] = {xy | x ∈ V (G1) and y ∈ V (G2)}.
• NG(x) = {y ∈ V (G) | xy ∈ E(G)}.
• NG(B) = (

⋃
u∈B NG(x)) − B .

• δ(G): the minimum value of degrees of all vertices in a graph G .
• Pk (or Ck): a path (or cycle) with length k, called a k-path (or k-cycle).
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Fig. 1. The 4-dimensional split-star network S2
4.

2.2. Split-star network

In subsection 2.2, we give the definition of the n-dimensional split-star network S2
n (Definition 1) and some basic prop-

erties of S2
n (Remark 1, Remark 2 and Lemma 1).

Definition 1. [7,8] Given two positive integers n and k with n > k, let 〈n〉 = {1, 2, . . . , n}, and let Pn be a set of n! permuta-
tions on 〈n〉. The n-dimensional split-star network, denoted by S2

n , such that
• V (S2

n) =Pn;
• E(S2

n) = {pq | p (resp. q) can be obtained from q (resp. p) by either a 2-exchange or a 3-rotation}.
(1) A 2-exchange interchanges the symbols in 1st position and 2nd position.
(2) A 3-rotation rotates the symbols in 1st, 2nd and kth for some k ∈ {3, 4, . . . , n}.

Remark 1. For any vertex u and a fixed k ∈ {3, 4, . . . , n}, there are two 3-rotations 
(123···k···n

2k3···1···n
)

and 
(123···k···n

k13···2···n
)
, so the vertex 

u has two neighbors by the 3-rotations for this k. Hence, S2
n is a (1 + 2(n − 2))-regular graph with n! vertices. We use 

x = x1x2 · · · xi · · · xn to denote a permutation where xi is in ith position. Fig. 1 gives the structure of S2
4.

Remark 2. For any i ∈ {1, 2, . . . , n − 2, n − 1, n}, let S2:i
n = S2

n[V (S2:i
n )] where the set V (S2:i

n ) = {x1x2 · · · xn−2xn−1i | x j1 �= x j2 ∈
{1, 2, . . . , n − 2, n − 1, n} − {i} where 1 ≤ j1 �= j2 ≤ n − 1}. Every vertex v in S2:i

n has exactly two neighbors not in S2:i
n , who 

are called as the external-neighbors of v . A pair of elements xi and x j is called an inversion of x if xi < x j whenever i > j.

The n-dimensional split-star network can be decomposed to two different networks by even permutation and the odd 
permutation, in which the former and the latter contain an even and an odd number of inversions, respectively. Let 
S2

n,E be an induced subgraph S2
n[V (S2

n,E)] with V (S2
n,E) = {u | u is an even permutation in V (S2

n)}. It can be found 
that S2

n,E is an n-dimensional alternating group graph AGn [19]. Let S2
n,O be an induced subgraph S2

n[V (S2
n,O )] with 

V (S2
n,O ) = {u | u is an odd permutation in V (S2

n)}. Hence, S2
n,O is isomorphic to S2

n,E by a 2-exchange and there are n!/2

disjointed edges between the subgraphs S2
n,E and S2

n,O . Fig. 2 gives the subgraphs S2
4,E and S2

4,O .

Lemma 1. [5,6,23] (1) The n-dimensional split-star network S2
n is (2n − 3)-regular and the connectivity of S2

n is 2n − 3 for n ≥ 2.
(2) Every vertex in S2:i

n has two external-neighbors, which are in distinct subgraphs and adjacent.
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Fig. 2. The subgraphs S2
4,E and S2

4,O .

(3) Any two vertices in S2:i
n have different external-neighbors.

(4) Let ζ, η ∈ V (S2
n). If ζη /∈ E(S2

n), then |N S2
n
(ζ ) ∩ N S2

n
(η)| ≤ 2. If ζη ∈ E(S2

n), then |N S2
n
(ζ ) ∩ N S2

n
(η)| = 1.

(5) There is one to one correspondence between the subgraph S2
n,O and the subgraph S2

n,E .

3. The 3-restricted connectivity of S2
n

In this section, we will establish the sufficient conditions to determine the 3-restricted connectivity of S2
n .

Definition 2. [20] Given a graph G , a subset D in V (G) and an nonnegative integer g .
(1) If G − D is disconnected, then D is called a vertex-cut of G . The maximal connected subgraph in G − D is called a 

component.
(2) If D is a vertex-cut and δ(G − D) ≥ g , then D is called a g-restricted vertex-cut of G .
(3) The g-restricted connectivity of G , denoted by κ g(G), is the minimum cardinality over all g-restricted vertex-cuts of G . 

A g-restricted vertex-cut is called to be the minimum if the cardinality of the g-restricted vertex-cut is κ g(G).

We [24] have obtained the {1, 2}-restricted connectivity of S2
n .

Lemma 2. [24] Let S2
n be an n-dimensional split-star network, then the following properties hold.

(1) κ1(S2
n) = 4n − 9 (n ≥ 4). Furthermore, let S be a 1-path in S2

n,E , then N S2
n
(V (S)) is a minimum 1-restricted vertex-cut of S2

n.

(2) κ2(S2
n) = 6n − 15 (n ≥ 5). Furthermore, let C3 be a 3-cycle in S2

n,E , then N S2
n
(V (C3)) is a minimum 2-restricted vertex-cut 

of S2
n .

Because the n-dimensional split-star network can be viewed as “companion graphs” of the n-dimensional alternating 
group graphs AGn . We introduce the following some basic properties, which can be used to study the 3-restricted connec-
tivity of S2

n .

Lemma 3. [9] Let D be a vertex-cut of AGn (n ≥ 5) such that |D| ≤ 6n − 20. Then, AGn − D satisfies one of the following conditions.
(1) AGn − D has two components, one of which is a singleton, or an edge;
(2) AGn − D has three components, two of which are singletons.

Lemma 4. [16] Let D be a subset of V (AGn) (n ≥ 5) such that |D| ≤ 6n − 19. Then, AGn − D satisfies one of the following conditions.
(1) AGn − D is connected;
(2) AGn − D has two components, one of which is a singleton, an edge or a 2-path;
(3) AGn − D has three components, two of which are both singletons, respectively.

Lemma 5. [18] Let AGn (n ≥ 5) be an n-dimensional alternating group graph. Then, the 2-restricted connectivity is κ2(AGn) =
6n − 18. Furthermore, let C3 = {u, v, w} be a 3-cycle in AGn (n ≥ 5) such that u = 1234 · · · i · · ·n, v = 2431 · · · i · · ·n and w =
4132 · · · i · · ·n. It can be deduced that N AGn (V (C3)) is a minimum 2-restricted vertex-cut of AGn.

Theorem 1. Let S2
n be an n-dimensional split-star network. Let S2

3 be a 3-dimensional split-star subnetwork in S2
n for n ≥ 5. Then the 

3-restricted connectivity κ3(S2
n) = 12n − 36 and N 2(V (S2)) is a minimum 3-restricted vertex-cut of S2

n for n ≥ 5.
Sn 3
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Proof. First, we prove that κ3(S2
n) ≤ 12n − 36.

Let S2
3 be a 3-dimensional split-star subnetwork in S2

n (n ≥ 5). Without loss of generality, assume that V (S2
3,E) =

{u, v, w} such that u = 1234 · · · i · · ·n, v = 2431 · · · i · · ·n and w = 4132 · · · i · · ·n and V (S2
3,O ) = {u′, v ′, w ′} such that 

u′ = 2134 · · · i · · ·n, v ′ = 4231 · · · i · · ·n and w ′ = 1432 · · · i · · ·n. Obviously, S3,E is a minimum 2-restricted vertex-cut of S2
n,E

by Lemma 5 and the fact that S2
n,E is an n-dimensional alternating group graph AGn . Hence, |N S2

n,E
(V (S2

3,E))| = 6n − 18 by 

Lemma 5. Moreover, every vertex of S2
n,E − N S2

n,E
(V (S2

3,E)) − V (S2
3,E) has at least two neighbors in S2

n,E − N S2
n,E

(V (S2
3,E)) −

V (S2
3,E) and every vertex of V (S2

3,E) has exactly two neighbors in V (S2
3,E). Because S2

n,E is isomorphic to S2
n,O , S2

3,O is a 
minimum 2-restricted vertex-cut of S2

n,O by Lemma 5. Hence, |N S2
n,O

(V (S2
3,O ))| = 6n − 18 by Lemma 5. Moreover, every 

vertex of S2
n,O − N S2

n,O
(V (S2

3,O )) − V (S2
3,O ) has at least two neighbors in S2

n,O − N S2
n,O

(V (S2
3,O )) − V (S2

3,O ) and every vertex 

of V (S2
3,O ) has exactly two neighbors in V (S2

3,O ).

By Lemma 1 (5), there is one to one correspondence between the subgraph S2
3,O (resp. S2

n,O − N S2
n,O

(V (S2
3,O )) − V (S2

3,O )) 

and the subgraph S2
3,E (resp. S2

n,E − N S2
n,E

(V (S2
3,E )) − V (S2

3,E)). Thus, every vertex of S2
n − N S2

n
(V (S2

3)) − V (S2
3) has at least 

three neighbors in S2
n − N S2

n
(V (S2

3)) − V (S2
3) and every vertex of V (S2

3) has exactly three neighbors in V (S2
3). Therefore, 

N S2
n
(V (S2

3)) is a 3-restricted vertex-cut of S2
n . By Definition 2 (3),

κ3(S2
n) ≤ |N S2

n
(V (S2

3))|
= |N S2

n,O
(V (S2

3,O ))| + |N S2
n,E

(V (S2
3,E))|

= 2 × (6n − 18)

= 12n − 36.

(3.1)

Next, we prove that κ3(S2
n) ≥ 12n − 36.

Suppose that κ3(S2
n) ≤ 12n − 37. Let D be a minimum 3-restricted vertex-cut of S2

n , |D| = κ3(S2
n) ≤ 12n − 37. Let D O =

D ∩ V (S2
n,O ) and D E = D ∩ V (S2

n,E). Hence, |D O | + |D E | = |D| ≤ 12n − 37. Hence, there exists at least one of |D O | and |D E |
with that the size is less than 6n − 18. Without loss of generality, assume that |D E | ≤ 6n − 19. By Lemma 4, S2

n,E − D E is 
connected; or has two components, one of which is a singleton, an edge or a 2-path; has three components, two of which 
are both singletons, respectively.

When |D O | ≤ 6n − 19, by Lemma 4, S2
n,O − D O is connected; or has two components, one of which is a singleton, an 

edge or a 2-path; has three components, two of which are both singletons, respectively. When S2
n,E − D E is connected and 

S2
n,O − D O is connected, by Lemma 1 (5), there exactly n!/2 disjoint edges between S2

n,O and S2
n,E . Because n!/2 > 12n − 37

for n ≥ 5. Hence, there exists at least one edge between S2
n,E − D E and S2

n,O − D O . It can be implied that S2
n − D is connected, 

which contradicts that D is a 3-restricted vertex-cut of S2
n .

Without loss of generality, assume that S2
n,E − D E is disconnected, there exists one vertex u such that its degree in 

S2
n,E − D E is less than two. By Lemma 1 (5), u has exactly one neighbor in S2

n,O . Hence, u has at most two neighbors in 
S2

n − D . It contradicts that D is a 3-restricted vertex-cut of S2
n .

When |D O | ≥ 6n − 18, we will deduce a contradiction. If S2
n,E − D E is disconnected, there exists one vertex u such that 

its degree in S2
n,E − D E is less than two. By Lemma 1 (5), u has exactly one neighbor in S2

n,O . Hence, u has at most two 
neighbors in S2

n − D . It contradicts that D is a 3-restricted vertex-cut of S2
n . If S2

n,E − D E is connected, let D ′
E be a subset in 

S2
n,O such that there is one to one correspondence between D ′

E and D E . Let D ′
E ∩ D O = D ′

O . Hence, |D ′
O | ≤ |D ′

E | = |D E | ≤
6n − 19. If |D ′

O | = |D ′
E |, by Lemma 1 (5), S2

n − D is connected. It contradicts that D is a 3-restricted vertex-cut of S2
n . If 

|D ′
O | < |D ′

E | ≤ 6n − 19. By Lemma 3, S2
n,O − D ′

O is connected; or has two components, one of which is a singleton, or an 
edge; or has three components, two of which are singletons. By Lemma 1 (5), every vertex of S2

n,O − (D ′
E ∪ D O ) connects to 

S2
n,E − D E .

If there exists one vertex v in D ′
E − D ′

O such that v can not be connected to S2
n,O − D ′

O , then this vertex v must be 
the union of small components in S2

n,O − D ′
O . Hence, v has at most one neighbor in S2

n − D . It contradicts that D is a 
3-restricted vertex-cut of S2

n . Hence, every vertex in D ′
E − D ′

O can be connected to S2
n,O − D ′

O . If every vertex in D ′
E − D ′

O

can be connected to S2
n,O − D ′

O − D O , then S2
n − D is connected. It contradicts that D is a 3-restricted vertex-cut of S2

n . 
Thus, there exists some vertices, say X , in D ′

E − D ′
O such that X connects to D O − D ′

O . Therefore, N S2
n,O

(X) ⊆ D O and 
the minimum degree of X is three. According to the structure of AGn , |X | ≥ 9 and |D E | ≥ 9. By the proof of Lemma 5, 
|D O | ≥ |N S2

n,O
(X)| ≥ 8n − 28 + 6n − 18 − 5 = 14n − 51. Hence, |D| = |D O | +|D E | ≥ 14n − 51 + 9 = 14n − 42 > 12n − 37 ≥ |D|, 

which is a contradiction.
Therefore, the 3-restricted connectivity κ3(S2

n) = 12n −36 for n ≥ 5. By Equation (3.1), |N S2
n
(V (S2

3))| = 12n −36 = κ3(S2
n). 

By Definition 2 (3), N 2 (V (S2)) is a minimum 3-restricted vertex-cut of S2
n . �
Sn 3
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Fig. 3. Two subsets D1 and D2 in the graph G are distinguishable under the MM* model.

4. The {1, 2, 3}-good-neighbor diagnosability of S2
n under the MM* model

We first introduce the concept of the faulty vertex-set of a graph (Remark 3), the development of the good-neighbor 
diagnosability of a graph (Remark 4), the definition of the g-good-neighbor diagnosability of a graph (see Definition 3), the 
distinguishable faulty vertex-sets (Remark 5 and Lemma 6), which were included in our previous works [22],[25],[35].

Remark 3. The faulty vertex-set of a graph G is the set of all faulty vertices of G . A vertex could test another vertex if and 
only if there is an edge between them.

Remark 4. In 2012, Peng et al. [27] proposed the g-good-neighbor diagnosability of a graph by assuming that the number 
of fault-free neighbors of every fault-free vertex is greater or equal to g in the graph.

Definition 3. [27] Let G be a graph.
(1) A faulty vertex-set D is called a g-good-neighbor faulty vertex-set of G if |NG(x) ∩ (V (G − D))| ≥ g for x ∈ V (G − D).
(2) A system G is g-good-neighbor t-diagnosable if D1 and D2 are distinguishable for any two g-good-neighbor faulty 

vertex-sets D1 and D2 with |D1| ≤ t , |D2| ≤ t .
(3) The g-good-neighbor diagnosability of a graph G under the MM* model, denoted by tm

g (G), is the maximum value of 
t such that G is g-good-neighbor t-diagnosable.

Remark 5. Sengupta and Dahbura [28] proposed an equivalent condition for that two subsets D1 and D2 in a graph G are 
distinguishable under the MM* model.

Lemma 6. [28] Let G be a graph. Two subsets D1 and D2 in the graph G are distinguishable under the MM* model iff one of the 
following conditions holds (see Fig. 3):

(1) There exist yz ∈ E(G) and xz ∈ E(G) with x, z ∈ V (G − D1 − D2) and y ∈ (D1 − D2) ∪ (D2 − D1);
(2) There exist yz ∈ E(G) and xz ∈ E(G) with x, y ∈ D1 − D2 and z ∈ V (G − (D1 ∪ D2));
(3) There exist yz ∈ E(G) and xz ∈ E(G) with x, y ∈ D2 − D1 and z ∈ V (G − (D1 ∪ D2)).

Let the g-good-neighbor diagnosability of S2
n under the MM* model be tm

g (S2
n). We then show that the upper bound of 

tm
g (S2

n) by construction.

Theorem 2. Let S2
n (n ≥ 5) be an n-dimensional split-star network. The upper bound of tm

g (S2
n) is 2 × (2g − g + 1) ×n − 13/2 × g2 +

29/2 × g − 16 for 1 ≤ g ≤ 3.

Proof. For 1 ≤ g ≤ 3, let Mg be a subgraph of S2
n such that M1 is a 1-path P1 in S2

n,E , M2 is a 3-cycle C3 in S2
n,E , and 

M3 is a 3-dimensional split-star subnetwork S2
3 in S2

n for n ≥ 5. Let D1 = N S2
n
(V (Mg)) and D2 = N S2

n
(V (Mg)) ∪ V (Mg) be 

two faulty vertex-sets of S2
n (see Fig. 4). By Lemma 2, |N S2

n
(V (M1))| = 4n − 9 and |N S2

n
(V (M2))| = 6n − 15. By Theorem 1, 

|N S2
n
(V (M3))| = 12n − 36. Hence, we use the uniform expression to represent |N S2

n
(V (Mg))| for 1 ≤ g ≤ 3 as follows:

|D1| = |N S2
n
(V (Mg))| = 2 × (2g − g + 1) × n − 15/2 × g2 + 33/2 × g − 18.

Since N S2
n
(V (Mg)) ∩ V (Mg) = ∅, hence

|D2| = |N S2
n
(V (Mg)) ∪ V (Mg)|

= |N S2
n
(V (Mg))| + |V (Mg)| − |N S2

n
(V (Mg)) ∩ V (Mg)|

= |N S2
n
(V (Mg))| + |V (Mg)|

= 2 × (2g − g + 1) × n − 15/2 × g2 + 33/2 × g − 18 + (g2 − 2 × g + 3)

= 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 15,
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Fig. 4. The illustrations of D1 = N S2
n
(V (Mg )) and D2 = N S2

n
[V (Mg )].

Fig. 5. An illustration of E[V (S2
n − (D1 ∪ D2)), (D1 − D2) ∪ (D2 − D1)] = ∅.

and the minimum degree of S2
n − D2 is δ(S2

n − D2) ≥ g for 1 ≤ g ≤ 3.
By Definition 3 (1), D1 and D2 are two g-good-neighbor faulty vertex-sets of S2

n with

|D1| ≤ 2 × (2g − g + 1)×n − 13/2 × g2 + 29/2 × g − 15, |D2| ≤ 2 × (2g − g + 1)×n − 13/2 × g2 + 29/2 × g − 15.

Moreover, since V (Mg) = D2 − D1, N S2
n
(V (Mg)) = D1 and D1 ⊂ D2, there is no edge between V (S2

n − (D1 ∪ D2)) and 
(D1 − D2) ∪ (D2 − D1) (see Fig. 5). By Lemma 6, D1 and D2 are two indistinguishable faulty vertex-sets of S2

n under the MM* 
model. By Definition 3 (2), the split-star network S2

n is not g-good-neighbor (2 ×(2g − g +1) ×n −13/2 × g2 +29/2 × g −15)-
diagnosable under the MM* model. By Definition 3 (3), the upper bound of the g-good-neighbor diagnosability of S2

n under 
the MM* model is

tm
g (S2

n) ≤ 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16

for n ≥ 5 and 1 ≤ g ≤ 3. Hence, the theorem holds. �
Lemma 7. [23] Let D be a faulty vertex-set of S2

n with |D| ≤ 6n − 17. Then, S2
n − D (n ≥ 4) has a large component C and 

|V (S2
n − D − C)| ≤ 2.

Lemma 8. [23] Let D be a faulty vertex-set of S2
n with |D| ≤ 8n − 25. Then, S2

n − D (n ≥ 4) has a large component C and 
|V (S2

n − D − C)| ≤ 3.

Theorem 3. Let S2
n (n ≥ 5) be an n-dimensional split-star network. Let D1 and D2 be two indistinguishable g-good-neighbor faulty 

vertex-sets of S2
n under the MM* model with |D1| ≤ 2 × (2g − g +1) ×n −13/2 × g2 +29/2 × g −16, |D2| ≤ 2 × (2g − g +1) ×n −

13/2 × g2 + 29/2 × g − 16, and 1 ≤ g ≤ 3. If V (S2
n) �= D1 ∪ D2 , then S2

n − (D1 ∪ D2) has no isolated vertex.

Proof. If 2 ≤ g ≤ 3, then D1 is a g-good-neighbor faulty vertex-set of S2
n . Hence, |N S2

n−D1
(x)| ≥ g ≥ 2 for any x ∈ V (S2

n − D1). 
The faulty vertex-sets D1 and D2 of S2

n do not satisfy any condition in Lemma 6. Hence, |N 2 (w)| ≤ 1 for any 
Sn[D2−D1]
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w ∈ V (S2
n −(D1 ∪ D2)). Thus, for any w ∈ V (S2

n −(D1 ∪ D2)), the number of all neighbors of w in the subgraph S2
n −(D1 ∪ D2)

is equal to the number of all neighbors of w in the subgraph S2
n − D1 minus the number of all neighbors of w in the 

subgraph S2
n[D2 − D1]. Hence,

|N S2
n−(D1∪D2)(w)| = |N S2

n−D1
(w)| − |N S2

n[D2−D1](w)| ≥ g − 1 ≥ 1 for 2 ≤ g ≤ 3.

By the arbitrariness of w ∈ V (S2
n − (D1 ∪ D2)), every vertex of V (S2

n − (D1 ∪ D2)) is not isolated. Hence, the theorem holds.
If g = 1 and D1 ⊂ D2, then S2

n − (D1 ∪ D2) = S2
n − D2. Because D2 is a 1-good-neighbor faulty vertex-set of S2

n , S2
n − D2

has no isolated vertices. When D1 � D2, suppose that there exists one isolated vertex in S2
n − (D1 ∪ D2). Let W ⊆ V (S2

n −
(D1 ∪ D2)) consist of isolated vertices and let H = V (S2

n − (D1 ∪ D2) − W ). Let w ∈ W . Since D1 is a 1-good-neighbor 
faulty vertex-set of S2

n , thus there exists a vertex u in D2 − D1 with uw ∈ E(S2
n). Moreover, the faulty vertex-sets D1 and 

D2 of S2
n do not satisfy Lemma 6, hence there exists just one vertex u ∈ D2 − D1 with uw ∈ E(S2

n). In the same way, there 
exists just one vertex v ∈ D1 − D2 with v w ∈ E(S2

n). Hence, |N S2
n [D1∩D2](w)| = 2n − 5 for w ∈ W by Lemma 1 (4). Since 

|D2| ≤ 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16 and g = 1, we have |D2| ≤ 4n − 8.
Therefore, the number of all neighbors of any vertex w in the vertex-set W in the subgraph S2

n[D1 ∩ D2] is equal to the 
size of W multiply by 2n − 5. Hence,

∑
w∈W |N S2

n[D1∩D2](w)|
= ∑

w∈W [|N S2
n
(w)| − |N S2

n[D1−D2)(w)| − |N S2
n[D2−D1](w)|]

= |W |(|N S2
n
(w)| − 2)

= |W |(2n − 5).

Moreover, the number of all neighbors of any vertex w in the vertex-set W in the subgraph S2
n[D1 ∩ D2] is no more than 

the number of all neighbors of any vertex v in the vertex-set D1 ∩ D2 in the subgraph S2
n . Thus,

∑
w∈W |N S2

n[D1∩D2](w)| ≤ ∑
v∈D1∩D2

|N S2
n
(v)|

≤ |D1 ∩ D2|(2n − 3)

≤ (|D2| − |D1|)(2n − 3)

≤ (|D2| − 1)(2n − 3)

≤ (4n − 9)(2n − 3).

Therefore, |W |(2n − 5) ≤ (4n − 9)(2n − 3). It follows that |W | ≤ 4n − 4 for n ≥ 5.
Assume that H = ∅, then V (S2

n) = (D1 ∪ D2) ∪ W . Since (D1 ∪ D2) ∩ W = ∅, for n ≥ 5 and g = 1, the proof that the size 
of S2

n is less than n! is listed as follows:

n! = |V (S2
n)|

= |(D1 ∪ D2) ∪ W |
= |(D1 ∪ D2)| + |W | − |(D1 ∪ D2) ∩ W |
≤ |D1| + |D2| − |D1 ∩ D2| + |W |
≤ 2 × (4n − 8) − (2n − 5) + (4n − 4)

< n!,
which contradicts to |V (S2

n)| = n!. Hence, H �= ∅. Since the faulty vertex-sets D1 and D2 of S2
n do not satisfy the condition 

(1) of Lemma 6 and V (H) has no isolated vertex, there is no edge between H and (D1 − D2) ∪ (D2 − D1)]. Therefore, 
D1 ∩ D2 is a 1-restricted vertex-cut of S2

n (see Fig. 6).
By Lemma 2 (1), |D1 ∩ D2| ≥ 4n − 9. Note that |D1| ≤ 4n − 8, |D2| ≤ 4n − 8 and D1 − D2 �= ∅, D2 − D1 �= ∅. Thus, 

|D1 − D2| = |D2 − D1| = 1. Let D1 − D2 = {v1} and D2 − D1 = {v2}. Hence, w v1 ∈ E(S2
n) and w v2 ∈ E(S2

n) for any w ∈ W . 
By Lemma 1 (4), |N S2

n
(v1) ∩ N S2

n
(v2)| ≤ 2. Hence, 1 ≤ |W | ≤ 2.

When |W | = 1, by Lemma 7, we have |D1 ∩ D2| ≥ 6n − 16 (see Fig. 7). Hence, for n ≥ 5, |D2| = |D2 − D1| + |D1 ∩ D2| ≥
6n − 15 > 4n − 8 ≥ |D2|, which is a contradiction.

If |W | = 2, by Lemma 8, |D1 ∩ D2| ≥ 8n − 24 (see Fig. 8). Hence, for n ≥ 5, |D2| = |D2 − D1| + |D1 ∩ D2| ≥ 8n − 23 >
4n − 8 ≥ |D2|, which is a contradiction.

Therefore, the theorem holds. �
Next, we will prove that the lower bound of tm

g (S2
n) is 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16 for 1 ≤ g ≤ 3 by 

the above theorems.
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Fig. 6. An illustration that D1 ∩ D2 is a 1-restricted vertex-cut of S2
n when W �= ∅.

Fig. 7. An illustration of |D1 ∩ D2| ≥ 6n − 16.

Fig. 8. An illustration of |D1 ∩ D2| ≥ 8n − 24.

Theorem 4. Let S2
n (n ≥ 5) be an n-dimensional split-star network. The lower bound of tm

g (S2
n) is 2 × (2g − g + 1) ×n − 13/2 × g2 +

29/2 × g − 16 for 1 ≤ g ≤ 3.

Proof. Suppose that tm
g (S2

n) < 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16 for n ≥ 5 and 1 ≤ g ≤ 3 under the MM* 
model. By Definitions 3 (2)–(3), there exist two indistinguishable g-good-neighbor faulty vertex-sets D1 and D2 of S2

n with

|D1| ≤ 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16,

|D2| ≤ 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16.

By Lemma 6, the faulty vertex-sets D1 and D2 of S2
n do not satisfy Lemma 6. Assume that D2 − D1 �= ∅. If V (S2

n) = D1 ∪ D2, 
then

n! = |V (S2
n)| ≤ |D1| + |D2| ≤ 2[2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16] < n!

for n ≥ 5 and 1 ≤ g ≤ 3, which is a contradiction.
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Fig. 9. An illustration that D1 ∩ D2 is also a g-restricted vertex-cut of S2
n .

Hence, V (S2
n) �= D1 ∪ D2. Let u be a vertex in S2

n − (D1 ∪ D2). By Theorem 3, there exists at least one vertex v in 
S2

n − (D1 ∪ D2) such that uv ∈ E(S2
n). Since the faulty vertex-sets D1 and D2 of S2

n do not satisfy Lemma 6, u and v have no 
neighbor in (D1 − D2) ∪(D2 − D1). By the arbitrariness of u ∈ V (S2

n −(D1 ∪ D2)), there is no edge between V (S2
n −(D1 ∪ D2))

and (D1 − D2) ∪ (D2 − D1).
Since D1 is a g-good-neighbor faulty vertex-set of S2

n and D2 − D1 �= ∅, δ(S2
n[D2 − D1]) ≥ g2 −2g +3. Hence, |D2 − D1| ≥

g + 1. Since D1 and D2 are two g-good-neighbor faulty vertex-sets of S2
n and there is no edge between V (S2

n − (D1 ∪ D2))

and (D1 − D2) ∪ (D2 − D1), D1 ∩ D2 is also a g-restricted vertex-cut of S2
n for 1 ≤ g ≤ 3 (see Fig. 9). By Lemma 2 and 

Theorem 1,

|D1 ∩ D2| ≥ 2 × (2g − g + 1) × n − 15/2 × g2 + 33/2 × g − 18.

Therefore,

|D2| = |D2 − D1| + |D1 ∩ D2|
≥ (g2 − 2g + 3) + (2 × (2g − g + 1) × n − 15/2 × g2 + 33/2 × g − 18)

= 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 15,

which contradicts to |D2| ≤ 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16.
In conclusion, the lower bound of tm

g (S2
n) is 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16 for 1 ≤ g ≤ 3. Hence, the 

theorem holds. �
According to Theorems 2 and 4, the following theorem holds.

Theorem 5. Let S2
n (n ≥ 5) be an n-dimensional split-star network. Then tm

g (S2
n) = 2 × (2g − g +1) ×n −13/2 × g2 +29/2 × g −16

for 1 ≤ g ≤ 3.

5. Conclusion

In this paper, we propose a simple and complete proof to show that, under the MM* model, the g-good-neighbor 
diagnosability of S2

n is 2 × (2g − g + 1) × n − 13/2 × g2 + 29/2 × g − 16 for 1 ≤ g ≤ 3, which is several times higher than 
the original diagnosability. In the future, we will establish a universal method for the general g-restricted connectivity and 
the g-good-neighbor diagnosability of S2

n where g ≥ 4.
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