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A B S T R A C T   

With the development of social networks, more and more data about users are released on social platforms such 
as Facebook, Enron, WeChat, in terms of social graphs. Without the efficient anonymization, the graph data 
publishing will cause serious privacy leakage of users, for example, malicious attackers might launch 1-neighbor
hood graph attack on targets, which assumes that 1-hop neighbors and the relations among them are known by 
attackers, thereby, targets can be re-identified in anonymous social graphs. To prevent such attack, we propose a 
Graph Partition based Privacy-preserving Scheme, named GPPS,i n social networks to realize social graph 
anonymization. The proposed GPPS preserves users’ identity privacy by k-anonymity which achieved by node 
clustering and graph modification. Specifically, in the similarity matrix calculation, we introduce the degree- 
based graph entropy to improve the accuracy of node clustering. Then, the graph modification is imple
mented to achieve the k-anonymity of users and meanwhile minimize the graph information loss. The experiment 
results illustrate that the proposed GPPS is effective and efficient both on synthetic and real data sets.   

1. Introduction 

Today, in our daily lives, social networking enables us to contact our 
colleagues, friends, and families through applications, such as Facebook, 
Twitter, Linkedin, Google+, YouTube, and ResearchGate (Ferrag et al., 
2017).Large amounts of data are generated by such communication on 
social networking, they will be explored for marketing, advertising, data 
mining and so on. The large amount of personal data that users share on 
social networks makes them a desirable target for attackers (Rathore 
et al., 2017). That suggests there is a potential risk for users’ privacy 
being exposed. For example, users’ identities, attributes, and relation
ships might be disclosed if the social graph released without being 
properly anonymized. Therefore, privacy protection has become one of 
the biggest problems with the progress of big data (Yu, 2016). 

Graphs provide a powerful primitive for modeling data in a variety of 
applications. Nodes in graphs usually represent real world objects, and 
edges indicate relationships between objects (Yu et al., 2017) (Wang 
et al., 2018). Normally, data owners may release their data with users’ 
identities hidden by Navïve anonymization. For example, the 
well-known Zachary karate club network (see Fig. 1), in which nodes 
represent the members of the club, and edges represent the relationships 
between members, is the navïvely anonymized social network. How
ever, Navïve anonymization cannot protect users’ privacy while 

adversaries own some background knowledge about users which can be 
modeled as attack graph(Enoch et al., 2019), i.e., the 1-neighborhood 
graphs (see Fig. 2(a) and (b)). Based on background knowledge, there 
exist re-identification or de-anonymization attacks (Narayanan and 
Shmatikov, 2009) (Ji et al., 2016) (Qian et al., 2017) (Ji et al., 2017) (Li 
et al., 2020) against graph structure, i.e., degree sequence attack (Kia
bod et al., 2019), 1-neighborhood graph attack (Zhou and Pei, 2008), 
subgraph attack (Zou et al., 2009). Privacy risks can be broadly cate
gorized into identity disclosure(Liu and Terzi, 2008),membership 
disclosure (Liu et al., 2016) and content disclosure (Cai et al., 2020). 

To alleviate privacy problem in social networks, many privacy pre
serving mechanisms have been proposed, such as k-anonymity(Campan 
and Truta, 2008), differential privacy (Dwork et al., 2012), reputation 
(Cai et al., 2020), encryption (Ding et al., 2019). In k-anonymity, the 
probability of node re-identification is less than 1/k, and the trade-off 
between data utility and privacy can be adjusted according to the 
value of k. Differential privacy provides a perturbation method to 
minimize the probability of identifying individual records by adding 
specific noise. It has been widely used to perturb statistical values of 
graph data, such as degree distribution, frequent subgraph mining, and 
triangle counting (Ding et al., 2021). Reputation-based and encryption 
methods are generally used for content disclosure in scenarios where 
users exchange information. Comparing with differential privacy, 
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k-anonymity is implemented by adding or deleting nodes and edges to 
make one node indistinguishable from the other k - 1 nodes. It can 
support not only statistical values query but also structural data query. 
Moreover, itis straightforward to demonstrate the security of k-ano
nymity, and is suitable for protecting privacy in social networks. In this 
paper, we consider the structure attack: 1-neighborhood graph attack, 
because it is more difficult for an attacker to collect the information 
beyond a one-hop neighborhood (Liu et al., 2017). The challenges is how 
to balance in trade-off between privacy and data utility. To address this 
issue, we propose a Graph Partition based Privacy-preserving Scheme, 
named GPPS, in social networks to achieve the k-anonymity against 
privacy disclosure while maintaining data utility. Our scheme consists of 
two main steps: 1) Node Clustering; 2) Graph Anonymization. First, 
inspired by literature (Li et al., 2016), we separate nodes into T clusters 
according to node similarity. This problem is addressed by RatioCut 
based spectral clustering algorithm (Von Luxburg, 2007), finding a 
partition of the similarity graph such that the edges between different 
clusters have a low weight and the edges within the same clusters have a 
high weight. The advantage is the size of each cluster is approximately 
equal. In our work, we modify the spectral clustering algorithm to 
improve the accuracy of node cluster, introducing the notion of 
degree-based entropy which can used to measure network heterogeneity 
(Cao et al., 2014) when computing node similarity. In graph anonymity 
step, to achieve k-anonymity, we use maximum weight bipartite graph 
matching method to calculate the cost of node matching and find the 
optimal solution in the graph modification in each cluster. We do not 
modify the 1-neighborhood graphs to be isomorphism, but node indis
tinguishable, the attacker cannot determine if the 1-neighborhood graph 
of the node in the anonymous graph is the same as in the original graph. 

Therefore, it can not only achieve k-anonymity but also maintain the 
utility of graph data. 

The main contributions of this paper are summarized as follows:  

1. We propose a graph partition based k-anonymous scheme to preserve 
the identity privacy of individuals in social networks, we convert the 
node clustering problem into graph partition problem, and in order 
to achieve balanced graph partition, we propose a modified RatioCut 
based spectral clustering algorithm.  

2. We introduce the degree-based entropy to measure the network 
heterogeneity, and consider it as one of the metrics to calculate the 
similarity of node structure. This method helps to improve the ac
curacy of node clustering.  

3. We develop a maximum weight bipartite graph matching algorithm 
based graph modification method on original graph to achieve k- 
anonymity and maintain the data utility. The experiment results 
illustrate that the proposed GPPS is effective and efficient both on 
synthetic and real datasets. 

The rest of the paper is organized as follows. The notions, termi
nologies and the problem description are introduced in Section 3. The 
strategies are elaborated in Section 4. Section 5 gives the experimental 
analysis on our scheme respectively. The validation results are presented 
in this section as well. We conclude this paper in Section 6. 

2. Related works 

Data owners usually publish anonymized data for individual privacy 
protection. Navïve anonymous approaches which just remove the 
identities of individuals could not guarantee privacy. For example, at
tackers might use certain background knowledge to re-identify the 
nodes. To defend the re-identification attacks, a number of approaches 
have been proposed, which can be divided into three categories: nodes 
and edges perturbation, k-anonymity, and differential privacy (Ding 
et al., 2021). 

Nodes and edges perturbation approaches are based on adding or 
deleting nodes and edges. Hay et al. (2007) proposed a method called 
random perturbation using Rand add/del to anonymize graphs, which 
randomly remove p edges, and then randomly add p edges. The main 
advantages of this method are that it is not only simple, but also of low 
complexity. However, the important nodes cannot be protected well, 
and can be re-identified. Ying and Wu(Ying and Wu, 2008) proposed an 
eigenvalues based random graph modification scheme which randomly 
deleting and swapping edges in the graph with less information loss. The 
approaches help to maintain the structural properties of social networks 
by maintaining a role based on the concept of rule equivalence in social 
networks, or edge intermediate based variation of limiting shortest 
paths. Yuan et al. (2013) defined a k-degree-l-diversity anonymity 
model that protects structural information as well as sensitive labels of 
individuals, the scheme is based on adding noise nodes into the original 

Fig. 1. Karate club graph.  

Fig. 2. 1-neighborhood graphs of node 1 and node 24 of the Karate club graph.  
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graph and editing edges with the consideration of guarantee the average 
path length. Liu et al. (2016) utilized a set of supervised machine 
learning techniques to predict the necessary random walk length based 
on the structural characteristics of a social graph, and generated a fake 
link to replace a real link between two users to protect link privacy. 

K-anonymity has become the most widely used method to protect 
individuals’ privacy in social network data publishing (Ding et al., 
2021). Campan and Truta (2008) proposed a k-anonymity scheme, in 
which each node should be indistinguishable from at least k-1 nodes 
based on both structural information and nodes’ attributes such that 
anonymized nodes cannot be re-identified with the probability larger 
than 1/k. Generally, k-anonymity approaches can be divided into 
k-Degree Anonymity (Liu and Terzi, 2008) which is used to defend de
gree attacks, k-Neighborhood Anonymity (Zhou and Pei, 2008) which is 
used to defend neighborhood graph attacks, k-Automorphism (Zou 
et al., 2009) which is used to defend subgraph attacks, and is based on 
the subgraph isomorphic technology (Ding et al., 2021). In order to 
achieve k-anonymity, graph editing or graph modification based ap
proaches have been used. The aim of graph editing(or graph modifica
tion) problems is to modify a given graph by applying a bounded 
number of permitted operations in order to satisfy a certain property, 
including vertex deletions, edge deletions and edge additions, some
times vertex additions are also permitted (Golovach and Mertzios, 
2016). Liu and Terzi (2008) proposed a strategy to accomplish node 
degree based k-anonymity,in which each node in graph has at least other 
k-1 nodes of the same degree. Zhou and Pei (2008) proposed a scheme to 
against the 1-neighborhood attack. For each vertex v, there are k-1other 
nodes which have the isomorphic1-neighborhood graphs to v.Zou, Chen 
and Ozsu (Zou et al., 2009)proposed a k-automorphism scheme to pre
serve privacy. They anonymize the data graph through three steps graph 
partition, block alignment and edge copy to build k-automorphism 
anonymized graph. Cheng, Fu and Liu (Cheng et al., 2010) identified 
two realistic targets of attacks, NodeInfo and LinkInfo and then proposed 
a solution to form k pairwise isomorphic subgraphs so that the graph is 
k-isomorphic.The sensitive attributes of nodes are protected by anatomy 
model(Xiao and Tao, 2006) in a k-isomorphic graph. Li et al. (2016) 
proposed a graph partition based framework for privacy preserving 
graph data publication, which is designed to accommodate various 
datasets including social networks, temporal and spatial sequences. 
They defined graph-based privacy criterion and utility metrics to 
quantify the privacy and utility measurements of the anonymity data 
sets. Liu et al. (2017) defined weighted 1*-neighborhood attacks, which 
assume that attackers have some background knowledge about both 
individuals’ 1-neighborhood graphs and related degrees and edge 
weights. In order to resist this kind of attacks, they proposed a heuristic 
indistinguishable group anonymous scheme to anonymize a weighted 
social graph. The 1*-neighborhood graphs of nodes in the same group 
are probabilistic indistinguishable and the published graph has high 
utility. Ding et al. (2021) measure the utility with a new information loss 
matrix, based on which a k-decomposition algorithm and a privacy 
preserving framework are developed for graph anonymization, and the 
proposed solution can be proved to achieve k-anonymity. 

Dwork et al. (2012) designed differential privacy technique to solve 
the privacy protection problem in statistical databases, it can provide a 
mathematical security proof. It achieves privacy protection via injecting 
random noise into the query results. Kasiviswanathan et al. (2013) 
suggested projection operations on statistics to achieve low sensitivity 
and high data availability. Day et al. (2016) investigated the degree 
distribution publishing problem of a graph under node-DP by exploring 
the projection method to reduce the degree sensitivity, the proposed 
approaches are based on aggregation and cumulative histogram. Gao 
and Li (2019) proposed a novel anonymization scheme which preserves 
the persistent homology of the graph while satisfying the differential 
privacy. Based on the differential privacy model, Huang et al. (2020) 
proposed a privacy preserving approach, which combined clustering 
and randomization algorithms. Moreover, to objectively evaluate the 

privacy-preserving strength, they proposed a privacy measure algorithm 
against graph structure and degree attacks. Differential privacy differs 
from traditional methods and provides strong privacy guarantees 
without assuming the background knowledge of the attackers obtained. 

Existing representative privacy-preserving approaches in social net
works have corresponding features. Nodes and edges perturbation ap
proaches are relatively simple and with higher data utility, however, the 
protection strength is not enough. The privacy protection strength of k- 
anonymity approaches depends on the value of k, the larger the k, the 
smaller the data utility. Therefore, the user can choose the appropriate k 
value as needed. Comparing with k-anonymity, differential privacy is 
usually used to protect various statistical values of graph data, such as 
degree distribution, edge weights, however, it is difficult to protect the 
structural information of graphs. Generally speaking, existing researches 
about privacy preserving in social networks can protect the privacy of 
users, however, k-anonymity is a better choice when suffering from a 
graph structure attack. However, privacy protection schemes require a 
trade-off between data utility and privacy (Ninggal and Abawajy, 2015). 
In our approach, we focus on 1-neighborhood graph attack, and based 
on graph partition, we can achieve k-anonymity meanwhile guarantee 
better data utility. 

3. Preliminary 

3.1. System model 

In this paper, a social network is modeled as a simple undirected 
graph G = (V, E), where V is the node set which represent the individuals 
in the social networks, E is a set of edges which represent the relation
ships such as friendship, partnership between individuals. The cardi
nalities of V and E are denoted by |V| and |E| respectively, we assume 
that |V| = n, |E| = m. Zhou and Pei (2011) pointed out that it was 
difficult to obtain target’s information beyond one-hop neighborhood, 
due to the small-world characteristic of social networks. Therefore, we 
assume that attackers have knowledge about the target’s1-neighbor
hood graph. 

Definition 1. (1-Neighborhood Graph) G(v) = <V(v), E(v)>, where V 
(v) is the set of neighborhood nodes of v and V(v) = {u|(u,v) ∈ E} ∪ {v}. 
E(v) is the set of edges between the nodes in V(v) and E(v) = {(u,v)|u,
v∈ V(v) ∧ (u,v) ∈ E}. 

To protect the individuals’ identity privacy from re-identify attacks, 
the social network graph data will be anonymized to G̃ = (Ṽ, Ẽ), before 
being released. Inspired by (Liu et al., 2017), we modify the graph 
structure to achieve k-neighborhood anonymity by graph modification 
under the constrain of |V| = |Ṽ|. 

Definition 2. (k-Neighborhood Anonymity) Given a graph G(V, E), G 
satisfy k-neighborhood anonymity, if for each node v ∈ V , there are at 
least k − 1 other nodes have the same 1-neighborhood graphs with v. 

Definition 3. (Node Indistinguishability) Node u and v are indistin
guishable if an observer cannot decide whether or not G(u) ∕= G(v) in the 
original graph G, by comparing G̃(u) and G̃(v). 

3.2. Problem statement 

Given an undirected and unlabeled graph G, we try to obtain an 
anonymous graph G̃, such that no attacker can re-identify the nodes with 
the probability higher than 1/k and the information loss is minimized, 
which is formally stated as follows: 

For original graph G = (V, E) and anonymous graph G̃ = (Ṽ, Ẽ), 
where G(v)=(V(v),E(v)) is the 1-neighborhood graph of node v, G(v)⫅G, 
and G̃(v′

) = (Ṽ(v′

), Ẽ(v′

)) is the 1-neighborhoodgraph of node v′ , 
G̃(v′

)⫅G̃. There exists a bijective function π:V(v)→V(u), such that for 
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each e = (vi, vj) ∈ G(v), there exists an edge e′

= (vi
′

, vj
′

) ∈ G̃(v′

), 
ensuring G(v) ≅ G̃(v′

), that is Pr(G(v) ≅ G̃(v′

)) ≤ 1/k. 
To be convenient, we summarize the commonly used symbols of this 

paper in Table 1. 

4. The proposed strategies 

In this paper, we propose a k-anonymity method based on RatioCut 
graph partition to protect the identity privacy of individuals in social 
networks. This method has a lower amount of information loss. It is a 
two step strategy to achieve k-anonymity. First, we use the RatioCut 
partition method to clustering the nodes into K clusters. Secondly, we 
modify the 1-neighborhood graphs of these nodes to make them prob
abilistic indistinguishable and satisfy k-anonymity. The flow chat can be 
shown as Fig. 3. 

4.1. Node clustering 

The goal of node clustering is to partition the nodes in graph G into T 
disjoint clusters {C1,C2,…,CT}, so that nodes within the same cluster are 
generally close to each other in terms of graph structure while distant 
otherwise (Fan et al., 2020) (Li et al., 2021). 

Therefore, node clustering problem can be regarded to find a parti
tion of the graph so that nodes in the same cluster are more similar to 
each other than nodes between different clusters, that is, the edges 
within a cluster have higher weights than edges between clusters. For a 
given graph G = (V,E),we translate G to similarity graph GS to achieve 
node clustering. Spectral clustering is one of the most commonly used 
clustering methods, and its performance is better than the traditional 
clustering methods (Von Luxburg, 2007). Spectral clustering has been 
applied successfully in a large number of fields, including 
bio-informatics (Yu et al., 2012), community detection (Qin et al., 2016) 

(Javed et al., 2018) and so on. We use approximating RatioCut based 
spectral clustering approach to partition graph GS to ensure similar 
nodes in the same cluster and the clusters are balanced that is the 
number of nodes in each cluster is approximately the same (Von Lux
burg, 2007). As shown in algorithm1, the processing is divided into 
three steps:  

1. Pairwise similarity computing: we consider some metrics to compute 
the similarity between pairwise nodes.  

2. Similarity graph constructing: we select the K nearest nodes as node’s 
neighbors, so that, the similarity graph matrix is a sparse matrix.  

3. Similarity Graph partition: we use the RatioCut graph partition scheme 
to partition the similarity graph into T subgraphs, so that the size of 
subgraphs are approximately equal.  

Algorithm 1 
Node Clustering.  

Input: G 
Output: clusters Ci, i = 1, 2, …, T 
1: for i = 1 to n do 
2: construct1-neighborhoodgraphG(vi) of each node vi 
3: compute xi=<D(vi), BC(vi), Lc(vi), If(G(vi))>
4: end for 
5: Similarity graph construction seeing Algorithm 2 
6: similarity graph partition seeing Algorithm 3 
7: obtain the clusters Ci, i = 1, 2, …, T 
8: return Ci, i = 1, 2, …, T   

4.1.1. Pairwise similarity calculating 
The effect of spectral clustering depends greatly on the similarity 

measurement used to construct the similarity matrix (Ye and Sakurai, 
2016). In order to construct the similarity graph, we consider the 
following metrics to calculate the similarity between each pair of nodes: 
node degree, betweenness centrality, local clustering coefficient, and 
degree-based graph entropy. 

Definition 4. (Local Clustering Coefficent) (Liu et al., 2017) Lc(vi) =

μG(vi)/ωG(vi), where μG(vi) and ωG(vi) are the numbers of triangles and 
triples in G(vi), respectively. 

Definition 5. (Betweenness Centrality) (Brandes, 2001) BC(v) of node v 
in graph G is the fraction of the shortest paths between all pairs of nodes in the 
graph that pass through v, BC(v) =

∑

s,t∈V,s∕=t∕=v

σst(v)
σ(v) . 

Definition 6. (Degree Based Graph Entropy) (Cao et al., 2014) Let G =

Table 1 
Meanings of symbols used.  

Symbol Meaning 

G Original graph 
G̃ Anonymized graph 
GS Similarity graph 
GB Bipartitie graph 
BC Betweeness centrility 
wS

ij  Similarity of node vi and vj as edge weight in G̃

Lc Local clustering coefficient 
Ci ith cluster 
If(G) Degree based graph Entropy 
fsim() Similarity function 
Cost() cost of graphs modification  

Fig. 3. Flow chart of GPPS.  
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(V, E) be a connected graph. For a given v ∈ V and anarbitrary real number 
α ∈ R, the degree-based graph entropy 

If (G)= −
∑n

i=1

dα
i

∑n

j=1
dα

j

log

⎛

⎜
⎜
⎝

dα
i

∑n

j=1
dα

j

⎞

⎟
⎟
⎠

Let α = 1, thus, 

If (G)= log

(
∑n

i=1
di

)

−
∑n

i=1

di
∑n

j=1
dj

log di = log(2m) −
1

2m

∑n

i=1
di log di 

For every node vi ∈ G, we compute BC(vi), Lc(vi), If (G(vi) respec
tively. We call the vector xi =< D(vi),BC(vi), Lc(vi), If (G(vi)> the node 
vector. Thus, the similarity function of every pair of nodes vi, vj can be 
defined as 

fsim

(

vi, vj

)

= e−
⃒
⃒
⃒
⃒xi − xj

⃒
⃒
⃒
⃒2

2σ2 (1)  

4.1.2. Similarity graph constructing 

Algorithm 2 
Similarity Graph Constructing.  

Input: Node vector xi, i = 1, …, n 
Output: GS 

1: for i = 1 to n do 
2: for j = 1 to n do 
3: Compute similarity fsim(vi,vj) between node vi and node vj according to 
equation(1) 
4: end for 
5: end for 
6: for i = 1 to n do 
7: select the first K nearest nodes as the neighbors of node vi 
8: add edges between vi and it’s neighbors and obtain similarity graph GS 

9: end for 
10: return GS  

In this step, we construct a weighted similarity graph named K- 
nearest neighbor graph, whose neighborhood relationship is symmetric. 
Suppose GS = (VS,ES,WS), where VS represent the nodes, ES represents 
the edges, WS represent the weights on the edges. If vS

j is one of the first K 
similar nodes to vS

i , then eS
ij ∈ ES, and wS

ij represents the similarity of vS
i 

and vS
j wS

ij = fsim(vS
i , vS

j ), if vS
j is the K-nearest neighbors of vS

i , otherwise 
wS

ij = 0. Therefore, the degree of node vi is defined as the sum of weights 

of the edges adjacent to vi, di =
∑Ni

t=i
dt , where Ni is the number of the 

neighbors of vi. We use D to represent the degree matrix, D = (dij)n×n, 
dij = 1, if i = j, else dij = 0. W is the adjacency matrix of GS, where wi,j is 
the weight of the edge between node vi and vj. The detail is shown as 
Algorithm 2. 

4.1.3. Similarity graph partition 
In order to cluster the nodes in the original graph, first, we convert 

the original graph into a similarity graph. In this way, the node clus
tering problem is transformed into a problem of how to partition simi
larity graph into T subsets such that the cut is minimum, cut(A1,A2,…,

AT) = 1
2
∑T

i
W(Ai,Ai). In order to make the subset balance, we replace the 

cut with RatioCut (Von Luxburg, 2007), RatioCut(A1, A2, …, AT) =

∑T

i=1

cut(Ai ,Ai)

|Aj|
. For a similarity graph GS, W is the similarity matrix, its 

Laplacian matrix can be calculated as L = D-W. Suppose that λ1, λ2,…, λT 

are the smallest T eigenvalues of L, min(RatioCut(A1,A2,…,AT) =
∑T

i=1
λi. 

Then, compute the eigenvectors x1, x2,…, xT corresponding to λi, i =

1, 2, …, T.Then yi = xi̅̅ ̅̅
Ni

√ , i = 1, 2, …, T, Y = (yi)T×n. The minimum 

RatioCut problem can be relaxed as mintr(YTLY) subject to YTY = I. 
Consider each column of matrix Y as one node, next, we utilize k-means 
algorithm to partition these n nodes into T clusters, C1,C2,…,CT . Here, in 
order to achieve k-anonymity, that is, the number of nodes in one cluster 

is in [k,2k). Thus, T takes value from 
[

n
2k− 1,

n
k

)
. The detail is shown as 

Algorithm 3. 

Algorithm 3 
Similarity Graph Partition.  

Input: GS 

Output: clusters C1,C2,…,CT 

1: Construct adjacent matrix and degree matrix of graph GS, denoted as W and D, 
respectively 
2: Compute Laplacian matrix L = D - W 
3: Compute the eigenvalue of L, the first T eigenvalues are denoted as λi,i = 1,2,…,T 
4: Compute the correspondence eigenvectors of the first T eigenvalues denoted as x1,

x2,…,xT 

5: Let yi =
xi
̅̅̅̅̅
Ni

√ , i = 1,2,…,T, set Y = (yi)T×n 

6: Consider one column of matrix Y as one node 
7: Utilize k-means algorithm to partition these n nodes into T clusters 
8: return C1,C2,…,CT   

4.2. Graph anonymity 

After node clustering, there are T clusters, where each cluster has 
about [k,2k) nodes. Next, we are going to modify the original graph to 
achieve k-anonymity. In order to guarantee the utility of the anonymous 
graph, we hope to reduce the cost of graph modification. First, for each 
pair of neighborhood graphs in the same cluster, we calculate the cost of 
modifying them to be isomorphic. Second, we choose the node that 
minimizes the total modification cost as the seed of each cluster, and 
modify the1-neighborhood graphs of others to make them isomorphic 
with the 1-neighborhood graph of the seed node. At last, we modify 
above mentioned 1-neighborhood graph according to the matching re
sults to make anonymous graph achieve k-anonymous. 

We use maximal bipartite graph matching algorithm (Sankowsk, 
2009) to compute the cost of graph modifying. First, in arbitrary cluster 
Ci, sort the nodes with descending order of node degree. The size of 
nodes’ neighborhood graphs in the same cluster might not be equal, 
therefore, before executing graph matching, we add the dummy nodes 
into graphs to ensure the size of graphs being equal in the same cluster, 
assume that the size of neighborhood graph in. 

Algorithm 4 
Graph Anonymity.  

Input: G,Ci, i = 1, 2,…,T 
Output: G̃ 
1: for i = 1 to n do 
2: construct 1-neighborhood graph G(vi) of each node vi 
3: sort all the clusters with descending order of the maximal node degree 
4: end for 
5: for i = 1 to T do 
6: for j = 1 to Ni do 
7: add dummy nodes into each 1-neighborhood graph to make the number of 
nodes equal to the maximum nodes in each cluster. 
8: end for 
9: end for 
10: for i = 1 to T do 
11: for j = 1 to Ni do 
12: for t = 1 to Ni do 
13: Compute the matching cost of every pair of nodes (vi

j, vi
t)

(continued on next page) 
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Algorithm 4 (continued ) 

14: end for 

15: Compute 
∑Ni

t=1
cost(vi

j, vi
t)

16: end for 
17: Find a seed vi

s in each cluster Ci to minimize cost Cost(Ci)

18: end for 
19: utilize Algorithm 5 to modify the original graph to anonymize graph G̃ which 
satisfy k-anonymity 
20: return anonymous graph G̃   

The ith cluster is Ni. Then, for each pair of neighborhood graphs, 
execute the maximal graph matching algorithm to compute the match
ing cost and find a perfect matching between each pair of graphs. The 
matching cost of nodes in Ci between node vi

j and node vi
t is denoted as 

cost(vi
j,vi

t). For an given G(vj), the total cost to modify other graphs into 

G(vj) can be defined as Cost(Ci
j) =

∑Ni

t=1
cost(vi

j, vi
t), thus, the problem is 

formulized as 

Cost
(
Ci)= min

Ni

j=1
Cost

(
Ci

j

)

The solution is in each cluster Ci to find a node to minimize the total 
cost of graph modification, we consider this node as a seed node vi

s, and 
save the maximal graph matching between G(vi

s) and other graphs. Next, 
we want to modify the graph G into graph G̃ which satisfy k-anonymity, 
the processing is given as follow. 

Algorithm 5 
Graph Modification.  

Input: G,Ci, i = 1,2,…,T, G(vj), j = 1, 2,…, n 
Output: anonymous graph G̃ 
1: for each cluster Ci, i = 1, 2,…,T do 
2: Sort nodes with descending order of node degree, obtain vi′

j , j = 1,2,…,Ni 

3: for j = 1 to Ni do 
4: if Cost(vi

j, vi
s) > δ then 

5: for matched node pair vi
jw in G(vi

j) and nodes vs
jw in G(vi

s)

6: if degree(vi
jw) < degree(vs

jw) then 
7: Find nodes vi

jt ∈ G(vi
j) and vi

jt is not the neighbor of vi
jw which degrees 

are expected to be increased 
8: add an edge between vi

jt and vi
jw 

9: end if 
10: if degree(vi

jw) > degree(vs
jw)

(continued on next page) 

Fig. 4. Example of 3-anonymous Karate graph. (a) The original Karate graph; (b) An 3-anonymous Karate graph in which each node cannot be re-identify with the 
probability higher than 1/3. The nodes with label "add" are fake nodes and link them to corresponding nodes. 

Fig. 5. 1-neighborhood graphs of node 1, 2, 3, 33, 34 in Karate graph.  
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Algorithm 5 (continued ) 

11: Find nodes vi
jt ∈ G(vi

j) and vi
jt is the neighbor of vi

jw which degrees are 
expected to be decreased 
12: Choose the edge which has the smallest BC to delete 
13: end if 
14: Repeat until degree(vi

jw) = degree(vs
jw)

15: end for 
16: end if 
17: end for 
18: end for 
19: return anonymous graph G̃   

For every two nodes vi
j and vi

t in the ith cluster, we create a weighted 
bipartite graph GB = (V1, V2, EB, W), setting V1 = V(G(vi

j)), V2 =

V(G(vi
t)), EB = V1 × V2 and W is the matching cost matrix. Let u ∈ G(Vi

j), 
u ∈ G(Vi

j), wuv = du − dv. Because |V1| = |V2|, we can find a minimal 
perfect matching M in GB which is a set of edges in E such that each node 
is associated with only one edge and matches all the nodes. We 
apply the maximum weight bipartite matching algorithm (Sankowsk, 
2009) to obtain the minimal perfect matching in polynomial time. 
Therefore, the cost of matching the bipartite graph is the sum of the costs 
of matching all nodes which can be calculated by cost(G(vi

j),G(vi
t)) =

min

(
∑

u,v∕∈VD

wuv +(μ|VD|)

)

where VD is the set of dummy nodes, μ is the 

fixed cost value of adding a dummy node. When obtain the matching 
cost of each pair of neighborhood graphs, we can compute the minimal 
cluster cost and meanwhile find the matching seed. Assume that, vi

s is the 

seed node in cluster Ci, for arbitrary node vi
j ∈ Ci, j ∕= s, if 

⃒
⃒
⃒cost(G(vi

j),

G(vi
s))
⃒
⃒
⃒ < δ, we consider they are similar, thus, we need not to modify 

G(vi
j).Otherwise, for node vi

jw ∈ G(vi
j), if the degree of vi

jw is smaller than 
vi

s, that is d(vi
jw) < d(vi

s), node vi
jw needs to increase its degree. First, select 

nodes which should increase the degree as a candidate set, find a node 
vi

jt ∈ G(vi
j) which need to increase its degree and they are not neighbors 

of each other. The processing continues until d(vi
jw) = d(vi

s).If d(vi
jw) >

d(vi
s), we must delete the edges which adjacent to vi

jw, find a node vi
jt ∈

G(vs
j ) which needs to decrease its degree, and the BC of the edge (vi

jw, vi
jt)

is the smallest among the edges adjacent to vi
jw.The detail is presented as 

Algorithm 4. 
We then give the example of the proposed GPPS in Fig. 4, Fig. 4(a) is 

the original Karate club graphand Fig. 4(b) is the modified graph which 
satisfy 3-anonymous, Fig. 5 shows the original 1-neighborhood graphs, 
while Fig. 6 shows the modified 1-neighborhood graphs. In our scheme, 
nodes 1, 2, 3, 33, 34 are clustered into the same group, we modify their 
original 1-neighborhood graphs so that the probability of node indis
tinguishability can achieve 95%. 

5. Theoretical analysis 

5.1. Privacy analysis 

Theorem 1. From the anonymous graph G̃, the probability of re-identifying 
the target cannot be higher than 1/k, even if an attacker with the knowledge 
of any target’s 1-neighborhood graph. 

Proof. The attacker has the knowledge about target’s 1-neighborhood 
graph, he would like tore-identify a target from the published graph G̃. 

There are two possible consequences after searching G̃: 
Case 1. The attacker can find an exact match of the target. 
Case 2. The attacker cannot find an exact match of the target. 
For the first case, the attacker wants to re-identify node u, the 1- 

neighborhood graph of u in the original graph and published graph 
are denoted as G(u), G̃(u), respectively. In this case, the attacker’s 
knowledge is G(u), and G(u) = G̃(u). In fact, we know that node u be
longs to one cluster which has members more than k, in other words, 
there are at least k − 1 nodes have the same 1-neighborhood graph with 
node u, therefore, the attacker cannot re-identify the target with prob
ability higher than 1/k. 

For the second case, the attacker knows G(u), however, he cannot 
find an exact match of the G(u). First, he might find a most similar match 
of G(u), in this step, there might exist some deviation, then, the 
remaining part of Case 2 can be proven in a similar manner with Case 1. 
Therefore, in this case, the attacker cannot re-identify the target with 

Fig. 6. Modified 1-neighborhood graphs of node 1, 2, 3, 33, 34. The nodes in the same clusters must be node indistinguishability, add some nodes with label "add" 
and edges between "add" nodes and corresponding nodes such that node1, 2, 3, 33, 34 are node indistinguishability. 

H. Zhang et al.                                                                                                                                                                                                                                  



Journal of Network and Computer Applications 195 (2021) 103214

8

probability higher than 1/k. 
In summary, the attacker cannot re-identify the target with proba

bility higher than 1/k. 

5.2. Information loss 

In our scheme, the processing of anonymizing graph contains node 
adding, edge swapping, deleting and adding, these operations lead to 
some information loss. To generate an anonymous graph G̃ for the 
original graph G, our scheme first group the nodes into some clusters. In 
each cluster Ci, we modify the original 1-neighborhood graphs of nodes 
to make them indistinguishable. MaxDi denotes the largest degree in 
cluster Ci. Let ni, mi denote the number of nodes and edges in Ci. Let si

wt , 
ai

wt, di
wt denote the number of swapped, added, deleted edges between 

G(uw) and G(ut) in cluster Ci, respectively. Therefore, the information 
loss ILi for transferring Ci to C′

i can be calculated as ILi = NLi + ELi, 

where NLi =
∑ni

t=1
(MaxDi − degree(vt)) and ELi = (

∑ni

w,t=1
si
wt +

∑ni

w,t=1
ai

wt +

∑ni

w,t=1
di

wt)/mi. Therefore, the total information loss(IL) for anonymizing G 

to G̃ can be calculated as IL =
∑T

i=1
ILi. 

6. Validation experiment 

In this section, we will validate the performance of the proposed 
GPPS on both synthetic and real data sets. All the experiments were 

conducted in Python on a server running the Ubuntu 20.04.1 LTS 
operating system, multi-core of double Intel Xeon E5-2650, 2.20 GHz 
cpu and 755.6 GB RAM. 

To explore the utility of the anonymized graph G̃ of the proposed 
GPPS, we test the following three metrics:  

1. Average degree(AVD): The AVD of G can be calculated as 
∑

v∈V
dv/|V|;  

2. Average clustering coefficient(ACC): The ACC of G can be calculated as 
∑

v∈V
Cv/|V|, where Cv is the local clustering coefficient of v;  

3. Average shortest path length(APL): We calculate shortest path length 
between each pair of nodes u and v in G and G̃, denoted as path(u, v), 
path(u, ​ v)

′

, respectively. Therefore, we can calculate APL and APL′

in G and G̃, APL = 2
∑

u,v∈V
path(u,v)/n(n − 1). 

6.1. Synthetic data sets 

In our experiments, we generate synthetic data sets (Stanford Large 
Network Dataset Collection), the generated social networks have 
500–2500 nodes the average node degree are 5 and 10, respectively. 
Figs. 7 and 8 show the number of modified edges and information loss 
considering different privacy requirements k and the number of nodes 
while the proposed strategy is employed. As the number of nodes in
creases, the number of modified edges increases and the information loss 
decreases. In addition, a larger k results in a larger number of modified 
edges as well as a greater information loss. This is because the uneven 

Fig. 7. Number of modified edges of synthetic data sets, the number of nodes increases from 500 to 2500.(a) The average degree(AVD) is 5; (b) The average degree 
(AVD) is 10. 

Fig. 8. Information loss of synthetic data sets with the number of nodes increases from 500 to 2500.(a) The average degree(AVD) is 5; (b) The average degree(AVD) 
is 10. 
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degree distribution will result in a greater number of modified edges 
such that the information loss is even worse, while a larger k is adopted. 

6.2. Real data sets 

6.2.1. DataSets 
There are lots of datasets available in the research of privacy pro

tection in social networks. They come from different domains, such as 
online social networks, citation networks, collaboration networks, 
communication networks, and location-based social networks. These 
datasets are modeled as a variety of graphs, such as undirected graphs, 
directed graphs, weighted graphs, and node-labeled graphs. The choice 
of social networks in our experiment is mainly based on four reasons. 
First, the networks must be an undirected graph model consistent with 
our network model; Second, these networks must have different struc
tural characteristics, because our solution depends on the network’s 
structural characteristics; Third, the network must be large enough to 
represent a real social network; Fourth, choosing different networks 
helps to reduce the deviation of the performance measurement due to 
the characteristics of the specific network. For the above reasons, we 
selected three real data sets from the Stanford Network Analysis Project 
(SNAP) (Stanford Large Network Dataset Collection): Facebook, HepTh, 
and Enron. These datasets come from three domains, including: social 
networks, citation networks, and email networks. 

The Facebook dataset consists of 4039 nodes and 88234 edges, which 
with smallest number of nodes but with largest average degrees(44) and 
largest average clustering coefficient(0.605). These factors may make 
Facebook more sensitive to edges and nodes perturbation. HepTH (High 
Energy Physics-Theory) with medium size consists of 9877 nodes and 
25998 edges. HepTH collaboration network is from the e-print arXiv and 
covers scientific collaborations between authors’ papers submitted to 
High Energy Physics-Theory category. If an author i co-authored a paper 
with author j, the graph contains an undirected edge from i to j. Enron 
email communication network consists of 23133 nodes and 183831 
edges which covers all the email communication within a dataset of 
around half million emails. This data was originally made public, and 
posted to the web, by the Federal Energy Regulatory Commission during 

its investigation. Nodes of the network are email addresses and if an 
address i sent at least one email to address j, the graph contains an un
directed edge from i to j. The details of these datasets are shown in 
Table 2. 

6.2.2. Utility 
First, evaluate the modified edges and information loss, then 

consider the impact on the AVD, ACC, APL under different privacy re
quirements k. Besides these, it is also crucial to ensure the anonymized 
data is useful for data mining. We consider the impact on top influential 
nodes(TIN) in these data sets to find a set of users with the maximum 
influence in network. Observed from Fig. 9(a) and (b), we know that 
either the number of modified edges or information loss increase with 
privacy requirements k. It is obviously that the largest number of 
modified edges is required by Enron, while the greatest information loss 
is imposed on HepTh due to the same reason as that in Figs. 7 and 8. 

Fig. 10(a)–(c) show the impact of privacy requirements k on per
centage of either. 

AVD, ACC or APL. It is clear that the percentage of either AVD, ACC 
or APL rises with the growth of k for Facebook, Enron and HepTH. The 
Facebook not only has the highest variation percentage of AVD but that 
of ACC and APL as well. The reason behind that is as follows. The severer 
the uneven degree distribution is, the larger variation of AVD will get 
and a greater variation the ACC will encounter. Besides, a larger ACC 
will result in a larger APL variation. Fig. 10(d) shows the percentage of 
influence maximization nodes remaining in different datasets, we can 
see that as k increases, our scheme works stable in all datasets. Our 
scheme can keep the maximum influence nodes almost greater than 
95%, only in HepTh the percentage is slightly smaller than 95%. The 
effectiveness of our scheme in terms of AVD, ACC and APL on the 
Facebook is worse than the other two datasets, because our scheme is 
more sensitive to the distribution of degrees and the clustering 
coefficient. 

In order to show the effectiveness of our GPPS, we compare it with 
existing k-neighbor anonymity scheme. We compare the results with 
HIGA (Liu et al., 2017) on Facebook and Enron in terms of AVD, ACC, 
APL. Fig. 11 presents the results of evaluating GPPS and HIGA on 
Facebook. As it can be seen from Fig. 11(a), when k is small, the change 
of AVD in GPPS is less than HIGA, when k increases to 25, GPPS is 
slightly larger than HIGA. From Fig. 11(b), we can see the change of ACC 
is larger as k increases, it becomes less than HIGA. However, the change 
of APL in GPPS is about 2% smaller than that in HIGA. Fig. 12 presents 
the results of evaluating GPPS and HIGA on Enron. We can see that when 
k is small, HIGA’s performance is better than GPPS, but as k increases, 
our GPPS is better than HIGA. 

Table 2 
Details of social networks.  

Dataset Nodes Edges AVD ACC APL 

Facebook 4039 88234 44 0.605 4.7 
HepTh 9877 25998 5.3 0.4714 7.4 
Enron 23133 183831 10 0.497 6.4  

Fig. 9. Number of modified edges & Information loss. (a) Number of modified edges increases as k increases, in Enron, the amount of change is largest; (b)Infor
mation loss increases as k increases, however, in each dataset, information loss is less than 10%. 
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7. Conclusions 

There has been an increasing interest in privacy disclosure problem 
due to more and more users release personal data to social platforms. 
These data contain users’ private information, which make them subject 
to malicious attacks against users’ privacy. Although graph anonym
ization can reduce the risk of privacy disclosure, malicious attackers 
might launch 1-neighborhood graph attack to obtain targets’ identities. 
In this paper, we propose a Graph Partition based Privacy-preserving 

Scheme, named GPPS, in Social Networks to realize social graph ano
nymization. We utilize graph partition based k-anonymity to protect the 
identity privacy of individuals. In graph partition, the degree-based 
graph entropy is introduced to compute the similarity matrix in order 
to improve node clustering accuracy. Then, to achieve node indistin
guishability, the graph modification is implemented, in which the graph 
information loss is minimized. The experiment results illustrate the se
curity of privacy-preserving, utility and efficiency of our GPPS on both 
synthetic and real data sets. In our future work, we will try to introduce 

Fig. 10. Utility of GPPS. (a) Change of AVD increases, as k increases, and the amount of change on Facebook is greater than the other two datasets; (b) Change of 
ACC increases as k increases, and the amount of change on Facebook is always greater than the other two datasets; (c) Change of APL increases as k increases, the 
amount of change on HepTh and Enron is small, however, the amount of change on Facebook is almost five times that of the other two data sets; (d) In the three data 
sets, the retention value of the most influential node is almost all greater than 95%, only ENRON is slightly lower than 95% when k = 25. 

Fig. 11. Utility comparison of GPPS and HIGA in Facebook for different k.(a) The change of average degree(AVD); (b) The change of average clustering coefficient 
(ACC); (c) The change of average path length(APL). 
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other privacy-preserving methods to defend subgraph attacks in social 
networks, e.g. uncertain graph method which converts an original graph 
into a weighted graph, where the weights on edges represent the prob
ability of edges exist. 
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