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PPCS: An Intelligent Privacy-Preserving
Mobile-Edge Crowdsensing Strategy

for Industrial IoT
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Jia Hu , and M. Shamim Hossain , Senior Member, IEEE

Abstract—Mobile-edge crowdsensing is capable of providing a
large amount of data via pervasive mobile terminals for Industrial
Internet of Things (IIoT). However, the generated data often con-
tain users’ sensitive information, which suggests the significance
of privacy preserving in data aggregation and analysis for IIoT.
Privacy preserving in mobile-edge crowdsensing have conflicting
objectives, i.e., the edge fusion center (FC) requires data of better
quality for data fusion with higher accuracy whereas participa-
tory users (PUs) desire better privacy preserving by larger noise
injection. Therefore, how to select proper noises to achieve the
tradeoff between accuracy and privacy is a challenging problem.
In addition, FC is subject to data tempering due to the lack of
data reliability validations and incentive mechanisms. To tackle
these problems, we propose a novel privacy-preserving mobile-
edge crowdsensing strategy (PPCS) for IIoT. Specifically, PPCS
provides a Kullback–Leibler privacy-preserving data aggrega-
tion using a reputation-based incentive mechanism. On the other
hand, PPCS offers hypothesis test-based data reliability valida-
tion and PU’s reputation update, which collaborate to ease the
impact of tampered data. Meanwhile, a reinforcement learning
algorithm, the expected Sarsa, is applied to obtain the optimal
test threshold. Theoretical analysis and experimental results show
that PPCS is an energy-efficient strategy and the data provided
by PPCS has a better aggregation accuracy than certain baseline
strategies.

Index Terms—Crowdsensing, edge computing, industrial
Internet of Things (IIoT), privacy preserving, reinforcement
learning (RL).
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I. INTRODUCTION

W ITH the rapid development of mobile devices, i.e.,
smartphone, smartwatch, tablet, etc., the mobile crowd-

sensing has aroused many interests in Industrial Internet of
Things (IIoT). Via edge computing, the public cloud center
can employ IoT terminals to obtain useful information [1].
Specifically, the data collected by the terminal devices is inte-
grated by the edge fusion centers (FCs), and the public cloud
center can get the aggregated information from the encrypted
data of FC. However, FC could be untrustworthy, i.e., com-
promised by malicious attackers [2]. On the other hand, it
is costly for participatory users (PUs) to contribute sensing
data to FC that make PUs reluctant in crowdsensing without
a compensating mechanism.

To tackle this problem, a number of works have been
proposed [3], [4], [14]–[19] based on specific incentive mech-
anisms. The basic idea of these works is that PUs contribute
perturbed data by injecting noise to preserve privacy and FC
pays for PUs’ privacy loss. However, it immediately raises
two other problems: 1) how to select a reasonable amount of
noise to preserve desired privacy and 2) how to achieve an
efficient data reliability and eventually minimize the impact
of tampered data. These problems should be addressed by
quantifying the privacy-preserving degree (PPD) first and then
simultaneously optimizing aggregation accuracy as well as
providing acceptable PPDs for PUs. In fact, designing an
incentive mechanism, which ensures honest PUs contributing
perturbed private data with respect to (w.r.t.) their PPD to be
well compensated by FC, is crucial. That suggests the pay-
ment from FC to PUs is somehow related to PUs’ reputations,
which is obtained from the reliability of their contributed data
through an efficient validation process.

This article proposes an efficient reinforcement-learning
(RL)-based privacy-preserving mobile-edge crowdsensing
strategy (PPCS) for IIoT to solve the above problems.
PPCS consists of three important components. The first pro-
vides Kullback–Leibler (KL) privacy-preserving data aggre-
gation, which achieves the tradeoff between PPD and
aggregation accuracy. The second accounts for data reli-
ability validation. The third is responsible for PU repu-
tation update and corresponding aggregation weight calcu-
lation. We summarize the contributions of this article as
follows.
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1) To achieve privacy-preserving edge crowdsensing for
IIoT, the proposed PPCS offers a weighted data aggrega-
tion, in which data are perturbed by noise. Especially, the
data perturbation is designed based on the KL privacy.
Compared with differential privacy, privacy attackers
are hard to recognize the original data with samples of
highly similar distributions. To solve the noise selection
problem, the PPD is quantified and the relation between
PPD and aggregation accuracy is obtained. Then, an
incentive mechanism is developed to calculate the pay-
ment for FC to each PU w.r.t. his/her PPD and reputation
as well. Thus, the tradeoff between accuracy and privacy
is accomplished.

2) To efficiently validate data reliability and further min-
imize the impact of tampered data, a hypothesis test
is constructed. Since the test accuracy depends on the
corresponding threshold, we employ an on-policy RL
algorithm, the expected Sarsa, to learn the optimal
threshold to detect unreliable data. Based on test results,
PUs’ reputations are updated to calculate aggregation
weights of corresponding data for mitigating the impact
of data tampering, i.e., the reliable data provided by an
honest PU should be given a significant weight and a
relatively low weight is given for unreliable data pro-
vided by a malicious PU. As the payment is related to
each PU’s reputation, malicious PUs will be paid less
than honest ones as a punishment. Thus, the quality of
the aggregated data should be further improved.

3) Theoretical analysis and experiment results show that the
expected Sarsa outperforms Myopic policy and Random
policy not only in the convergence rate but in the energy
cost as well. That results in an energy-efficient PPCS.
More importantly, the weighted average of aggregated
data calculated by PPCS has a better aggregation accu-
racy than that of the average obtained by two other
privacy-preserving data aggregation strategies PPCC [3]
and REAP [4].

The remainder of this article is organized as follows. Related
work is covered in Section II. We introduce the system model
in Section III. The details of the proposed strategy PPCS are
elaborated in Section IV. The experiments are presented in
Section V. We conclude this article in Section VI.

II. RELATED WORK

There has been a growing research interest in privacy-
preserving mobile-edge crowdsensing. Zhao et al. [5] achieved
the reputation management of privacy preserving and the pre-
vention of users’ malicious behaviors. In [6], a crowdsensing
mechanism utilizing the dubbed blockchain is developed for
location privacy protection. Shen et al. [7] integrated the
machine learning and the blockchain for privacy-preserving
mechanism design. Liang et al. [8] utilized the deep learning
(DL) on embedded sensors to protect users’ privacy. In [9],
the data trustworthiness is introduced to design the crowdsens-
ing mechanism of enhanced privacy against internal attacks.
In [10], a framework that aims to achieve the tradeoff between
guaranteeing system stability and minimizing data aggregation

error w.r.t. the participants’ privacy, the sensing task ran-
domness, and the cost of the platform. Xiong et al. [11]
studied the privacy-preserving crowdsensing problem in indus-
trial IoT. Then, they [12] adopt machine learning and game
theory to achieve data privacy in mobile-edge crowdsensing.
In [13], a mobile-edge crowdsensing based on the blockchain
is developed to verify data and design a dynamic incentive
mechanism.

Plenty of incentive mechanisms have been proposed
in mobile-edge crowdsensing for privacy preserving.
Wang et al. [3] proposed the PPCC to compute the average
for heterogeneous privacy preserving. Zhang et al. [4]
designed a contract incentive REAP to pay for PUs’ privacy
losses with a limited budget. In [14], the privacy preference
is introduced for the incentive mechanism design. In [15], the
participation level is considered to design incentive utilizing
the Stackelberg game. In [16], the programming of multiple
stages is employed for users’ participation motivation. In [17],
both deep RL and Stackelberg game are adopted in the incen-
tive mechanism design. In [18], the time varying demands
on privacy preserving and the Q learning are adopted for
dynamic pricing. In [19], a payment-PPD game is formulated
to decide the payment w.r.t. different PPDs, where the Q
learning is employed.

Although these works contribute to privacy-preserving
mobile-edge crowdsensing, there still remain two challenges:
1) how to select proper noise to preserve desired privacy and
2) how to accomplish a highly efficient data reliability vali-
dation to ease the impact of tampered data. In this article, a
novel RL-based PPCS is proposed for IIoT to address these
two problems.

III. SYSTEM MODEL

In this article, we consider the mobile-edge crowdsensing
system, which is composed of a single fusion center FC and
a number of PUs V = {v1, v2, . . . , vN} (see Fig. 1). All N
PUs contribute data, X = {x1, x2, . . . , xN}, to the FC, where
xi ∈ R is a real number. Inspired by [20] and [21], we rate
each PU vi as either a honest one, the normal one, or the
malicious one w.r.t. vi’s normalized reputation ri ∈ [0, 1] as
shown in Table I. Then, the FC calculates the average, i.e.,
y = (1/N)

∑N
i=1 xi. The data contributed by PUs is further ana-

lyzed for IIoT applications. For example, in healthcare, PUs’
daily exercise data are collected by FC and average aggre-
gation is conducted for public health monitoring. Since PUs
provide sensitive information, there exist some threats against
PUs’ privacy [22].

A. Threat Model

An untrusted FC is considered in this article. In addition,
there exist two types of PUs. One are honest while the oth-
ers are malicious. That implies two types of threats should be
considered. The first one is the deterioration of the quality of
aggregated data [23]. Unlike honest PUs, malicious ones may
upload tampered data to reduce the usability of the aggre-
gated result. The second one is privacy compromise, i.e., FC
may try to infer the private information from uploaded data,
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Fig. 1. Illustration of the proposed PPCS for mobile-edge crowdsensing in
IIoT.

TABLE I
PU REPUTATION RATING

sophisticated malicious attackers might launch eavesdropping
attack, etc.

B. KL-Privacy

Due to the privacy concern, each PU uploads perturbed data
instead of the raw one. In order to quantify the PPD, the
KL privacy, developed from differential privacy, is employed.
In general, data perturbation is implemented w.r.t. the KL
divergence by adding original data with noise to measure
PPDs [24].

Definition 1 [25]: The α-adjacent, α ≥ 0, of two vectors x
and x′ ∈ Rn is defined as

|xi − x′i| ≤
{

α, if i = i0
0, if i �= i0.

Definition 2 [24]: For any pair of α-adjacent vectors x and
x′, we define the ε-KL privacy through a randomized function
M(x) : Rn → R as

DK
[PM(x)||PM(x′)

]+DK
[PM(x′)||PM(x)

]

2
≤ ε

where the pdf of M(x) and M(x′) is denoted by PM(x) and
PM(x′), respectively; the KL divergence of P1 w.r.t. P2 is
represented by DK[P1||P2]; and the PPD provided by M(x)
is denoted by ε.

A randomized function M preserves the ε-KL privacy if
M preserves the ε-differential privacy [24].

C. Aggregation Model

Both privacy model and threat model suggest the weighted
average is a better alternative to ease the impact of tampered
data. Thus, the aggregated data yk is calculated utilizing the
data of the ith PU in the kth time xk

i and the corresponding
weight wk

i as

yk =
N∑

i=1

wk
i xk

i (1)

where wk
i is calculated by (28).

IV. PROPOSED STRATEGY

The proposed PPCS consists of three important components,
each of which is responsible for 1) KL privacy-preserving data
aggregation; 2) data reliability validation; and 3) PU reputation
update and aggregation weight calculation, respectively.

A. KL-Privacy-Preserving Data Aggregation

Each PU vi adds original data xi a Gaussian noise ηi due to
privacy concern, i.e.,

x̃i = xi + ηi

where ηi ∼ N(0, σ 2). Thus, we can rewrite (1) as

ŷk =
N′∑

i=1

wk
i x̃k

i (2)

where N′ denotes the number of reliable ones among N
uploaded data.

Note that the noise perturbation in (2) is implemented uti-
lizing a randomized function M(.) : R → R to data xi, i.e.,
x̃i = M(xi) = xi + ηi. Cuff and Yu [24] proved that if
ηi ∼ N(0, (σi)

2) then the randomized function M(xi) preserves
the εi-KL privacy for xi, where (σi)

2 = (α2/2εi). Compared
with differential privacy [26], privacy attackers are hard to
recognize the original data with samples of highly similar
distributions. However, the noise perturbation process brings
about another problem which is how to achieve the tradeoff
between accuracy and privacy. To address this problem, we
first define the aggregation accuracy radius γ .

Definition 3: The deviation γ from the true average ȳ to
the computation result ŷ is defined as the aggregation accuracy
radius

γ = |y− ŷ|.
That implies the smaller γ the better aggregation accuracy.
For PU vi, if the weight wi and the PPD εi are given, then we
can obtain the aggregation accuracy radius γ with Theorem 1.

Theorem 1: The computation result ŷ converges to the true
average ȳ within γ for any p ∈ (0, 1) as

γ = α√
1− p

√
√
√
√

N′∑

i=1

(
wk

i

)2 1

εi
.
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Proof: Consider the aggregated data without perturbation
noise

y =
N′∑

i=1

wixi

and the perturbed one

ŷ =
N′∑

i=1

wk
i (xi + ηi) = y+

N′∑

i=1

wk
i ηi.

Since Var(ηi) = 2σ 2
i , we obtain

Var

⎛

⎝
N′∑

i=1

wk
i ηi

⎞

⎠ = 2
N′∑

i=1

(
wk

i

)2
σ 2

i .

For ∀γ > 0, utilizing Chebyshev’s inequality yields

Pr
[|ŷ− y| ≥ γ

] ≤ 2

γ 2

N′∑

i=1

(
wk

i

)2
σ 2

i . (3)

Substituting Pr[|ŷ− y| < γ ] = p into (3) yields

2

γ 2

N′∑

i=1

(
wk

i

)2
σ 2

i = 1− p.

Then, it follows that:

γ =
√

2√
1− p

√
√
√
√

N′∑

i=1

(
wk

i

)2
σ 2

i . (4)

Substituting σ 2
i = (α2/2εi) into (4) yields

γ = α√
1− p

√
√
√
√

N′∑

i=1

(
wk

i

)2 1

εi
.

On the other hand, although the noise perturbation provides
data privacy, both privacy cost and rationality constraint affect
privacy and accuracy as well.

Definition 4 [27]: The privacy cost ci of each PU vi is
defined as

ci = μi(εi)
2

where the cost parameter μi is a nonnegative real number.
It is obvious that if vi values his/her privacy more than

he/she might set a larger μi with a fixed εi.
Definition 5 [27]: The rationality constraint is defined as

the relation between the payment pai and a PPD εi of the
following form:

pai − μi(εi)
2 ≥ 0 ∀i ∈ [1, N].

A rational PU vi must report perturbed data w.r.t. PPD εi,
only if he/she receives a reasonable payment pai as expected.

Observed from Theorem 1, we know that to minimize γ we
should obtain the minimum

∑N
i=1([(w

k
i )

2]/εi). In addition, the
FC is assumed to have a budget B to cover the payment for
PUs’ privacy loss. Then, we design an incentive mechanism
based on the following optimization problem w.r.t. privacy cost
and rationality constraint in order to find the optimal εi and
the optimal pai for the tradeoff between accuracy and privacy.

Problem 1:

min
εi,pai

N′∑

i=1

(
wk

i

)2

εi

s.t. pai − μi(εi)
2 ≥ 0, i ∈ [1, N′

]

N′∑

i=1

pai ≤ B

pai ≥ 0, εi > 0.

The following theorem is given for solving the above
optimization problem. Thus, each PU uploads perturbed data
based on the optimal solution to Problem 1, which is given
in (5) and (6) of Theorem 2.

Theorem 2: Problem 1’s optimal solution is

ε∗i =
√
√
√
√
√

(
wk

i

)2
(μi)

− 2
3

∑N′
j=1

(
wk−1

j

)2(
μj
) 1

3

B (5)

pa∗i =
(
wk

i

)2
(μi)

1
3

∑N′
j=1

(
wk−1

j

)2(
μj
) 1

2

B. (6)

Proof: Recall that
∑N′

i=1 μiε
2
i = pai. Thus, we have

N′∑

i=1

μiε
2
i = B. (7)

We optimize Problem 1 by introducing the Lagrangian
L : RN × R→ R first as

L(εi, λ) =
N′∑

i=1

(
wk

i

)2 1

εi
+

N′∑

i=1

λ
(
μiε

2
i − B

)

where the Lagrange multiplier is denoted by λ. Then, we take
the derivatives of L for optimal εi discovery as

∂L
∂εi
= −

(
wk

i

)2

ε2
i

+ 2λμiεi = 0

which yields

εi =
((

wk
i

)2

2λμi

) 1
3

. (8)

Substituting (8) into (7), we obtain

(
1

2λ

) 2
3 = 1

∑N′
i=1

(
wk

i

)2
(μi)

1
3

B.

Then, it follows that:

ε∗i =
√
√
√
√
√

(
wk

i

)2
(μi)

− 2
3

∑N′
j=1

(
wk

j

)2(
μj
) 1

3

B (9)

pa∗i =
(
wk

i

)2
(μi)

1
3

∑N′
j=1

(
wk

j

)2(
μj
) 1

2

B. (10)
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In fact, Theorem 2 provides the solution to the problem that
how much the FC should pay for the privacy loss of the PU.
That suggests each PU only provides a perturbed data based
on his/her privacy-preserving degree. Without the perturbation
noise, the FC is not able to restore the original data from the
perturbed one no matter the FC is untrustworthy or not. In
addition, Theorem 2 is deemed as a reward-and-punishment
mechanism. Observed from (9) and (10), we know that the
optimal PPD ε∗i and reward pa∗i are determined by FC’s budget
B, cost parameter μi, and the number of PUs n. Once FC offers
a higher budget B, ε∗i increases as well as pa∗i . Thus, each PU
reports perturbed data with larger PPD and then receives more
payment, which enables the accuracy radius γ to be narrowed
down. That indicates increasing budget facilitates aggregation
accuracy. On the other hand, ε∗i decreases as μi increases,
while pa∗i increases with μi. Recall that the extent of vi car-
ing about personal privacy is represented by μi, i.e., a larger
ui results in more privacy cost for vi with a specific PPD εi.
Thus, FC should pay enough for each PU’s privacy. Note that
the optimal solution can be computed offline due to each PU vi

sends εi before data aggregation. Compared with honest PUs,
malicious ones should receive less payment as a punishment
w.r.t. (10) due to their bad reputations. However, such pun-
ishment is not permanent, e.g., if a malicious PU vi starts to
upload reliable data to improve his/her reputation ri then the
payment pai increases referring to (28). It is worth to men-
tion that Theorem 2 gives a solution to incentive mechanism
design under the constraint that the budget B of the FC is lim-
ited. However, if the FC owns an unlimited budget B′, then
the solution given by Theorem 2 still applies. This is because
the payment pai is given w.r.t. the PPD εi for the ith PU.
In addition, as for the PUs, who contribute unreliable data,
the corresponding payments prepared for whom are shared by
those reliable data contributors as a supplement to the incentive
mechanism as the further punishment for malicious PUs.

B. Data Reliability Validation

The significance of data reliability validation depends on the
quality of data aggregation which is vulnerable to tampered
data uploaded by malicious PUs. Thereby, contributing unre-
liable data is not tolerated. That suggests we should introduce
an effective mechanism to facilitate the FC to detect unreliable
data as many as possible. To this end, we formulate the data
reliability validation into a zero-sum game implemented by a
hypothesis test with the optimal test threshold learned by the
RL.

1) Data Reliability-Based Hypothesis Test: We denote H0
as the null hypothesis, i.e., the data are reliable, while the
alternative hypothesis H1 denotes otherwise. Accordingly, we
give the false alarm rate (FAR) Pf indicating a reliable data
misjudged as an unreliable one as

Pf = P(H1|H0). (11)

Similarly, we give the missing detect rate Pm suggesting an
unreliable data is mistaken as a reliable one as

Pm = P(H0|H1). (12)

Then, the test static is constructed as

L = ||xk
i − x̂k

i ||2. (13)

Note that (13) gives the deviation between the input data xi and
the reference one x̂i. Consider the data xi = (x1

i , x2
i , . . . , xn

i ),
the Mahalanobis distance is utilized to calculate the reasonable
deviation between xi and the reference due to the advan-
tage in eliminating the deviations between features. According
to (11)–(13), we give the hypothesis test as

L
H0
≶
H1

θ. (14)

Note that if the data are reliable, then the reference x̂k
i is

updated, i.e., x̂k
i ← xk

i ; otherwise, x̂k
i ← xk−1

i .
Let C represent the energy costs factor. The gain of receiv-

ing a reliable data is denoted by G1, while the gain of receiving
an unreliable data is denoted by G0 with G1 > G0 > 0. Let the
probability of the malicious attack is denoted by p. Thus, we
give the Bayesian risk R(θ, p) of the data reliability validation
under a prior distribution of malicious attacks as

R(θ, p) = (G1
(
1− Pf (θ)

)− CPf (θ)
)
(

1−
Nm∑

i=1

pi

)

+ (G0(1− Pm(θ))− CPm(θ))

Nm∑

i=1

pi. (15)

Let the utility of the FC is denoted by ufc(θ, p). Thus, we have
ufc(θ, p) = R(θ, p).

2) Nash Equilibrium of the Data Reliability Validation
Game: The Nash equilibrium of a game suggests the utility
of any player will not increase if other strategies rather than
the optimal one is chosen. We denote the NE of the data relia-
bility validation game as (θ∗, p∗). The threshold θ∗ is chosen
by the FC for utility ufc(θ, p∗) maximization in the data reli-
ability validation, while the malicious PU aims to maximize
its utility ump(θ

∗, p). Therefore, we have

θ∗ = arg max
θ>0

ufc
(
θ, p∗

)

p∗ = arg max ump
(
θ∗, p

)
.

Theorem 3: The unique NE of the data reliability validation
game is given by

θ∗ = s
(
G1 − G0 − Pf (θ)(G1 + C)+ Pm(θ)(G0 + C) = 0

)

(16)

where

p∗ = 1

1+ e− λ
2

G0+C
G1+C 0F̃1

(
1; θλ

4

) (17)

and the equation is solved by s(·).
Proof: Note that each data uploaded consists of both real

part and imaginary part of dimension 2. Thus, we have

Pf (θ) = 1− Fχ2
2
(θ) (18)

Pm(θ) = Fχ2
2,λ

(θ) (19)

where Fχ2
2
(·) and Fχ2

2,λ
(·) are the cumulative distribution func-

tion of the chi-square distribution and noncentral chi-square
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distribution with a noncentrality parameter λ with 2 degrees
of freedom, respectively. Thus, we have limθ→∞ Pf (θ) = 0,
Pm(0) = 0, Pf (0) = 1, limθ→∞ Pm(θ) = 1, and

dPf (θ)

dθ
= −1

2
e−

θ
2 (20)

dPm(θ)

dθ
= 1

2
e−

θ+λ
2 0F̃1

(

1; θλ

4

)

. (21)

By (15), we have

∂ump(θ, p)

∂p
= G1 − G0 − Pf (θ)(G1 + C)+ Pm(θ)(G0 + C)

(22)

indicating that ump(θ, p) is a linear function of p. By (22),
we have ∂ump(0, p)/∂p = −G0 − C < 0 and
limθ→∞ ∂ump(θ, p)/∂p = G1+C > 0. By (20)–(22), we have

∂2ump(θ, p)

∂p∂θ
= 1

2
e−

θ
2 (G1 + C)

+ 1

2
e−

θ+λ
2 (G0 + C)0F̃1

(

1; θλ

4

)

≥ 0

indicating that ∂ump(θ, p)/∂p increases with θ . As
∂ump(0, p)/∂p < 0 and limθ→∞ ∂ump(θ, p)/∂p > 0,
the solution of ∂ump(θ, p)/∂p = 0 denoted by θ̂ , which is
given by (16), is unique and positive. If 0 ≤ θ ≤ θ̂ , we have
∂ump(θ, p)/∂p < 0; otherwise, we have ∂ump(θ, p)/∂p > 0.

Then, by (15), (20), and (21), we have

∂ufc(θ, p)

∂θ
= 1

2
e−

θ
2
[
(G1 + C)(1− p)

− (G0 + C)pe−
λ
2 0F̃1

(

1; θλ

4

)]

. (23)

As ∂ump(θ̂ , p)/∂p = 0, ump(θ̂ , p) is constant for any p ∈
[0, 1]. Let p̂ be the solution of ∂ufc(θ̂ , p)/∂θ = 0, which is
given by (17). If p = p̂, we have ∂ufc(θ, p̂)/∂θ > 0 for 0 <

θ < θ̂ and ∂ufc(θ, p̂)/∂θ < 0 for θ̂ < θ , indicating that
θ̂ = θ∗, if p̂ = p∗. Thus, we have (θ̂ , p̂) = (θ∗, p∗).

The uniqueness of the NE is proved by contradictions.
Assume that there exists another NE (θ1, p1) �= (θ∗, p∗).
If θ1 < θ∗, we have ∂ump(θ1, p)/∂p < 0 and thus p1 =
0. By (23), we have ∂ufc(θ, 0)/∂θ ≥ 0, i.e., ufc(θ, p1)

increases with θ . Thus, ufc(θ1, p1) < ufc(θ
∗, p∗), contradict-

ing the assumption that (θ1, p1) is NE. If θ1 > θ∗, we
have ∂ump(θ1, p)/∂p > 0 that yields p1 = 1. By (23), we
have ∂us(θ, 1)/∂θ ≤ 0, i.e., ufc(θ, 1) decrease with θ . Thus,
ufc(θ1, p1) < ufc(θ

∗, p∗), contradicting to the assumption.
Thus, the unique NE is (θ∗, p∗) in this game.

3) Reinforcement-Learning-Based Threshold Estimation:
The machine learning technologies, i.e., DL [28], [29] and
RL [30], [31], are proved to be efficient in discovering the
optimal strategy. Usually, the attacking frequency remains
unknown to FCs, therefore the optimal test threshold should
be discovered for data reliability validation.

As an RL algorithm, the expected Sarsa is chosen in this
article. The reason behind that is as follows. The expected
Sarsa, which computes the 1-step expected reward, is more
stable while compared with Q-learning. That suggests the

expected Sarsa tends to converge faster than Q-learning such
that less energy cost is required. As any privacy-preserving
algorithm designed for mobile-edge crowdsensing in IIoT
should be energy efficient, the expected Sarsa is more suitable
than Q-learning. While applying the expected Sarsa to data
reliability validation, FC employs the hypothesis test in (14)
to determine the reliability of each one of N data received in
each time slot.

Let the FAR and miss detection rate (MDR) of authen-
tication in the k − 1th time slot, i.e., sk = [αk−1, βk−1],
constitute the state sk in the kth time slot. Consider the thresh-
old estimation a continuous space Markov decision process,
we quantize both of the state space and the action space
into different levels for complexity reduction. To be spe-
cific, we quantize error rates into X + 1 levels. Similarly,
the test threshold θ is chosen from Y + 1 level. Note that
the number of levels, i.e., X and Y , determines the accu-
racy of data reliability validation. That is a larger X or Y
contributes to a better validation accuracy and a higher com-
putational complexity as well due to more actions θs will
be taken on each state s. Thereby, we verify the validation
accuracy in simulation in terms of average error rates, i.e.,
the FAR and the MDR. The simulation results show that the
proposed PPCS outperforms baselines with both FAR and
MDR less than 2% when the X and Y are set to 29 and
9, respectively. FC chooses its action θk based on the state
sk to maximize the utility, denoted by Uk, which is given by
Uk = uk

r(θ, p). No doubt that malicious PUs will affect the
result of data reliability validation such that the utility of the
FC drops. Although a growing number of malicious PUs will
compromise the performance of the proposed PPCS, the data
reliability will be verified eventually due to the effectiveness
of the reliability validation and the reward–punishment of the
incentive mechanism. Compared with PPCC and REAP, the
proposed PPCS obtain a higher FC utility due to the discov-
ery of the optimal threshold. In each timeslot k, by taking
the action θk, the next state sk+1 can be observed from the
environment due to the next state, which is the result of the
hypothesis test (14), not only depends on the threshold θk but
the authenticity of input data obtained from the environment
as well.

In addition, the reliability validation with expected Sarsa
has a learning rate τ ∈ (0, 1], which accounts for the weight
of Q(sk, xk). And δ ∈ (0, 1] denotes the discount factor indi-
cating the uncertainty of future rewards. The V(s) represents
the state-value function. Then, the Q-value is updated by the
FC as

Q(sk, θk)← (1− τ)Q(sk, θk)+ τ(Uk + δV(sk+1)) (24)

V(sk)←
∑

θ∈
{

l
Y
}

0≤l≤Y

π(θ |sk)Q(sk, θ) (25)

where π(θ |sk) denotes the probability of choosing threshold
θ based on state sk. We adopt the ε-greedy for the FC to
choose a suboptimal action with the probability ε compared
with choosing the optimal action with the probability 1 − ε.
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Eventually, we obtain the θ∗ as

θ∗ = arg max
θ∈
{

l
Y
}

0≤l≤Y

Q(sk, θ). (26)

C. PU Reputation Update and Aggregation Weight
Calculation

In order to distinguish malicious PUs (i.e., the ones upload
tampered data) from honest ones (i.e., the ones upload per-
turbed data satisfying predetermined PPDs), we decide to
update the reputation of the ith PU in the kth time, denoted
by rk

i , for further corresponding weight wk
i calculation. Let

di denote the absolute deviation between each data and the
reference with dmax = maxi{di}, while the absolute deviation
between each reliable data and the reference is denoted by d′
with d′max = maxi{d′i}. Then, we give the following rules for
reputation update.

Rule 1: If di ≤ dmax, then the reputation value increases as
di decreases. Thus, the reputation gradually grows if the ith
PU consistently provides reliable sensing data.

Rule 2: If di > dmax, then the reputation value decreases as
the di − dmax increases. It suggests that if PU vi continuingly
contributes unreliable data, then the reputation value of vi will
approach 0.

Accordingly, the reputation update function is then given by

rk
i ← rk−1

i + sign
(
di − d′max

)+ 1

2
·
(

1− rk−1
i

)
· exp{−ζdi}

+ sign
(
di − d′max

)− 1

2
· rk−1

i

× (1− exp{−η(di − dmax)}) (27)

where ζ and eta are negative real numbers to scale rk
i and

sign(x) =
{−1, x > 0

1, x ≤ 0.
The impact of parameter ζ and η is evaluated in (27) by

monitoring the reputation value change of an honest PU or a
malicious one with each initial value set to 0.5, respectively.
In Fig. 2(a), it is obvious that a smaller ζ results in rapidly
growing in the reputation value. On the contrary, a larger η

contributes to the great drop in the reputation value as shown
in Fig. 2(b).

Note that only the reliable data are utilized to calculate the
weighted average. Let X′ = {x1, x2, . . . , xN′ } denote the reli-
able data set verified by the data reliability validation. Thus,
the aggregation weight for data xk

i is then given by

wk
i =

ξ k
i

∑N′
i=1 ξ k

i

(28)

where ξ k
i = [(rk−1

i )/(
∑N′

i=1 rk−1
i )]+ [(d′i)/(d′max)].

In fact, (10) and (28) guarantee that only reliable data will
be utilized to calculate the weighted average for aggregation
accuracy improvement. It is worth to mention that malicious
PUs are always paid less than honest ones due to their “bad”
reputations even if they just contribute reliable data. On the
other hand, honest PUs will be paid less than usual and the
corresponding reputations drop if they just contribute unreli-
able data. However, if malicious PUs keep contributing reliable

(a)

(b)

Fig. 2. Normalized reputation w.r.t. (a) ζ ∈ [1, 10, 100] and (b) η ∈
[0.1, 1, 10].

data, then the payment increases with their reputations, and
eventually malicious PUs become honest ones. On the con-
trary, honest PUs become malicious ones if they constantly
contribute unreliable data such that the corresponding pay-
ment decreases rapidly. It is clear that the collective influence
of the incentive mechanism design and the reputation update
rule successfully punishes malicious PUs meanwhile rewards
honest ones as long as PUs are rational.

V. PERFORMANCE EVALUATION

A. Simulation Setup

The performance of the proposed PPCS for mobile-
edge computing-assisted IIoT applications has been validated
through extensive simulation experiments in Python. The data
set we used in this experiment is the Web traffic time-series
forecasting of Wikipedia pages [32]. Approximately, 145k time
series constitutes the training data set, in which daily views
of different Wikipedia articles are considered as time series
from July 1, 2015 to December 31, 2016. In our experiment,
there are up to N = 50 PUs, each of which uploads nor-
malized daily views of a unique article per time slot. We
set the number Nm of malicious PUs varying from 2 to 8,
each of which uploads the tampered daily view that deviates
from the real value about 15%. We give the parameters in
Table II.

We first give the data reliability validation comparison
between the expected Sarsa of PPCS and both baseline poli-
cies Myopic and Random in MDR, FAR, Utility of FC, and
normalized energy cost. Then, we compare the aggregation
accuracy of PPCS with that of PPCC and REAP.
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TABLE II
PARAMETERS SETUP

(a)

(b)

Fig. 3. Performance comparison between expected Sarsa, myopic, and
random in (a) utility of FC and (b) energy cost.

B. Data Reliability

As shown in Fig. 3(a), the data reliability validation with
expected Sarsa reaches a stable utility much faster and higher
than that of policy Myopic and policy Random. The reason
behind that is as follows. Policy Myopic tends to maximize
immediate reward, however by doing so future reward can
be reduced. Besides, the Random policy can hardly obtain the
optimal threshold that results in a lower utility. Since expected
Sarsa converges faster than the Myopic policy and the Random
policy, the energy cost of expected Sarsa is considerably lower
as shown in Fig. 3(b), which is about 75% of that of the
Random policy and 90% of that of the Myopic policy. Since
the privacy-preserving strategies designed for IIoT should be
energy efficient, the performance of mobile-edge crowdsensing
could be greatly improved if the PPCS is adopted.

Both FAR and MDR decrease as the data radius increases, as
shown in Fig. 4(a). For example, both FAR and MDR are close
to 0, if the data radius is approaching 0.5. If the data radius is

(a)

(b)

Fig. 4. Comparison between expected Sarsa, myopic, and random in (a)
average error rates and (b) utility of FC.

about 0.4, the FAR and MDR of policy Random are up to 20%
and 15%, respectively, while that of expected Sarsa is only
2% and 1%. And policy Myopic performs a little better than
Random. The average utility of FC is shown in Fig. 4(b), it is
clear that expected Sarsa outperforms policy Myopic and pol-
icy Random as well. It is worth to mention that a higher utility
often results in a better threshold w.r.t. (26). That explains
both FAR and MDR of the expected Sarsa are lower com-
pared with baseline approaches as shown in Fig. 4(a). That
suggests the mobile-edge crowdsensing is more robust if the
PPCS is employed.

C. Aggregation Accuracy

The εi’s effects on aggregation accuracy is shown in
Fig. 5(a). It is clear that when PUs have a larger εi, the
weighted average value is close to the true one due to less noise
is added if PPDs are higher. Thereby, PUs are encouraged to
set higher PPDs for better aggregation accuracy.

Fig. 5(b) shows the weighted average and average with vary-
ing adjacent distance α. It is obvious that PPCS achieves much
better aggregation accuracy than baseline approaches PPCC
and REAP with each pair of reputation scale factors (ζ, η).
This is because PPCS give each data a corresponding weight
based on data reliability validation and data owner’s reputa-
tion, i.e., a reliable data provided by an honest PU should be
given a significant weight otherwise a relatively low weight is
given, while both PPCC and REAP calculate the average of
aggregated data disregarding the fact that malicious PUs can
upload tampered data. Thanks to the PPCS, the QoS of the
mobile-edge crowdsening of IIoT is significantly improved.
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(a) (b) (c)

Fig. 5. Aggregation accuracy with varying parameters. (a) Varying PPDs. (b) Varying α. (c) Varying budget.

The impact of FC’s budget B is shown in Fig. 5(c). It can be
observed that γ decreases as the budget increases. Note that a
smaller γ indicates a better aggregation accuracy. Each PU is
paid more to set the εi with a larger value if the budget of FC
is larger. That will result in a higher aggregation accuracy.

VI. CONCLUSION

This article investigates the privacy-preserving data aggre-
gation problem in IIoT. Most previous studies on this subject
have conflicting objectives, i.e., the edge FC requires data of
better quality for data fusion of better accuracy whereas PUs
desire better privacy preserving by larger noise injection. Thus,
how to choose proper noise to achieve the tradeoff between
accuracy and privacy is an open problem. In addition, FC is
vulnerable to tampered data without efficient data reliability
validations and reward–punishment mechanisms. In this arti-
cle, an efficient RL-based PPCS is proposed to solve these
problems. In general, PPCS provides a KL privacy-preserving-
based data aggregation utilizing an incentive mechanism to
solve the problem of noise selection. Furthermore, the incen-
tive mechanism design is based on PUs’ reputations to punish
malicious PUs. On the other hand, PPCS offers data relia-
bility validation and PU’s reputation update, both of which
collaborate to ease the impact of tampered data. Theoretical
analysis and validation experiments indicate that the weighted
average of aggregated data established by PPCS has a better
aggregation accuracy than contemporary strategies.
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