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Abstract—The ubiquitous network services provided by the
Beyond 5G enabled space-air-ground-sea networks (B5G-SAGS)
depends on the reliability of each intelligent device within.
However, the QoS of B5G-SAGS could be compromised if there
exists faults on individual network. That suggests the significance of
fault-diagnosis in the B5G-SAGS design. Previous works on fault
diagnosis were designed without extra information to improve
diagnosis accuracy. In this paper, we propose an Intelligent Drone-
assisted Fault-diagnosis Algorithm (IDFA) utilizing B5G-enabled
Multiple-access Edge Computing/Cloud (B5G-MEC) services to
detect faulty buoys. Specifically, IFDA first employs a Cubature
Kalman Filter based Radial Bias Function Neural Network (CKF-
RBFNN) for each fault-diagnosis center to perform preliminary
fault detection based on the data provided by both buoys and
drones. The data collection path is planned utilizing the deep
reinforcement learning algorithm, Deep Deterministic Policy
Gradient (DDPG), on B5G-MEC servers for energy efficiency.
Eventually, the collective decision made by all fault-diagnosis
centers determines the faulty status of each buoy. The theoretical
analysis and validation experiments show that: (i) the IDFA has a
better diagnosis accuracy in both single fault detection and multi-
fault classification while compared with contemporary algorithms;
(ii) the IDFA obtains a high aggregation ratio and a low energy cost.

Index Terms—Beyond 5G, deep reinforcement learning, fault-
diagnosis, multiple-access edge computing, space-air-ground-sea
networks.

I. INTRODUCTION

THE rapidly growing Internet traffic, the demand for vari-

ous terminals access, the highly required low-latency, and

the reliability of industrial applications have given birth to 5G

communication technology. The application of 5G have

brought a great leap on communication capability in mobility,

delay, traffic density, and energy efficiency. Further, Beyond

5G (B5G) should be able to expend communications on terrain

surface to sea, air and even space to truly realize the “ubiquitous

connection” of the entire world by coordinating transmission of

multiple access and unifying management of multiple system

resources [1]. That suggests a cross-airspace, cross-regional and

cross-sea network is required for seamless global coverage.

Thereby, an integrated network should have the following com-

ponents, i.e., a space network of satellites on various orbits, an

air network of aircrafts, a ground network of cellular networks

and vehicle networks, and a sea network of ships and buoys.

Besides, mobile satellite terminals, satellite base stations, and

ground data processing centers should be considered as well.

There are three components of a satellite communication

system [2], i.e., the space section, the ground section, and the

space-ground link. Specifically, a variety of satellite control

centers, control networks and stations consists of the ground

section. In space section, satellites play import roles, the inter-

satellite links of which can receive and forward data. Apart

from both space section and ground section, there are various

smart terminals, i.e., IoT devices, that comprises the user seg-

ment. One of many advantages of the satellite communication

system is the coverage without being confined by terrains.

That indicates the competitiveness of satellite communica-

tions within the areas of insufficient ground coverage.

In addition, the High-Altitude Platform Station/HAPS IMT

BS (HAPS/HIBS) can provide the air communications, i.e.,

telecommunication services at high altitude through wireless

base-stations installed on aircrafts, and air-ground communi-

cations as well utilizing existing communication technolo-

gies [3]. That suggest the shortcomings of ground networks

are made up due to flexibility in deployment, wide coverage

in service, and slight impact caused by ground networks. Fur-

thermore, the line-of-sight transmission signals allow HAPS/

HIBS to communicate with mobile phones in low energy loss

and high transmission quality. Thereby, HAPS/HIBS is con-

sidered as an effective extension of the ground network.

The space-air-ground-sea integrated communication net-

work (SAGS) is capable of providing ubiquitous coverage of

low-cost. In SAGS, the ground network not only supports the

storage and process of big data but improves data transmission

efficiency in the majority of land areas as well. On the other

hand, the 3D coverage is provided for surveillance on remote

areas, airspace and oceans by non-ground networks to aid

ground networks for ubiquitous coverage. In addition, by

deeply integrating with space network, air network, ground net-

work, and sea network, we can make full use of HAPS/HIBS,

satellites and terrestrial 5/6 G networks to offer both intelligent
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accesses and time-sensitive services globally [4], [5]. Without

affecting by geographical environment and natural disasters,

HAPS/HIBS and satellite communications, which can support

wide coverage, apply to emergency communications establish-

ment. For example, natural disasters (i.e., earthquakes, floods,

etc.) could paralyze the ground network. In this case, we can

deploy HAPS/HIBS and satellite communications quickly due

to the flexibility and mobility of terminal devices such that

massive rescue data will be dispatched and aggregated reliably.

All in all, space-air networks have disadvantages in high-

latency, besides the cost of storage of satellites is much higher

compared with that of terrestrial ones. Thereby, the Multiple-

access Edge Computing/Cloud based technology (MEC) [6],

[7] is introduced to provide services to overcome the shortcom-

ing of high capacity cost and high latency of non-terrestrial net-

works. Specifically, as a computation resource deployed at the

edge, MEC combines storage, core network computing, and

other capabilities at the edge of the space-air-ground-sea inte-

grated network to reduce transmission delays while providing

service. Although B5G-enabled SAGS networks (B5G-SAGS)

have the ability to make up the individual deficiencies of either

space, air, ground or sea network, the faults within each net-

work could compromise the reliability of data [8] such that the

quality of service (QoS) provided by B5G-SAGS is deterio-

rated. That suggest the importance of the reliable and efficient

fault-diagnosis. Due to a significant amount of computation

resources required in the fault-diagnosis, B5G-MEC services

are required, i.e., the high performance computation is imple-

mented on B5G-MEC servers. Fig. 1 gives the architecture of

B5G-SAGS. In Fig. 1, space-air networks consist of satellites,

aircrafts (e.g., plane, airship, helicopter and drone) and corre-

sponding communication links, while the terrestrial cellular

networks and the internet of vehicles comprise ground net-

works and the internet of vessels (i.e., the network of ships or

buoys) constitutes the sea network respectively. Data collected

by B5G-SAGS is analyzed and diagnosed on B5G-MEC serv-

ers for fault diagnosis.

Previous works on fault diagnosis [9]–[24] were designed

without extra relevant information to improve diagnosis accu-

racy. Besides, in B5G-SAGS, the purpose of buoy deployment

is to cover a certain area of the ocean such that it is less likely

for two buoys to monitor the same location while drifting with

the sea tide. That suggests the relevant data collection by drones

is a reliable supplement for fault-diagnosis. In this paper, we

propose an Intelligent Drone-assisted Fault-diagnosis Algo-

rithm (IDFA) to detect faulty buoys utilizing B5G-MEC serv-

ices. The details of our contribution are given as follows.

1) To improve the reliability of the B5G-SAGS, a number of

fault diagnosis servers are deployed on B5G-MEC serv-

ers, the collective decision of which determines the fault

status of each buoy instead of the poor decision made by

only one fault diagnosis process. Each fault diagnosis pro-

cess is implemented using a Cubature Kalman Filter

based Radial Bias Function Neural Network (CKF-

RBFNN) for fault diagnosis accuracy improvement.

2) To further improve the fault diagnosis accuracy, drones

are assigned to collect relevant information on the

proximity of faulty buoys. All data collected by drones

are uploaded to the airship, which is responsible for the

communications between target buoys and the satellite,

to achieve drone-aided fault diagnosis, i.e., the data pro-

vided by drones are integrated with the one offered by

buoys for fault diagnosis. Meanwhile, the data collec-

tion path of drones are planned utilizing Deep Deter-

ministic Policy Gradient (DDPG) algorithm on B5G-

MEC servers as well for energy efficiency.

3) The theoretical analysis and validation experiments indi-

cate that: (i) the IDFA has a better diagnosis accuracy in

single fault detection and multi-fault classification as

well while compared with contemporary algorithms; (ii)

the IDFA obtains a high aggregation ratio and a low

energy cost.

II. RELATED WORK

To ensure the QoS of B5G-SAGS, the efficient and reliable

fault-diagnosis is required. Plenty of excellent works that

focus on fault-diagnosis on non-linear systems have been

proposed.

The majority of fault-diagnosis algorithms on non-linear

systems are filter-based. Strong tracking Kalman filter is stud-

ied by Ge et al. in [9]. Dual estimation is applied to the parti-

cle filter by Daroogheh et al. [10] to verify states and time-

varying parameters as well. In [11], a novel filter based on the

unbiased finite impulse response is proposed, in which the

mean square error is minimized under the unbiased constraint.

In [12], the strong tracking filter is utilized to assess faulty sta-

tus and meanwhile the logistic regression is used to detect the

root fault. In [13], the residual signal is used to detect bias

faults and the residual analysis is applied to fault isolation.

In [14], the problem of misleading state estimation caused by

particle impoverishment is solved for particle diversity

improvement. Zhao et al. [15], develop an adaptive square-

root cubature Kalman filter (CKF) to solve the problem of

decline or divergence with a noise statistic estimator. An inter-

active residual fault detection mechanism is designed [16] to

detect hard faults and soft faults. In [17], Bernoulli random

variables are applied to dead-zone effect modeling. The short

circuit faults and transient load are detected based on the

time-domain uncensored Kalman filter [18]. In [19], the com-

bination of majority voting and cut set are utilized for fault

detection. In [20], Sharma et al. develop a spatio-temporal

correlation based fault diagnosis algorithm. In [21], Pearson

test is applied to locate faulty devices. In [22], three Sigma

test is employed to detect fault. In [23], the return message

is used to discover faulty devices. Bayes classification is

employed by Lau et al. [24] to design a centralized diagnosis

algorithm for diagnosis accuracy improvement. In [25],

Lu et al. propose a fault diagnosis model for echo state net-

work utilizing granular computing to improve the efficiency

and accuracy of electronic equipment. In [27], Sun et al. pro-

pose a fault diagnosis strategy to detect actuator failures of

autonomous underwater vehicles (AUV) utilizing the Gauss-

ian particle filter. In this strategy, mathematical models are
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established for AUV motions first. Then, the control loss is

used to measure the malfunction of AUVs. Eventually, the

improved Gaussian particle filter is developed to detect AUV

failures and motion states. In [26], a machine learning based

fault-diagnosis algorithm is proposed by Qi et al. for recipro-

cating compressors. The data is sparse coded first for the dictio-

nary training, based on which faults are classified by SVM.

Although these works contribute to improve the Qos in

B5G-SAGS through fault-diagnosis, there remain two prob-

lems: (i) how to be energy efficient in extra relevant informa-

tion collection; (ii) how to improve fault diagnosis accuracy

with such information. In this paper, a novel Intelligent

Drone-assisted Fault-diagnosis Algorithm (IDFA) is proposed

to address these two problems.

III. SYSTEM MODEL

To maintain the quality of service (Qos) of B5G-SAGS, we

design an Intelligent Drone-assisted Fault-diagnosis Algo-

rithm (IDFA). Specifically, the data collected by buoys are

uploaded to B5G-MEC servers via the airship-satellite chan-

nel. Then, the fault status of each buoy is verified by the col-

lective decision of multi-fault diagnosis servers deployed on

B5G-MEC servers with the extra information provided by

cruising drones [28]. Therefore, we consider three entities in

this model, i.e., the buoys, the drones, and the fault-diagnosis

servers. Fig. 2 gives the system model.

1) Buoys: Usually, buoys are deployed to monitor a spe-

cific area of ocean for relevant information collection,

Fig. 1. Architecture of B5G-SAGS.

Fig. 2. System model of the IDFA in B5G-SAGS.
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i.e, temperature, humidity, wind velocity, visit record of

vessel, etc. All these data are uploaded via airship-satel-

lite channel for oceanographic research. In addition, if

buoys fall into the communication range of an airship,

then they are governed by the airship. Due to the unpre-

dictable changes of weather, i.e., tsunami, lighting and

hurricane, or other nature disasters, i.e., undersea vol-

cano eruption, buoys might be damaged or even

destroyed. Thereby, it is important to monitor the oper-

ating state of each buoy.

2) Fault-Diagnosis Servers: Since buoys are suffering from

nature disasters, the fault-diagnosis server is responsible

to detect the faulty buoys based on the data collected by

them. The fault-diagnosis server is deployed on B5G-

MEC servers due to the high performance computation

required [29]. Because the decision made by one fault-

diagnosis server could be unreliable, a number N of

fault-diagnosis servers are participating the decision

making for diagnosis accuracy improvement.

3) Drones: For further improve the diagnosis accuracy,

drones are sent to the proximity of the potential faulty

buoy to collect relevant data. Due to the limited com-

munication range of the drone, all data collected by the

drone will directly sent to fault-diagnosis servers via

the corresponding airship-satellite channel. The data

collection path should be well designed for energy

efficiency.

Note that the environmental surveillance of buoys is a com-

plex nonlinear process. Therefore, constructing a definite model

for fault diagnosis is difficult. On the other hand, as a feedfor-

ward neural network, the RBF neural network (RBFNN) has

only one hidden layer. The nonlinear transformation is

employed for the input layer and the hidden layer to generate

the connection weights. The similar weights between the hidden

layer and the output layer can be generated utilizing a linear

transformation. In RBFNN, the problem of linear indiscernibil-

ity in low-dimensional space is solved by transforming the low-

dimensional data to the high-dimensional ones. Therefore, the

RBFNN is able to establish the fault diagnosis model for detect-

ing either single-fault or multi-faults based on the relevant data

collected by both buoys and drones.

IV. IMPLEMENTATION DETAILS OF THE IDFA

The proposed IDFA consists of two important components,

i.e., CKF-RBF based fault diagnosis and drone path planning.

A. CKF-RBF Based Fault Diagnosis

1) Fault-Diagnosis on Single B5G-MEC Server: To

improve the fault-diagnosis accuracy, the Radial Bias Func-

tion Neural Network is applied to detect faulty buoys. The

data required in the fault diagnosis will be collected from dif-

ferent devices, i.e., buoys and drones. Specifically, each buoy

provides its own sensing data towards the fault diagnosis serv-

ers deployed on edges via airship-satellite channels. In addi-

tion, the drones are sent to the proximity of the potential

faulty buoy to collect relevant data. All these data will be

analyzed and labelled first by fault diagnosis servers, based on

which the fault diagnosis is implemented simultaneously.

Note that the collection of data originate from different devi-

ces, the corresponding fault diagnosis is more reliable, consid-

ering the case that a faulty buoy could provide unreliable data

all the time. In addition, we consider several readings of a

buoy as an input data for fault diagnosis. For example, each

data X considered is presented in a vector, i.e., X ¼
ðtemi; humi; preiÞ, where temi, humi and prei represents the
temperature, the humidity and the pressure of the area around

the ith faulty buoy.
And the number of nodes of on each layer is set as follows.

Specifically, for the single-fault detection, the structure of the

neural network is designed as follows. Since the state of a

buoy is either faulty or normal, only two outputs are required

for each state. However, compared with the single-fault detec-

tion, the multi-fault detection should distinguish what kinds of

faults each buoy suffers rather than determining the buoy is

faulty or not. In this case, the output layer for the multi-fault

detection should be able to generate the faulty state of each

buoy in a ðnþ 1Þ dimension vector, where n denotes the num-

ber of faults considered in this paper. Apart from the output

layer, the number of nodes on the input layer and the hidden

layer for either the single-fault detection or the multi-fault

detection are set to n and m, respectively. This is because we

can label the data sample for single-fault detection to fit for

multi-fault detection, i.e., labelling the data sample for a spe-

cific fault, instead of adding more input layers for multi-fault

detection. In addition, the number of nodes on the hidden layer

is chosen based on the fault diagnosis accuracy, i.e., a largerm
results in a more accurate fault diagnosis. Thereby, there are

totally n nodes on the input layer, m nodes on the hidden

layer, and one node on the output layer for the single-fault

detection, compared with n, m, and n nodes on each layer

respectively.

To implement the fault diagnosis, we should find the proper

parameters, i.e., weight vij, center cm and the width bm, for a
better fault diagnosis accuracy, where m denotes the number

of hidden layer nodes. Thereby, we integrate the Cubature

Kalman Filter (CKF) and RBFNN to discover the optimal

value of above parameters. Firstly, the state vector Xk of

CKF-RBFNN is given by

Xk ¼ ½W; C;B�;
where W ¼ ðv11; . . . ;vmnÞ, C ¼ ðc1; . . . ; cmÞ, and B ¼
ðb1; . . . ; bmÞ. Accordingly, we obtain

Xkþ1 ¼ Xk þWk;
Zk ¼ hðXk;XkÞ þ Vk

�
(1)

where the input of CKF-RBFNN (e.g., the data collected by

both drone and buoy) is denoted by Xk, while the measure-

ment vector is represented by Zk; Vk denotes the measurement

noise with covariance Rk, while Wk denotes the process noise

of covariance Qk; hð:Þ is the nonlinear mapping function from

the input layer to the output layer, e.g., hðXk;XkÞ ¼ Wkzk
with
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Wk ¼
v11 � � � vm1

v12 � � � vm2

..

. ..
. ..

.

v1 l � � � vmn

2
6664

3
7775; zk ¼

gðXk; c1; b1Þ
gðXk; c2; b2Þ

..

.

gðXk; cm; bmÞ

2
6664

3
7775

where gð:Þ represents a nonlinear mapping. Specifically, we

implement the nonlinear mapping with the Gaussian kernel

function by mapping the finite-dimensional data to high-

dimensional space, in which data is linearly separable.

In this paper, we apply the square root based updating rule

for CKF to improve the stability. In addition, by introducing

the strong tacking factors and the adaptation of both process

noise and measurement noise, the stability of the training pro-

cess of the CKF-RBFNN is further enhanced. Let k ¼ 0 and

initialize ^x0j0, P0j0, Q0, and R0. Then, we give the details of a

six-step training process for CKF-RBFNN as follows:

step 1: Employ the Choleskey decomposition on P0j0 to

update the initial value of the characteristic square root of the

error covariance matrix as

S0j0 ¼ cholðP0j0ÞT ; (2)

step 2: 8k 2 f1; . . . ;mg, use the Sk�1jk�1 to estimate the

volume point and calculate the volume point after propagation

by

Xi;k�1jk�1 ¼ Sk�1jk�1�i þ x̂k�1jk�1 (3)

X�
i;kjk�1 ¼ Xi;k�1jk�1 (4)

Then, estimate the state by

x̂kjk�1 ¼ 1

m

Xm
i¼1

X�
i;kjk�1: (5)

And estimate the prediction error covariance matrix character-

istic square root by:

½A B� ¼ qrð½X�
kjk�1 SQ;k�1�T Þ (6)

and

Skjk�1 ¼ Bð1 : n; :ÞT ; (7)

where

Qk�1 ¼ SQ;k�1S
T
Q;k�1; (8)

X�
kjk�1 ¼

1ffiffiffiffiffi
m

p ½X�
1;kjk�1 � x̂kjk�1X

�
2;kjk�1

� x̂kjk�1 � � �X�
m;kjk�1 � x̂kjk�1�:

(9)

Next, calculate the volume point and update the measurement

equation to spread the volume point by

Xi;kjk�1 ¼ Skjk�1�i þ x̂kjk�1; (10)

where �i ¼
ffiffiffi
m
2

p ½1�, i ¼ 1; 2; . . . ;m.

Zi;kjk�1 ¼ hðXi;kjk�1Þ: (11)

And, calculate the measured predicted value by

ẑkjk�1 ¼ 1

m

Xm
i¼1

Zi;kjk�1: (12)

Thereby, estimate the characteristic square root of the pre-

dicted output covariance matrix as

½A B� ¼ qrð½Z�
kjk�1 SR;k�T Þ; (13)

where

Szz;kjk�1 ¼ Bð1 : l; :ÞT ; (14)

Rk ¼ SR;kS
�
R;k; (15)

Z�
kjk�1 ¼

1ffiffiffiffiffi
m

p ½Z�
1;kjk�1 � ẑkjk�1Z

�
2;kjk�1

� ẑkjk�1 � � �Z�
m;kjk�1 � ẑkjk�1�:

(16)

Then, cross-covariance matrix is estimated by

Pxz;kjk�1 ¼ Xkjk�1ðZ�
kjk�1ÞT : (17)

step 3: Calculate multiple strong tracking factors by

�k ¼ �k; �k�1
1; �k < 1

�
(18)

where

�k ¼ trðNkÞ
trðMkÞ ; (19)

Nk ¼ Vk �HkQk�1H
T
k � bRk; (20)

Mk ¼ HkFkPkF
T
k H

T
k ; (21)

Vk

"1"
T
1 ; k ¼ 1

rVk�1þ"1"
T
1

1þr
; k > 1

(
(22)

and Fk is the state linearization matrix,Hk is measurement line-

arization matrix calculated by Jacobian matrix; trð:Þ is the trace
calculation operation; r is the forgetting factor of the residual

sequence "k ¼ zk � ẑkjk�1; Vk is the covariance matrix of the

output residual sequence; b is the weakening factor chosen

based on empirical values to avoid possible over-adjustment.

step 4: Replace 6 by the following equation

½A B� ¼ qrð½
ffiffiffiffiffi
�k

p
X�

kjk�1 SQ;k�1�T Þ (23)
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where qrð:Þ denotes the QR-decomposition, and repeats Step 2

to obtain the characteristic square root of the prediction error

covariance matrix Skjk�1 after introducing the strong tracking

factor; Then, predict characteristic square root of the output

error covariance matrix Szz;kjk�1 and the cross-covariance

matrix Pxz;kjk�1.

step 5: Obtain the optimal filter gain Kk, optimal prediction

state x̂kjk and optimal error covariance matrix characteristic

square root Skjk by

Kk ¼
Pxz;kjk�1

Szz;kjk�1S
T
zz;kjk�1

; (24)

x̂kjk ¼ x̂kjk�1 þKkðzk � ẑkjk�1Þ; (25)

½A B� ¼ qrð½Xkjk�1 �KkZ
�
kjk�1 KkSR;k�T Þ; (26)

Skjk ¼ Bð1 : n; :ÞT : (27)

step 6: 8k � 2, both process noise and measurement noise

are adapted by

Qk ¼ ð1� dkÞQk�1 þ dk½Kk"k"
T
k K

T
k �; (28)

Rk ¼ ð1� dkÞRk�1 þ dk½"k"Tk �; (29)

where

dk ¼ 1� b

1� bkþ1
; 0 < b < 1: (30)

and b represents the forgetting factor in the recursive formula

of the noise statistical estimator, and its value selection should

be considered as a trade-off between the algorithm’s strong

tracking performance and noise insensitivity.

Once the training of CKF-RBFNN is completed, it can be

applied to either single-fault diagnosis or multi-fault diagnosis

by fault diagnosis servers.

2) Fault-Diagnosis Based on the Collective Decision of

Multiple B5G-MEC Servers: Once the training of CKF-

RBFNN is completed, the faulty status of each buoy can be

detected. In order to improve the diagnosis accuracy, we

employ a number N of fault-diagnosis servers for joint deci-

sion-making. Specifically, for the single fault detection, the

output Y of CKF-RBFNN is presented by

Y ¼ 1 Faulty
0 Normal

�

For the multi-fault detection case, the output Y , which is a n
dimension vector Y ¼ ðy1; y2; . . . ; ynÞ, represents the specific

faults detected. For example, if yi ¼ 1, 1 � i � m, then the

buoy suffers from up to m types of faults. Note that if the

buoy is faulty-free, then we obtain Y ¼ ð0; 0; . . . ; 0Þ.
We denote the output of the ith B5G-MEC Server by Y i.

Then, the collective decision is made based on allN B5G-MEC

servers, i.e., the buoy is faulty only if the average value of N

outputs approaches 1 for the single-fault detection. That is,

1

N

XN
i¼1

Y i ! 1: (31)

Otherwise, the buoy is normal, i.e.,

1

N

XN
i¼1

Y i ! 0: (32)

Similarly, for the multi-fault detection, we let Y i ¼
ðY i

1 ; Y
i
2 ; . . . ; Y

i
nÞ denote the output of the ith B5G-MEC

Server. Then, the jth type of fault of the buoy is diagnosed

only if

1

N

XN
i¼1

Y i
j ! 1: (33)

Otherwise, the buoy is jth fault-free, i.e.,

1

N

XN
i¼1

Y i
j ! 0: (34)

Note that the single decision made by the only one B5G-

MEC server is unreliable. However, if the faulty state of a buoy

is made based on the collective decision by several B5G-MEC

servers, then it is more reliable. Furthermore, we allow all N
B5G-MEC servers to run CKF-RBFNN based fault-diagnosis

algorithm simultaneously, although there might exist differen-

ces between models trained by different B5G-MEC servers.

Besides, the collective decision is made by taking the average

of all decisions of each B5G-MEC servers. That suggests such

decision making is more fair and more reasonable. Thereby,

the proposed IDFA is applicable to improve the QoS of the

B5G-SAGS.

B. Drone Path Planning

How to design a reasonable drone path poses a great chal-

lenge. This is because the drone should arrive the proximity of

the fault buoys as soon as possible for relevant data collection.

However, due to the weather condition and other environment

interferences, an irrational path could result in a tremendous

energy cost.

To solve this problem, we develop a deep reinforcement

learning (DRL) based drone path planning, which is imple-

mented on B5G-MEC servers. Note that DRL is built on the

structure of deep learning [30] w.r.t the principle of reinforce-

ment learning to solve decision-making problems; it utilizes

the representation ability of the neural network to fit the Q-

table or the strategy to solve the problem of excessive state-

action space or continuous state-action space, i.e., discovering

the control on the movement of drones. In this paper, as a

DRL, the Deep Deterministic Policy Gradient (DDPG) is uti-

lized to design the energy efficient drone path. In general, a

DDPG decision system consists of a critic network Q, a target
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critic network Q0, an actor networks p and the corresponding

target actor networks p, the parameters of which are denoted

by #Q, #Q0
, #p and #p0 , respectively.

As a DRL, the action is given at a state to obtain the reward

and then the next state is observed from the environment. And

the experience is stored in an experience pool P in the form of

a transition of a quadruple ðst; at; rt; stþ1Þ. In the drone path

planning, we consider the position of the drone as a state s.
The action, i.e., hovering or moving toward any direction, is

represented by a, while the reward is denoted by r. At each
state s, the drone decides to hover for data collection or to

move toward the faulty buoy, based on which the reward can

be calculated. In addition, the amount of data collected should

be considered. Note that within each time interval a drone

might collect no data. For example, while a drone is still

approaching the communication coverage area of the faulty

buoy, there is no data required to be collected. In this case, the

drone receives a negative reward rt in timeslot t; otherwise,
the reward rt is calculated as a tradeoff function based on the

state-action pair ðst; atÞ as

rt ¼
� 1

Energyi;t
; if Datai;t ¼ 0

Datai;t
Energyi;t

; otherwise

(
(35)

where Datai;t and Energyi;t represents the amount of data

collected and the energy consumed by timeslot t.
It is worth to mention that the energy cost consists of two

parts, i.e., the energy consumed by both receiving and trans-

mitting data, and the energy required within the data collection

path that depends on the velocity and different flight stages

including acceleration, deceleration, hovering, and turning.

We use the energy model proposed by Ding et al. [31] to quan-

tify the UAV energy consumption. If the drone is flying in a

straight line at different speeds, i.e., 2 m/s, 4 m/s, 6 m/s and

8 m/s, then the power consumption will be 242 W, 245 W,

246 W, and 268 W, respectively. Obviously, the power con-

sumption increases as the velocity and vice versa while rotat-

ing at angles with the increment of 45�. For example, the

power consumption Pturn equal to 260 W when angular speed

vturn reaches 2.07 rd/sec. Thereby, the energy consumption

during turn Energyturn is given by

Energyturn ¼ LuPturn=vturn; (36)

where Pturn denotes the power consumption, Lu denotes turn-

ing angle, vturn represents angular velocity while turning.

Then the energy cost Energyv;d is calculated by

Energyv;d ¼
Z

Paccdtþ
Z

Pv þ
Z

Pdecdt; (37)

where acceleration power consumption is denoted by Pacc,

deceleration power consumption is denoted by Pdec, power

consumption while flying at uniform velocity is denoted by

Pv, and the travel distance is represented by d. On the other

hand, the energy cost for communication between drones and

buoys consists of that of receiving Energyrec and transmitting

Energytra of data, which is given by

Energytra ¼ ps 	 ðEnergyc þ Energys 	 d2Þ; if d0 > d
ps 	 ðEnergyc þ Energyl 	 d4Þ; otherwise

�
(38)

where Energyrec ¼ ps 	 Energyc, the energy dissipation on

the circuitry of receiver or transmitter is denoted by Energyc,
the packet size is denoted by ps, d0 is a predetermined thresh-

old, Energys and Energyl denote the energy cost on amplifier

for short or long distance transmission of one bit, respectively.

Thereby, for the ith drone, the energy cost Energyi;t on time

slot t is then calculated by

Energyi;t ¼ Energytra þ Energyrec

þ Energyturn þ Energyv;d: (39)

Note that the goal of DDPG is to find the optimal action at
for each state st in order to maximize the reward rt. Therefore,
we choose the one of the maximal Q value, which is

at ¼ argmax
at2A

Qðst; atÞ; (40)

where A ¼ fatg. Then, experience ðst; at; rt; stþ1Þ is stored in

the experience poor P.
In the training process, we sample N experience from P to

update the critic network utilizing the following loss function

Lð#QÞ ¼ 1

N

XN
i

½Qðsi; aij#QÞ � Yi�2; (41)

where

Yi ¼ ri þ gðQðsiþ1;pðsiþ1j#p0 Þj#Q0 ÞÞ: (42)

Note that g denotes the learning rate, which should be chosen

within the range of [0,1] for the stability improvement of the

learning process. Accordingly, we update p utilizing policy

gradient as

r#pJ ¼ 1

N

XN
i

½raQðs; aj#QÞjs ¼ si; a ¼ pðsij#pÞ

r#ppðsj#pÞjs ¼ si�: (43)

Target networks are copies of the actor p and critic Q net-

works of different update rules. Once networks ps and Q are

updated, we then update the parameters of target networks #Q0

and #p0 with a learning rate k

#Q0 ¼ k#Q þ ð1� kÞ#Q0
; (44)

#p0 ¼ k#p þ ð1� kÞ#p0 ; (45)

The accuracy of fault diagnosis mainly relies on the infor-

mation collected by drones. However, the proposed path plan-

ning for drones aims to achieve energy-efficiency during the

data collection for the single faulty buoy case. That suggests

how to detect multi faulty buoys is an open problem. We dis-

tinguish two cases to solve this problem.
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Case 1: If the sensing areas sensingareabs of two or more

buoys are overlapping, then only one drone will be assigned to

the position around the centroid of the overlapping area

centroid sensingareab to collect relevant data for both faulty

buoys. That suggests the destination for a drone is set to one

location rather than two separated ones. And the data collected

will be labelled individually and sent to the fault diagnosis

servers via the airship-satellite channels.

Case 2: For the case that the sensing areas of buoys are non-

overlapping, we check if there exists a position that the sensing

area of the drone sensingaread is overlapping with that

sensingareabs of buoys. If the location (i.e., the centroid of the
sensing area of the drone centroid sensingaread) does exist,
then the drone is assigned to this location; otherwise, each

faulty buoy will be sent a drone for relevant data collection.

We then summarize the drone path planning in Algorithm 1.

V. PERFORMANCE EVALUATION

A. Simulation Setup

The simulation is conducted to validate the performance of

the proposed IDFA in Python on 7 computers, each of which is

equipped with an Intel Core i7 processor, a 64 G running

memory, and a CPU frequency 6.4GHZ 64-bit win7 system.

We let each computer represent a fault diagnosis edge server.

In addition, we assume each quadrotor is equipped with a

2.56 GHz processor of 64-bit quad-core and a Li-Po battery of

3300 mAH. Table I gives the rest parameters of this simulation.

1) Performance Index and Baseline Approaches: The per-

formance of IDFA is validated in test error, multi-fault classi-

fication, aggregation ratio and energy cost. We then give the

performance indexes as follows.

1) Test Error: To verify the faulty status of a buoy, the test

error is adopted, i.e, a correct diagnosis should have a

test error less than 0.5, while a test error greater than

0.5 indicates the incorrect one.

2) Multi-fault Classification: Due to the inhospitable

working environment, a buoy could suffers from vari-

ous faults. That means the fault-diagnosis mechanism

should be capable of distinguishing a particular fault

from others.

3) Aggregation Ratio: Since the extra information pro-

vided by drones helps to improve the fault-diagnosis

accuracy, the relevant data should not be collected.

That suggests a higher aggregation ratio might result in

a better fault-diagnosis accuracy.

4) Energy Cost: The energy cost of fault-diagnosis results

from data collection by drones. The less energy cost

indicate the better performance of the fault-diagnosis

system. In this experiment, we normalize the energy

cost for better performance comparison.

The proposed IDFA first compares with baseline approaches,

i.e, RBF, PSO-SVM and UKF-RBF [32], in test error and

multi-fault classification, respectively. The reason for choosing

these algorithms is as follows. In fact, RBF neural network can

establish a mapping between input information and output

information, which is developed w.r.t the function and structure

of human brain. The approximation ability, classification and

recognition ability, and learning speed of RBF neural network

are better than that of BP neural network. Therefore, it is appli-

cable for fault diagnosis of buoys in extreme environments. On

the other hand, the CKF is based on the point estimation. That

suggests there is no need to linearize the nonlinear system.

Thereby, the CKF can improve the fitting accuracy of the non-

linear function and avoiding the numerical instability of UKF

in the high-dimensional system. In general, the CKF has a bet-

ter performance in applicability and stability, especially for

high-dimensional nonlinear systems, while compared with

Algorithm 1. Drone Path Planning

Input: sensing areas of all buoys sensingareabs, the sensing area of

the drone sensingaread
for all i ¼ 1; n do

if sensing areab;is are overlappingthen
the location centroid sensingareab is set as the destination of

the drone path planning

else

if sensingaread is overlapping with sensingareabsthen
centroid sensingaread is set as the destination of the drone

path planning

else

each faulty buoy will be sent a drone

end if

end if

end for

drone are send to collect relevant data along the paths established

by Algorithm 2

Algorithm 2. DDPG based Drone Path Design

Input: Initialized s0, Action Set A, Experience Poor P, Sample

NumberN , Actor Networks p and p0, Critic Networks Q and Q0

Output: Drone paths

for t ¼ 1; T do

select action via Eq. (40)

execute action at, calculate reward rt via Eq. (35) and observe
next state stþ1

store ðst; at; rt; stþ1Þ in experience poor P
randomly sampleN experiences from experience poor P
update critic network via Eq. (41) and Eq. (42)

update actor network via Eq. (43)

update target networks via Eq. (44) and Eq. (45)

end for

TABLE I
SIMULATION SETUP
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UKF. Similar to CKF and UKF, the PSO-SVM can achieve the

fault classification, however the accuracy of which is less than

that of either UKF or CKF. Then, the drone path planning of

the IDFA is compared with baselines, e.g., RTR [33] and

ECMC [34], in aggregation ratio and energy cost. The RTR sol-

ves the round trip routing problem by locating the shortest path,

considering the constrains of both delivery deadline and energy

budget. The ECMC achieves 3D continuous movement control

to maximize the energy efficiency in communication coverage

for drone-cell networks and meanwhile the network connectiv-

ity is preserved. Since either RTR or ECMC aims to discover

Fig. 3. Test error comparison in statistic between RBF, PSO-SVM, UKF-RBF and CKF-RBF.

Fig. 4. Multi-fault classification comparison between RBF, PSO-SVM, UKF-RBF and CKF-RBF.

TABLE II
AVERAGE TEST ERROR FOR SINGLE-FAULT DIAGNOSIS

TABLE III
MULTI-FAULT CLASSIFICATION ACCURACY
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the optimal energy-efficient drone paths, they are chosen as

baselines for aggregation ratio and energy cost comparisons.

B. Experiment Results

1) Diagnosis Accuracy: Fig. 3 gives statistical test error

comparison between RBF, PSO-SVM, UKF-RBF and CKF-

RBF. We denote the number i of fault-diagnosis servers

involved in fault detection as CKF-RBFi. In addition, we assume

that a correct diagnosis should be of a test error less than 0.5.

Observed from Fig. 3, we know that with the number of fault-

diagnosis servers grows the test error drops. Compared with

RBF and PSO-SVM, CKF-RBF has a better diagnosis accuracy.

For example, all test errors of CKF-RBF are beneath the thresh-

old 0.5. The maximum false alarm rate is achieved by RBF.

Fig. 3 suggests the proposed IDFA is more efficient in decreas-

ing the false alarm rate with more fault-diagnosis servers

involved.The multi-fault classification comparison is shown in

Fig. 4. There are three fault states considered for effectiveness

validation in classifying multi-faults among RBF, PSO-SVM,

UKF-RBF and CKF-RBF. Observed from Fig. 4, we know that

the classification accuracy increases when integrating UKF and

RBF. It is obvious that UKF-RBF achieves a better classification

accuracy while compared with PSO-SVM. Although all base-

lines perform well in multi-fault classification, CKF-RBF has

the highest classification accuracy. Furthermore, with the num-

ber of fault-diagnosis servers grows, the classification accuracy

further improves. Fig. 4 verifies the effectiveness of the pro-

posed IDFA inmulti-fault classification.

We then give the diagnosis accuracy analyses for both single-

fault diagnosis and multi-fault diagnosis in Table IIand Table III

with the number of fault diagnosis serversNf varying from 4 to

7. Observed from Table II, we find that the test error decreases

as Nf increases. The least test error is only 0.04, when the

number of fault diagnosis servers reaches 7. That means the pro-

posed IDFA can accurately detect faulty buoys. As shown in

Table III, it is clear that either false alarm rate (FAR) or miss

detection rate (MDR) is less than 15%. In addition, with the

growth ofNf , both FAR andMDR drop.WhenNf ¼ 7, the pro-
posed IDFA achieves the lowest FAR and MDR, which are only

4% and 3% respectively. Table II and Table III verify the advan-

tages of IDFA in fault diagnosis accuracy.

2) Aggregation Ratio: Fig. 5 gives the aggregation ratio

comparison with different v, Nb, and Nd respectively.

Observed from Fig. 5 (a), we know that with the growth of v
the aggregation ratio increases rapidly. Since the faster the

drone flies, the more data is collected that results in a higher

aggregation ratio. However, IDFA achieves the highest aggre-

gation ratio due to the DRL based drone path planning. As

shown in 5 (b), the aggregation ratio decreases as the Nb

increases. This is because more buoys deployed results in more

data required to be collected such that the aggregation ratio

drops. Compared with baselines, IDFA is more efficient in data

collection. The aggregation ratio sustainably grows with the

Nd as shown in Fig. 5 (c). When there are sufficient drones

arrived at the faulty buoys, all data will be collected such that

the aggregation ratio should approach 100% for each approach.

Thanks to the DRL based drone path planning, IDFA performs

better than baselines with the highest aggregation ratio.

3) Energy Cost: Fig. 6 shows the impacts ofNb, Nd and V
on both energy cost and maximum energy cost, respectively. In

Fig. 6 (a), it is obviously that the growth of Nb results in the

increment of energy cost for each approach. And IDFA con-

sumes less energy cost than baselines due to the deep reinforce-

ment learning algorithm DDPG employed. Observed from

Fig. 6 (b), we find that the maximum energy cost decreases as

Nd increases. The IDFA outperforms baseline approaches in the

Fig. 5. Aggregation ratio while varying (a) v, (b)Nb, and (c)Nd.

Fig. 6. Energy Cost while varying (a)Nb, (b)Nd, and (c) V .
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least maximum energy cost. As shown in Fig. 6 (c), it is clear

that as the speed V increases the energy cost rises rapidly. How-

ever, the proposed IDFA consumes the least energy cost while

compared with ECMC and RTR. Fig. 6 verifies the advantages

of IDFA in energy cost while performing data collections.

VI. CONCLUSION

The quality of service of B5G-SAGS depends on the faulty

status of each device within. That indicates the importance of

fault-diagnosis in the B5G-SAGS design. Previous works on

fault-diagnosis didn’t integrate extra information to improve

the diagnosis accuracy. In this paper, we propose an Intelligent

Drone-assisted Fault-diagnosis Algorithm (IDFA) utilizing

B5G-MEC services to detect faulty buoys. Specifically, IFDA

first employs a Cubature Kalman Filter based Radial Bias

Function Neural Network for each fault-diagnosis server to per-

form preliminary fault detection based on the data provided by

both buoys and drones. The data collection path is planned uti-

lizing the deep reinforcement learning algorithm, Deep Deter-

ministic Policy Gradient, on B5G-MEC servers for energy

efficiency. Eventually, the collective decision made by all

fault-diagnosis centers determines the faulty status of each

buoy. The theoretical analysis and validation experiments

show that: (i) the IDFA has a better diagnosis accuracy in both

single fault detection and multi-fault classification while com-

pared with contemporary algorithms; (ii) the IDFA obtains a

high aggregation ratio and a low energy cost.
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