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ABSTRACT

The study on data aggregation in Internet of Things (IoT) has
drawn a great attention in recent years. Since a large-scale
disaster could damage the entire communication network
and cut off data aggregation completely, an Intelligent UAV
based Data Aggregation Strategy, named (IDAS), is pro-
posed for after disaster scenarios in IoT. Specifically, IDAS
first employs an task distribution mechanism to achieve the
trade-off between the aggregation ratio and the energy cost.
Then, a deep reinforcement learning method is developed
for UAV route design to perform corresponding task. Thus,
all data are aggregated toward the rescue headquarter by
UAV deployment. The simulation results indicate that IDAS
has a higher aggregation ratio and a lower energy cost while
compared with contemporary strategies.
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1 INTRODUCTION

Internet of Things (IoT) is the interconnection of smart things
with sensing, actuation and computing capabilities via the in-
ternet. Data collected from smart devices, i.e., smart phones,
smart bracelets, smart watchs etc., will be aggregated and
analyzed for industrial applications. However, a large-scale
disaster could compromise the entire communication network
of the IoT, in which deploying UAV will result in the quickest
and easiest way to restore a basic communication service in
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the affected zone. In this paper, we propose an Intelligent
Data Aggregation Strategy (IDAS) for IoT using UAV after
disasters. Specifically, IDAS consists of a task distribution
and a UAV based route design. The details of our contribu-
tions are listed as follows. To ensure the data aggregation,
IDAS first employs an data aggregation task distribution
mechanism. Specifically, this mechanism guarantees that the
time gap of visiting the same location should be less than
that of filling up the buffer for aggregation ratio improvement.
More importantly, the approximate route energy efficiency
is introduced to ensure the trade-off between aggregation
ratio and energy cost during task distribution. Next, a Deep
Reinforcement Learning (DRL) method is developed for each
energy efficient UAV route design w.r.t the corresponding
data collection task. Thus, all data will be collected and ag-
gregated toward the rescue headquarter through a connected
network by UAV deployment. The simulation results indi-
cate that the proposed IDAS has a higher aggregation ratio
and a less energy cost while compared with contemporary
strategies.

The rest of the paper is organized as follows. Related work
is covered in Section 2. The system model is introduced in
Section 3. The IDAS is elaborated in Section 4. The validation
experiments are presented in section 5. We conclude this
paper in Section 6.

2 RELATED WORK

In an after-disaster scenario, a fundamental aspect is how to
deploy UAV for data aggregation. In the study of route design,
Abbas and Younis [5] utilize convex hulls of components for
data aggregation. Similarly, the RCR [3] is proposed to fur-
ther shorten the vehicle routes by deploying relays. CISIL [1]
is develop by exploiting the Delaunay triangulation, in which
𝑘 3-hyperedges of the 3-hypergraph are chosen as routes. The
LEEF [2] is designed to equalize the energy cost through
greedy expansion and optimization successively. Apart from
shortening routes, other factors, i.e., data collection rate,
buffer size and speed, will potentially affect the aggregation
ratio. However, all these factors are neglected by previous
works. On the other hand, lots of previous works take energy
cost into consideration w.r.t realistic terrains. In [6], stochas-
tic geometry is used to optimize the energy cost. The work
proposed in [7] presents a dynamic clustering and routing
algorithm to maintain connectivity and achieve energy ef-
ficiency in a large scale sensor network. In [10], Senturk et
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al. develop the ReBAT that quantifies terrains to discover
the minimum energy cost routes. Wang et al. [9] design a
hybrid strategy to achieve data aggregation in realistic en-
vironments. Recently, Wang et al. [11] develop a machine
learning based strategy for data aggregation. Toyoshima et al.
[5] propose Deep Q-Network (DQN) based vehicle simulation
systems, which is called in this strategy DQNMDC in this
paper for simplicity, considering three-dimensional environ-
ment for normal and uniform distributions of events. The
efficiency of optimal drone positioning has attracted a lot of
interest among researchers and academicians. Zorbas et al.
[12] introduces a minimum cost drone location problem. Tuba
et al. [13] present a study in which they look into a recent
brainstorm optimization algorithm. It aims at finding the
optimal positions for static drones in a monitored area such
that their coverage is maximized. Shakhatreh et al. [14] talk
about finding an optimal position for the UAVs such that the
sum of time durations of uplink transmissions is maximized.
In [15], Rodriguez et al. compare four studies that have been
done on routing and wavelength assignment with the aim of
supporting and improving traffic related problems. However,
these works are not energy efficient, i.e., the trade-off between
aggregation ratio and energy cost is not accomplished.

3 SYSTEM MODEL

Consider a damaged IoT network mapped to a graph, in which
each node 𝑛𝑖 represents a survived infrastructures, i.e., a com-
munication tower, with a communication rage 𝑅, a buffer
𝐵𝑢𝑓𝑛𝑖 and a data collection rate 𝐷𝑐𝑟𝑛𝑖 . Each component 𝐺𝑖

exists if a number of survived infrastructure 𝑛𝑖s fall into each
other’s communication range. As the disaster can cause a
large-scale damage, i.e., worker injury, factory collapse, com-
munication interruptions etc., the rescue headquarter should
restore the communication with injured workers through sur-
vived infrastructures. However, most of the time people are
unable to communicate with the rescue headquarter because
survived infrastructures are overwhelmed by call attempts
or their communications with outside world are completely
cut off. In these cases, deploying UAVs [16] results in the
quickest and easiest way to restore a basic communication
service in the affected zone for distress calls or mayday signals
aggregation.

As we analysed before, two important factors, namely the
aggregation ratio and the energy cost, should be considered
during the UAV deployment. Recall that the aggregation ratio
relies on the travelling distance that somehow determines the
energy cost. However, terrains of realistic environments are
dominant for energy cost. That indicates the importance for
terrain quantification.

3.1 Terrain Quantification

We apply the grid based quantification to measure terrain
influences. Specifically, each cell 𝑐 of the grid is associated
with an energy factor ℱ on a certain terrain as

ℱ𝑐 =

∫︁
𝑙𝑐

∫︁
𝑒𝑐

𝑟𝑐, (1)

where 𝑙𝑐, 𝑟𝑐 and 𝑒𝑐 represent the travelling distance, the risk
and the elevation of 𝑐, respectively. Thus, the energy factor
ℱ𝑇 of route 𝑇 is the sum of that of each sub-route 𝑇𝑖, which
is given by

ℱ𝑇 =
∑︁
𝑇𝑖∈𝑇

∑︁
𝑐∈𝑇𝑖

ℱ𝑐 (2)

Accordingly, the energy cost of UAV on route 𝑇 , which is
denoted as E𝑈𝐴𝑉

𝑇 , is then given by

E𝑈𝐴𝑉
𝑇 = ℱ𝑇 × 𝜈, (3)

where 𝜈 ∝ 𝑉 . Obviously, E𝑈𝐴𝑉
𝑇 is proportional to terrain

influences. If an UAV visits a component 𝐺𝑖 on route 𝑇𝑖, then
all data of which is collected at a specific collection position
𝑝𝑐𝑖 . We then define the energy cost function of a node 𝑛𝑗 ∈ 𝐺𝑖

for data collection as

E𝑁𝑜𝑑𝑒
𝑛𝑗𝑝

𝑐
𝑖
= 𝜅× 𝐿2

𝑛𝑗𝑝
𝑐
𝑖
, (4)

where 𝜅 is a power related constant and 𝐿𝑛𝑗𝑝
𝑐
𝑖
denotes the

length of the edge (𝑛𝑗𝑝
𝑐
𝑖 ). Thus, we can deduce that 𝑝𝑐𝑖 is the

centroid of component 𝐺𝑖 due to 𝑝𝑐𝑖 = argmin
∑︀

𝑛𝑗∈𝐺𝑖
E𝑁𝑜𝑑𝑒
𝑛𝑗𝑝

𝑐
𝑖
.

Then, the energy cost for data collection is given by

E𝑁𝑜𝑑𝑒
𝑇 =

∑︁
𝑇𝑖∈𝑇

∑︁
𝐶𝑖∈𝑇𝑖

∑︁
𝑛𝑗∈𝐶𝑖

E𝑁𝑜𝑑𝑒
𝑛𝑗𝑝

𝑐
𝑖
. (5)

Thus, the overall energy cost of route 𝑇 is then given by

E𝑇 = E𝑈𝐴𝑉
𝑇 + E𝑁𝑜𝑑𝑒

𝑇 . (6)

Note that reducing energy cost may somehow contradict
to aggregation ratio improvement, i.e., a route of less energy
cost might require a detour that results in a less aggrega-
tion ratio. Thus, we focus on developing an energy efficient
data aggregation strategy to achieve the tradeoff between
aggregation ratio and energy cost.

4 THE IDAS APPROACH

4.1 Data Aggregation Task Distribution

Recall that all data of a component 𝐺𝑖 will be collected
while an UAV reached the position 𝑝𝑐𝑖 . That suggests the set
𝑃 = {𝑝𝑐𝑖} of data collection positions should be partitioned
into 𝑁𝑚 nonoverlapping clusters 𝐶𝑖s, each of which is as-
signed an UAV responsible to collect and aggregate data for
corresponding 𝐺𝑖s. Otherwise, a component, say 𝐺𝑖, could
be visited by several UAVs such that the time gap of visiting
another component 𝐺𝑗 is enlarged and data is lost due to
each node has a limited buffer size. That suggests the time
gap should be less or equal to the minimum time of filling
up the buffer 𝐵𝑢𝑓𝑛𝑖 as

𝐿

𝑉
≤ 𝐵𝑢𝑓𝑛𝑖

𝐷𝑐𝑟𝐺𝑖

(1 + 𝜂), (7)

where 𝐿 represents the length of the route, 𝜂 is the tolerable
data loss ratio, and 𝐷𝑐𝑟𝐺𝑖 denotes the data collection rate
of component 𝐺𝑖, i.e., 𝐷𝑐𝑟𝐺𝑖 = max

𝑛𝑖∈𝐺𝑖

𝐷𝑐𝑟𝑛𝑖 . Accordingly, a

greedy partitioning algorithm is developed as follows:
Step 1, construct a Hamilton cycle 𝐻𝑃 over set 𝑃 and

label each 𝑝𝑐𝑖 ∈ 𝐻𝑃 sequentially along the 𝐻𝑃 , i.e., 𝐻𝑃 =
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𝑝𝑐1𝑝
𝑐
2 . . . 𝑝

𝑐
𝑛𝑝

𝑐
1, then repeat Step 2 with a different starting

position 𝑝𝑐𝑗 ∈ 𝐻𝑝 each time;
Step 2, sequentially add 𝑝𝑐𝑖 to 𝐶𝑗 , i.e., 𝐶𝑗 = 𝐶𝑗 ∪ {𝑝𝑐𝑖},

only if 𝐿𝐻𝐶𝑗
satisfies (7); Otherwise, add current position 𝑝𝑐𝑘

to 𝐶𝑗+1 and repeat this step until each 𝑝𝑐𝑖 ∈ 𝐻𝑃 belongs to
a certain cluster;

Although a number of partitions are available, the optimal
one should take the energy cost into consideration. In order
to approximate the real energy cost of a certain partition, we
first introduce the probability density functions (pdf) of the
distribution of different terrains. From the global perspective,
the energy cost for each cell 𝑐 should consider the pdf of the
corresponding terrain 𝑝𝑐 as

ℱ
′
𝑐 =

∫︁
𝑙𝑐

∫︁
𝑒𝑐

𝑟𝑐𝑝𝑐, (8)

Thus, the approximated energy cost E
′
𝑇 is computed utilizing

E.q. (2)∼(5) and (8). Then, we define the Approximated
Route Energy Efficiency as the proportion between aggre-
gated data and corresponding energy cost. Obviously, the
optimal partition should be the one of the maximal overall
approximated energy efficiency. Although, each cluster of the
optimal partition is assigned an UAV for data collection and
aggregation, in which the energy efficient route within each
cluster should be discovered.

4.2 DRL based Route Design

We consider the UAV route design in a fully distributed and
continuous multi-agent data collection environment. That
suggests traditional policy gradient based methods of DRL
cannot meet our requirement. For example, DQN can only
work well in a limited action space which is discrete, discon-
tinuous and non-distributed, thus it is not suitable for our ap-
plication scenario. We therefore propose a new solution here.
Each UAV 𝑚 generates an observation 𝑜𝑚𝑡 = (𝑥𝑚

𝑡 , 𝑦𝑚
𝑡 , 𝑟𝑚𝑡 )

which is a part of state 𝑠𝑡 at each timeslot 𝑡, and gives it an
action 𝑎𝑚

𝑡 , then obtains a reward 𝑟𝑚𝑡 from the environment.
After the execution of actions, the environment would change
from old state 𝑠𝑡 to new state 𝑠𝑡+1. In fact, state, action and
reward are three basic components for DRL. Once a state
and a set of possible actions are given, and then the goal is
to find a policy that maximizes the accumulated reward. In
our system, state, action and reward are defined as follows.

1) State Space: State, which is a description of the environ-
ment, is denoted as 𝑆 = {(𝑆1, 𝑆2, 𝑆3)} as three channels. We
assume that the simulated environment is a map of real ter-
rains. And 𝑆1 represents a cluster 𝐶𝑚 of collection positions
assigned to a specific UAV 𝑚, therefore can be defined as
𝑆1 = {(𝑥𝑘,𝑚, 𝑦𝑘,𝑚)}1≤𝑘≤|𝐶𝑚|; 𝑆2 = {(𝑥𝑚

𝑡 , 𝑦𝑚
𝑡 )}, where 𝑥𝑚

𝑡 ,
𝑦𝑚
𝑡 are coordinates of UAV 𝑚 at timeslot 𝑡; 𝑆3 = {𝑛𝑚

𝑡 } is the
set of remaining collection position count of 𝑚 at timeslot
𝑡, therefore 𝑛𝑚

𝑡+1 = 𝑛𝑚
𝑡 − 1 if a collection position is visited

and the corresponding data is collected at timeslot 𝑡+ 1.
2) Action Space: Moving direction 𝜗𝑚

𝑡 and distance 𝑑𝑚𝑡
consists of the action set 𝐴 = {(𝜗𝑚

𝑡 , 𝑑𝑚𝑡 )|𝜗𝑚
𝑡 ∈ [0, 2𝜋], 𝑑𝑚𝑡 ∈

[0, 𝑑𝑚𝑎𝑥]}, where 𝑑𝑚𝑎𝑥 is the maximum distance that an UAV
can move in a timeslot.

3) Reward : All four parts, namely data collected 𝑏𝑚𝑡 by
timeslot 𝑡, remaining collection position ratio 𝑛𝑚

𝑡 /|𝐶𝑚|, and
energy consumption E𝑇 contribute to the reward of each
UAV 𝑚. Thus, we can compute a reward formulation 𝑟𝑚𝑡 as:

𝑟𝑚𝑡 =

⎧⎪⎨⎪⎩
1
E𝑇

, 𝑖𝑓 𝑏𝑚𝑡 = 0

𝑛𝑚
𝑡 𝑏𝑚𝑡

|𝐶𝑚|E𝑇
, 𝑖𝑓 𝑏𝑚𝑡 > 0,

Thus, the overall reward is 𝑟𝑡 =
∑︀

𝑚 𝑟𝑚𝑡 . In fact, the re-
ward formulation enable UAVs to be energy efficient in data
collection and aggregation.

Each UAV is implemented by 4 DNNs which serves as
actor network 𝜋(𝑜𝑡|𝜃𝜋), critic network 𝑄(𝑠𝑡, 𝑎𝑡|𝜃𝑄) with ran-
domly initialized weights 𝜃𝜋, 𝜃𝑄 and their two target net-

works with parameters 𝜃𝜋
′
= 𝜃𝜋 and 𝜃𝑄

′
= 𝜃𝑄, where 𝑜𝑡 =

(𝑜1𝑡 , · · · , 𝑜𝑁𝑚
𝑡 ), 𝑎𝑡 = (𝑎1

𝑡 , · · · , 𝑎𝑁𝑚
𝑡 ), and 𝑠𝑡 = (𝑠1𝑡 , · · · , 𝑠𝑁𝑚

𝑡 ).
In each collection round, we initialize environment and obtain
the initial state 𝑠0 ∈ 𝑆.

For distributed training process, a group of transitions,
i.e., ⟨𝑆,𝐴,𝑅⟩, is sampled as mini-batches from each UAV’s
private buffer. For each UAV 𝑚, actor target network will give
a target action 𝑎𝑚

𝑡 with given observation 𝑜𝑚𝑡 from a mini-
batch. Then, critic network 𝑄 is updated through minimizing
a loss function 𝐿(𝜃𝑄) as:

𝐿(𝜃𝑄) = 𝐸[(𝒴𝑡 −𝑄(𝑠𝑡, 𝑎
1
𝑡 , · · · , 𝑎𝑁𝑚

𝑡 |𝜃𝑄))2],

𝒴𝑡 = 𝛾𝑄
′
(𝑠𝑡+1, 𝑎

1
𝑡+1, · · · , 𝑎𝑁𝑚

𝑡+1 |𝜃
𝑄

′

) + 𝑟𝑡,

while we updated actor network, using the gradient as:

∇𝜃𝜋𝐽 ≈ 𝐸[∇𝜃𝜋𝜋(𝑜|𝜃𝜋)|𝑜 = 𝑜𝑡

∇𝑎𝑄(𝑠, 𝑎1, · · · , 𝑎𝑁𝑚 |𝜃𝑄)|𝑎𝑚 = 𝜋(𝑜𝑚), 𝑜 = 𝑜𝑡],

where 𝑎 = (𝑎1, · · · , 𝑎𝑁𝑚). Note that target networks are two
copies of the actor 𝜋 and critic 𝑄 networks, but with different
weights update rules. Specifically, after updating weights of

networks 𝜋 and𝑄, the weights of target networks, 𝜃𝑄
′
and 𝜃𝜋

′
,

are then slowly updated with the original networks weights
and update factor 𝜏 to improve the stability of learning, as:

𝜃𝑄
′

= 𝜏𝜃𝑄 + (1− 𝜏)𝜃𝑄
′

,

𝜃𝜋
′

= 𝜏𝜃𝜋 + (1− 𝜏)𝜃𝜋
′

,

After adequate training, all the parameters in four DNNs are
optimized for data aggregation task.

5 PERFORMANCE EVALUATION

In this section, we compare the proposed strategy with base-
line approaches considering an after disaster scenario.

5.1 Simulation Setup

The performance of IDAS has been validated through exten-
sive simulation experiments which is developed in Python
on an Intel Core i5-8250U 1.6 GHZ CPU, 8GB RAM com-
puter. In the simulation, we assume that all devices are
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deployed within 1000𝑚 × 1000𝑚 area, which is represent-
ed by a TIN model, built by the application of a Delaunay
triangulation on altimetry data of these terrains, retrieved via
“http://www.zonums.com/gmaps/terrain.php?action=sample”.
The parameters of the experiment are listed in Table 1.

Table 1: Simulation setup.

Parameter Description Value

𝑉 UAV speed [20, 90] km/h
𝑁 Number of nodes [100, 240]
𝐵𝑢𝑓. Buffer size 2Mbit
𝑁𝑚 Number of UAVs [4,11]
𝑘 Eonstant coefficient 10−4 joule/m2

𝑐 Energy coefficient 30 joule/m

We compare IDAS with baseline approaches LEEF [2],
CISIL [1], DQNMDC [5] and DRLDC [4] in terms of aggre-
gation ratio, energy cost and maximum energy cost while
varying UAV count (𝑁𝑚), velocity (𝑉 ), number of nodes (𝑁),
and data collection rate (𝐷𝑐𝑟). The terrain parameters are
listed in Table 2.

Table 2: Terrain types, risk rates, and elevation.

Type Risk Elevation

Mountain 0.004 (0,1]
Forest 0.002 (0,5]

5.2 Aggregation Ratio

As shown in Fig. 1(a), the aggregation ratio grows rapidly at
the beginning with 𝑉 and eventually levels off for all strate-
gies. It is obvious that IDAS achieves the highest aggregation
ratio. The reason for that is the DRL based energy efficient
UAV route design helps to discover the optimal route such
that the trade-off between aggregation ratio and energy cost
is achieved. The adverse impact on the aggregation ratio is
shown in Fig. 1(b). It is clear that the aggregation ratio drops
as 𝑁 increases and eventually gets stable for all strategies.
The reason for that is as follows. The traveling distance in-
crease with more nodes involved such that more data is lost
at the beginning. However, such distance grows slowly while
the deployment area is densely populated eventually. It is
clear that IDAS still performs the best among all.

Fig. 2 suggests the proposed IDAS is more suitable in after
disaster scenarios for better data aggregation.

5.3 Energy Cost

It can be observed from Fig. 2(a) that each approach con-
sumes more energy as 𝑁 increases with 𝑁𝑚 = 11. It is clearly
that IDAS outperforms all baseline approaches. This is be-
cause although more nodes are involved, the energy cost is no
longer increased rapidly with the help of the optimal route
design. As shown in Fig. 2(b), the maximum energy cost for
each strategy drops as 𝑁𝑚 increases. The proposed strategy

0.4

0.6

0.8

1

gr
eg

at
io

n 
Ra

tio

DRLDC

DQNMDC

LEEF

0

0.2

20 30 40 50 60 70 80 90

Ag

V (km/h)

CISIL

IDAS

(a)

0.4

0.6

0.8

1

gr
eg

at
io

n 
Ra

tio

DRLDC

DQNMDC

LEEF

0

0.2

100 120 140 160 180 200 220 240

Ag

N

CISIL

IDAS

(b)

Figure 1: The aggregation ratio comparison while
varying (a) 𝑉 and (b) 𝑁

IDAS performs better than others in a relatively lower max-
imum energy cost. Besides, 𝑁𝑚 seems to affect IDAS less
than other strategies due to the consideration of the trade-off
between aggregation ratio and energy cost. Fig. 2(a) and Fig.
2(b) verify the advantage of the proposed IDAS in energy
cost for after disaster scenarios.

6 CONCLUSION

In this paper, an Intelligent UAV based Data Aggregation
Strategy, named (IDAS), is proposed for after disaster scenar-
ios in IoT. Specifically, IDAS consists of an data aggregation
task distribution and a deep reinforcement learning based
UAV route design, both of which collaborate to achieve the
trade-off between the aggregation ratio and the energy cost.
The simulation results indicate that IDAS is highly energy
efficient while compared with contemporary strategies.
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