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A B S T R A C T

The increasing number of Internet of Things (IoT) devices motivate the data sharing that improves the quality
of IoT services. However, data providers usually suffer from the privacy leakage caused by direct data sharing.
To solve this problem, in this paper, we propose a Federated Learning based Secure data Sharing mechanism
for IoT, named FL2S. Specifically, to accomplish efficient and secure data sharing, a hierarchical asynchronous
federated learning (FL) framework is developed based on the sensitive task decomposition. In addition, to
improve data sharing quality, the deep reinforcement learning (DRL) technology is utilized to select participants
of sufficient computational capabilities and high quality datasets. By integrating task decomposition and
participant selection, reliable data sharing is realized by sharing local data models instead of the source data
with data privacy preserved. Experiment results show that the proposed FL2S achieves high accuracy in secure
data sharing for various IoT applications.
1. Introduction

Internet of Things (IoT), as a promising communication paradigm,
has a variety of applications in industry, transportation, environment,
smart home and so on [1]. In IoT, various smart devices generate
a large amount of data including medical data, environmental data,
and security data. Through data sharing, IoT can provide high-quality
services. However, direct data sharing in IoT faces the following chal-
lenges. For example, participants in the data sharing can hardly build
trust with each other. Therefore, how to ensure the reliability of the
shared data might be a challenge. In addition, due to the privacy con-
cern [2], participants are not willing to share their own data without
proper privacy preserving mechanisms. Thereby, both data reliability
and data privacy preservation should be ensured in data sharing.

With the development of Artificial Intelligence (AI), there has been
a growing interest in machine learning based privacy protection [3].
For example, as a solution to distributed secure data sharing, Feder-
ated Learning (FL) has received a widespread attention in a variety
of industry applications. Compared with traditional machine learning
technologies that require all data for model training in a central device,
the FL [4] reduces the computational burden of centralized equipment
by allowing each participant in the data sharing to complete the train-
ing task locally with data privacy preserved [5,6]. To be specific, each
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participant receives the initial model from the server and train it with
own local data. Once the training is completed, the model parameters
are sent to the server for aggregation. Eventually, the final aggregated
model is shared, and the data of the participants are protected in the
entire data sharing process without exposure. This provides a parallel
data sharing scheme for users, organizations or institutions of equal
status to realize fair cooperation, ensuring the participants to exchange
information safely as individuals. However, the reliability of the final
model is not guaranteed. Considering the computation resources re-
quired in secure data sharing, the edge computing [7–9] that provides
computing, storage, and application platforms for services nearby can
be integrated with the federated learning to address above problems
with a secure data sharing framework built as shown in Fig. 1. As
shown in Fig. 1, data are transmitted between various terminals and a
cloud server in IoT [10]. The data of the terminal are stored locally.
When data are shared, each terminal uses the local data for model
training and sends the trained data model to the cloud server. The cloud
server is responsible for aggregating the collected models to form a
global model, and then share the global model to each user terminal
with data requirements. Data sharing enables more institutions and
organizations to make full use of existing data resources and saves the
cost of resource collection. Based on this framework, in this paper, we
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Fig. 1. Example of IoT data sharing scenario.
Table 1
Main notations and symbols.

Notations Description

𝑇𝑟 Data request task
𝑤0 Coordination server initialization model parameters
𝑤𝑖

𝑡+1 Model parameters after local update of data node
𝐿𝑖 Data node location
𝐶 𝑖
𝑠 Data node connection status

𝜆𝑖 Data node selection status
𝑎𝜆(𝑡) Action selection in deep reinforcement learning system
𝑅(𝑡) Slot reward in DRL
𝐶𝑖 Local test accuracy of each node
𝑄𝜋 DRL actor network
𝑄𝑄 DRL critic network

propose a Federated Learning based Secure data Sharing mechanism
(FL2S) for IoT with the privacy preservation. The contributions of this
paper are summarized as follows:

• We propose a secure and reliable data sharing mechanism based
on federated learning to realize data sharing in IoT. Specifically,
an asynchronous multiple federated learning scheme using sub-
task grading is proposed. Based on multiple sub-tasks, the deep
reinforcement learning algorithm within the federated learning
framework is used to select data nodes with high data quality
and sufficient computational capability in order to improve the
efficiency of data sharing and achieve the protection of the task
privacy of the data requester.

• We combine homomorphic encryption into the model parameter
aggregation process of federated learning to further protect the
privacy of the data provider during the data sharing process.

• Experiment results show that the proposed FL2S achieves high
accuracy in secure data sharing for various IoT applications.

The rest of this paper is organized as follows. The related work is
introduced in Section 2. The system model is given in Section 3. In
Section 4, the asynchronous federated learning with task privacy pro-
tection is elaborated. The performance evaluation is given in Section 5.
Section 6 summarizes this paper.

2. Related work

In the process of realizing resource sharing, the cloud service model
and mobile edge computing provide us with feasible solutions [11,12].
In [13], a framework for sharing medical data in a mobile cloud
2

environment is proposed. The decentralized nature of the blockchain
provides a solution for reliable and secure data sharing under mobile
cloud computing. In [14], the author developed a new platform to
analyze data resources in the Internet of Things by sharing data, so
that both the demander and the provider can benefit. However, in
actual applications, cloud services require high bandwidth due to data
reaching the cloud, and the efficiency is limited when bandwidth
resources are limited. Edge computing [15] can offload some tasks that
need to be completed in the cloud, reducing the pressure on cloud
computing, and improving the performance of applications based on
cloud services. The combination of blockchain and edge computing
can better realize edge network data storage and computing [16]. In
the paper [17], a new distributed architecture was proposed to deploy
large-scale applications, supporting scalability and realizing effective
information sharing. In [18], the author considers the privacy and
security of data sharing, and proposes a data sharing model based on
edge computing, which realizes anonymous data sharing and access
control. In [19], proposes a low-latency hybrid data sharing framework,
which reduces the response delay by seeing the data location as the
inner and outer parts of the sub-region. The development of machine
learning has brought new opportunities for the intelligentization of
edge computing. In the edge computing environment with high-latitude
challenges, machine learning can help us quickly find solutions. Using
deep learning in edge networks can ensure privacy and security and
improve bandwidth efficiency [20]. In the paper [21], it is explained
that machine learning enhances the function of mobile edge computing,
allowing us to build more complex systems. However traditional ma-
chine learning with centralized data for model training is not suitable
for distributed real-world scenarios. Although the current work has
solved the efficiency problem of sharing resources, the privacy and
security problems faced by users still exist.

Federated learning uses the idea of distributed machine learning to
place model training locally on each participant for training, providing
us with a new method of protecting privacy. In [22], the author
proposed an efficient and privacy-protected federated learning scheme,
which prevents data leakage while realizing data sharing. In [23], in
order to meet the environmental requirements of federated learning, a
new compression framework is proposed, which is suitable for training
environments with limited bandwidth. In traditional federated learn-
ing, each participant receives the model of the server and uploads the
model parameters to the server for aggregation after the local training is
completed. This synchronization mode will inevitably affect the overall
training efficiency. The existing scheme optimizes the efficiency of
traditional federated learning. In [24], node screening is performed by
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Fig. 2. The proposed system architecture.
Fig. 3. Structure flow chart.
evaluating the feedback of participants and then iteratively updating
the weight of customers. In [25], the author transformed the data
sharing problem into a training model problem, and effectively pro-
tected data privacy by combining federated learning with blockchain.
Although the existing work has contributed to data privacy, considering
the actual scenario, the privacy of the request task issued by the
data requester should also be paid attention to, in order to protect
the privacy of the data provider and the request task issued by the
data requester. In this paper, we propose a hierarchical asynchronous
federated learning scheme, which not only guarantees the efficiency of
data sharing and the privacy of the provider, but also protect the task
privacy of the data requester.
3

3. System model

In this part, we first introduce the framework of the proposed system
model, followed by the attack model. Table 1 summarizes the symbols
used in this paper.

3.1. System architecture

In this paper, we consider an efficient and reliable multi-party data
sharing scenario. The system includes the following three-party entities:
the data requester, the data node, and the coordination server. The data
requester is the user who made the data sharing request. Data nodes are
users who own data and are willing to share. The aggregation server
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Fig. 4. Security aggregation model.
is responsible for cooperating with data nodes to realize the federated
learning process. The data requester sends a data request to the server,
the server forwards the request to each terminal node, and the node
willing to share the data will respond to the request. The nodes with
data in the proposed system model will not directly provide the local
raw data to the data requester, but realize data sharing through the
joint training of a data model. Considering that in actual situations,
the data quality and the computing capability of each data node are not
the same. For example, the quality of the data set is poor (i.e., the data
are incomplete or the data are with inaccurate labels) and unreliable
nodes with limited computational capability will have adverse effects
on both speed and quality of the entire training process. On the other
hand, to protect the privacy of task 𝑇𝑟 of the data requester, data nodes
and data request tasks are classified such that data nodes can only
complete tasks of corresponding levels and the unselected data nodes
in each task are forbidden to access the final task. Specifically, the data
requester first divides the task into multiple subtasks {𝑇𝑟1 , 𝑇𝑟2 ,… , 𝑇𝑟𝑛}
before sending the data request. Then, the deep reinforcement learning
method and multiple subtasks are used to choose the data nodes to
completes each subtask including the final task. The proposed federal
learning architecture for task privacy protection is shown in Fig. 2.

Federal learning is a distributed machine learning framework. It
connects the local training models of all participants with other than
original data by technical means, so it solves the privacy problem of
data sharing in distributed scenarios. Federation learning needs to co-
ordinate the server to aggregate the training models of each participant
for many times to form the global model, specifically, asynchronous
aggregation in this paper. Because it is the collaborative training of
participants for data sharing, the aggregation server will not conduct
model training after generating the initial model, and only responsible
for the aggregation process of the model. Therefore, in each round
of federal learning process, the aggregation server will distribute the
aggregated model to each participant for further training, and then
deliver the model to the aggregation server after the local training of
the participants is completed for aggregation. This process is repeated.

According to the architecture, we give the data sharing process as
follows. The data requester divides the data request task into multiple
subtasks before issuing the data request, and sends each subtask to
the coordination server, then the server delivers the pre-trained model
of each subtask to each data node. For each subtask, in each round
of the federated learning process, the deep reinforcement learning
method is used to select the data nodes participating in the model
training. The model parameters are sent to the coordination server,
and the server performs aggregation and then sends it out. The process
of aggregation-distribution-aggregation is performed iteratively. If the
accuracy requirements or the maximum number of training rounds are
reached, the training will be stopped. For each subtask, this process
is performed to select a batch of nodes for completing the final data
request task. The flowchart of this process is shown in Fig. 3.
4

3.2. Attack model

In this paper, we considered the problem of privacy leakage. Since
the server and the data provider are honest but curious, they are vulner-
able to the following two privacy threats. The first one is against data
privacy. Directly sharing the original data will cause the data provider’s
sensitive data to be exposed. The second one is against task privacy.
If the requesting task is visible to all data providers, it will cause
unnecessary privacy leakage. In order to solve the above-mentioned
privacy problems, we use a sharing model that is not original data to
complete data sharing and divide the data request task so that the final
task is invisible to unselected data nodes.

4. The implementation of the proposed FL2S

In this section, the proposed FL2S consists of the task division and
the secure Asynchronous Federated Aggregation Process.

4.1. Task division

In this solution we classify the data request tasks and data nodes,
each data nodes can only complete tasks of their corresponding levels.
For data nodes of any level, we use subtasks to select when completing
a task. Specifically, the data requester first performs task segmentation
on the requested task before issuing the data request. The first request is
put forwarded based on multiple subtasks, and the final request task is
raised at the end. We divide data request tasks into classification tasks
and regression tasks. For multi-classification tasks, we can consider
dividing the multi-classification tasks into multiple binary classification
tasks. For example, for a classification task with 𝑁 categories, pairwise
matching can convert the 𝑁(𝑁−1)

2 classification problem into a binary
classification problem. Specifically, in this paper, we use the cifar10
data set for experimental verification. Cifar10 is a 10-classification
task. When performing the first task segmentation, we divide the 10
classification into two classification tasks for identifying airplanes and
cars. First, the selected data node is divided into the second task, the
task of the segmentation is the two classification task of identifying
birds and cats, and so on, the third task is the second classification task
of identifying deer and dogs, and the segmentation task is the second
classification task of identifying deer and dogs. The fourth task is the
binary classification task of identifying frogs and horses. The experi-
mental results will be given in the following chapters. For regression
tasks, we can consider dividing the prediction tasks into short-term
prediction tasks, mid-term prediction tasks, and future prediction tasks.
For example, for power load forecasting tasks, the forecasting tasks
can be divided into short-term load forecasting, mid-term and future
forecasting. Short-term load forecasting includes load forecasting for
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hours, days, and weeks, and mid-term load forecasting for months.
Future load forecasting is a forecast for the next few years. The specific
task division is performed by the data requester. The purpose of the
adjudication is to screen out the data nodes that are most suitable for
completing the data request task. Here we provide a way of dividing.

4.2. Secure asynchronous federated aggregation process

4.2.1. Secure federated aggregation
Federated learning aims to use distributed data sets to train a

common model and break the dilemma that data owners are unwilling
to share data due to concerns about privacy leakage. Since federated
learning achieves the purpose of data sharing without leaking the
privacy of data nodes in actual operation, it coincides with our purpose,
so in this paper we use federated learning to complete the task model
training of data requests. When data sharing is performed, the data
request task is divided first. For each subtask 𝑇𝑟𝑖 , multiple iterations of
training are performed until the server checks that the model prediction
accuracy meets the data requester’s requirements or reaches the preset
maximum training round. The federated learning stops iteration. The
server initializes the model parameters 𝑤0 and sends the original model
parameters to each data node. In each execution round of federated
learning, we use a deep reinforcement learning-based node selection
algorithm to find reliable and efficient nodes, and only the selected
nodes will update the model parameters. The specific algorithm will
be introduced in the next section. In a time slot 𝑡, the data node will
calculate 𝑔𝑖 = ∇𝐹𝑖(𝑤𝑡), that is, the average gradient in the local data of
the current model parameters 𝑤𝑡. According to formula (1), the data
node uses local data and the existing model to further perform the
gradient descent step and send the locally updated model parameters
𝑤𝑖

𝑡+1 to the server, and the server uses Eq. (2) to perform the model
averaging operation:

𝑤𝑖
𝑡+1 ← �̄�𝑡 − 𝜅𝑔𝑖 (1)

�̄�𝑡+1 ←
𝑛
∑

1

𝑛𝑖
𝑛
𝑤𝑖

𝑡+1 (2)

Among them, 𝜅 is the learning rate of gradient descent during the
local model training of the participants, �̄�𝑡 is the model parameter
currently distributed by the aggregation server, and n is the number of
participants. Next, the server sends the averaged results of the model
to each data node, and each node performs parameter updates. This
process is iteratively performed until the model meet the accuracy
requirements or the maximum training round is reached.

Considering that in actual operation, during the process of data node
interacting with the server, if the data is transmitted in plaintext, it is
likely to be attacked by the attacker. Although the data obtained by
the attacker is not the original data, it will be affected by the trained
model parameters. Leaking the privacy of data nodes. In order to solve
the problem of privacy leakage in the process of model parameter
sharing, in this solution, we use additive homomorphic encryption to
encrypt and transmit model parameters. As shown in Algorithm 1, the
initialized model parameters are broadcast on the coordination server
at the same time, the homomorphic encryption and decryption keys
are issued to each data node, and the data nodes that receive the
model and encryption and decryption keys perform iterative training
locally to obtain the parameter updates of the local model, and then
add the updated parameters the encrypted model parameters obtained
by homomorphic encryption are sent to the coordination server. After
the coordination server receives these model parameters, it aggregates,
that is, averaging the encrypted model parameters, and then sends the
encrypted model parameters to the data node. The process is repeated
until the server check model meet the accuracy requirements or reaches
the maximum training round. The secure aggregation model is shown in
Fig. 4. A total of four steps are involved. The node locally updates the
5

model and encrypts the model parameters and sends it to the server.
The server aggregates, returns to the node after the aggregation is
complete, and updates the node after local decryption. This process is
repeated until the model reaches the required accuracy or reaches the
maximum training round and then stops training.

The additive homomorphic encryption algorithm used in this paper
is the paillier encryption algorithm. Since the ciphertext multiplication
is equal to the plaintext addition, the coordination server will accumu-
late the received encrypted model parameters, the formula is as follows,
among them, 𝑤𝑖

𝑡+1 is the model parameter of the 𝑖th participant updated
locally in a time slot 𝑡.

1
𝑛
𝛱𝑛

𝑖 𝐸
(

𝑤𝑖
𝑡+1

)

= 1
𝑛

𝑛
∑

𝑖
𝑤𝑖

𝑡+1 (3)

Algorithm 1 Security aggregation of models
1: The server generates a model locally, initializes model parameter,

and then broadcasts it to data nodes;
2: for global model iteration rounds 𝑡 = 1, 𝑇 do:
3: the server selects data node 𝜂𝑖 according to DRL;
4: for data node local update round 𝑠 = 1, 𝑆 do:
5: receive model parameter �̄�𝑡,calculate gradient 𝑔𝑖;
6: update parameter 𝑤𝑖

𝑡+1 ← �̄�𝑡 − 𝜅𝑔𝑖 locally;
7: execute addition homomorphic encryption to get 𝐸(𝑤𝑖

𝑡+1);
8: return 𝐸(𝑤𝑖

𝑡+1) to server;
9: end for
0: server checks whether reach accuracy or training rounds;
1: end for

4.2.2. Node selection based on deep reinforcement learning in federated
learning

The training efficiency of the client–server federated learning archi-
tecture depends on the data set quality of each participating node and
its computing power. Nodes with poor data set quality and weak com-
puting power will have a negative impact on model training, so select
the data set quality nodes with high computing power are necessary.
Therefore, our goal is to select a subset of nodes from multiple nodes
so that the training time is the shortest and the model is the best.

Deep reinforcement learning combines the perception ability of
deep learning with the decision-making ability of reinforcement learn-
ing, and is an artificial intelligence method closer to human thinking.
So in order to effectively select nodes, we use deep reinforcement
learning [7] to achieve the goal. The node selection algorithm (DRNS)
based on deep reinforcement learning is shown in Algorithm 2. The
specific introduction is as follows:

The basic principle of DDPG is use value to update the strategy,
using convolutional neural network as the simulation of the strategy
function 𝜋 and 𝑄 function, that is, the strategy network and 𝑄 network,
and then use deep learning methods to train the above two networks.
DDPG creates two neural networks for the policy network and the 𝑄
network respectively, called online network and target network. The
policy network and the 𝑄 network are also called an actor network
and a critic network, respectively. We use 𝜋(𝑠|𝑄𝜋 ) to denote the online
ctor network, use 𝜋′ to denote the target actor network, use 𝑄(𝑠|𝑄𝑄)

to denote the online critic network, and 𝑄′ used to denote the target
critic network. Experience replay is used in DDPG to make the states
independent of each other. Next, we will introduce the sampling pro-
cess and the two network training processes. First, we need to make
the following definitions, defining the relevant states, actions, reward
functions, and strategy functions as follows:

State: In each time slot t of federated learning, the system state
consists of the position of each node 𝐿𝑖(𝑖 ∈ {1, 2…𝑁}), the connection

𝑖
state of each node 𝐶𝑠(𝑖 ∈ {1, 2,… , 𝑁}), and the node selection state
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Fig. 5. Accuracy under 40 data nodes.
Fig. 6. Loss under 40 data nodes.
𝜆𝑖(𝑖 ∈ {1, 2,… , 𝑁}). Therefore, the system state in a time slot 𝑡 can be
expressed as:

𝑠(𝑡) = [𝐿1(𝑡), 𝐿2(𝑡),… , 𝐿𝑁 (𝑡),
𝐶1
𝑠 (𝑡), 𝐶

2
𝑠 (𝑡),… , 𝐶𝑁

𝑠 (𝑡),
𝜆1(𝑡), 𝜆2(𝑡)… , 𝜆𝑁 (𝑡)]

(4)

Action: In deep reinforcement learning, the agent needs to decide
which nodes are selected to participate in the model training. There
are two situations: nodes are selected or not, which can be reduced to
a 0–1 problem, this action vector can be expressed by the formula.

𝑎(𝑡) = [𝑎𝜆1 (𝑡), 𝑎𝜆2(𝑡),… , 𝑎𝜆𝑁 (𝑡)] (5)

among them, 𝑎𝜆𝑖 (𝑡) = 1 represents that this node is selected by the
agent, and 𝑎𝜆𝑖 (𝑡) = 0 represents that it is not selected by the agent. The
agent randomly selects a certain number of data nodes to update the
model according to the perceived node location, node connection sta-
tus, and node selection status. The result of the selection is determined
by the reward. The more nodes are not selected, the better. Considering
the model training delay and model accuracy during the model update
process, the reward algorithm will be given below.

Reward: The agent in deep reinforcement learning evaluates the
6

effectiveness of the action based on the reward, and uses it to update
the strategy, that is, in the time slot 𝑡, the agent adopts action 𝑎(𝑡) in
the state 𝑠(𝑡) and the effect of 𝑎(𝑡) is evaluated based on rewards. In
this paper, there are two main factors that affect the reward, one is the
time that the node receives the model parameters from the server until
it sends the updated parameters to the coordinator server, the other
is the time that the coordinator sends the model parameters to check
the convergence of the model parameters. In addition, considering the
quality of the final model, model accuracy is also added to the reward
function. Through the above analysis, the tasks of each time slot mainly
include:

(1) Node 𝑃𝑖 conducts model training based on the local data set and
model, and sends the trained parameters to the server.

(2) The server performs parameter aggregation operations. This
process is iterated until the model parameters converge. Therefore, the
time slot reward can be expressed as:

𝑅(𝑡) = 𝛼𝑅𝑡𝑖𝑚𝑒
𝑝𝑖

(𝑡) + 𝛽𝑅𝑞𝑜𝑠
𝑚 (𝑡) (6)

where 𝛼 + 𝛽 = 1, 𝛼 and 𝛽 are debugging functions, and 𝑅𝑡𝑖𝑚𝑒
𝑝𝑖

(𝑡) is
delay rewards, which are determined according to the convergence

time of the final model parameters. The larger the delay, the smaller
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the reward. 𝑅𝑡𝑖𝑚𝑒
𝑝𝑖

(𝑡) can be expressed as:

𝑅𝑡𝑖𝑚𝑒
𝑝𝑖

(𝑡) = −𝐷𝑓
𝑚 − 𝑇𝑟 (7)

where 𝐷𝑓
𝑚 is the total time for the server to perform the weighted

average of the model parameters, 𝑇𝑟 is the time required for the server
o receive the updated parameters of the last node from when the model
arameters are delivered, 𝑅𝑞𝑜𝑠

𝑚 (𝑡) is reward for model quality, which is
determined according to the accuracy of the final model, 𝑅𝑞𝑜𝑠

𝑚 (𝑡) can be
xpressed as:

𝑞𝑜𝑠
𝑚 (𝑡) = 1

𝑁

𝑛
∑

1
𝜆𝑖𝐶𝑖 (8)

where 𝐶𝑖 is the local test accuracy of each node. 𝑁 is the number of
data nodes.

Strategy: Strategy 𝜋 is the mapping from state to action: 𝑠(𝑡) →

(𝑡), in the time slot, the action to be taken can be calculated by the
trategy calculation method. For deep reinforcement learning, actions
re generated by a neural network. The input of the neural network
s the state of the system, and the output is the action to be taken.
he goal of reinforcement learning is to find strategies that maximize

ong-term return expectations: 𝜋 = argmax
𝑇
∑

𝑡=0
𝑅(𝑡)

The sampling process is to select an action 𝑎𝜆(𝑡) = 𝜋(𝑠(𝑡)|𝜃𝜋 ) in the
state 𝑠(𝑡) and then execute this action to observe the reward 𝑟(𝑡). After
observing the new state 𝑠(𝑡+1), it will be stored in the experience pool
𝑅. The essence of training is to optimize the actor network and the critic
network. The goal of training is to maximize the reward function of the
actor network and minimize the loss function of the critic network. The
loss function of critic network is defined as:

𝐿(𝜃𝑄) =
1
𝑁

∑

𝑡
(𝑦(𝑡) −𝑄(𝑠(𝑡), 𝑎𝜆(𝑡)|𝜃𝑄))2 (9)

The critic network is updated according to the 𝑄 value. The current
state 𝑠(𝑡) is input in the online actor, and the current action 𝑎𝜆(𝑡) is
utput. After the action 𝑎𝜆(𝑡) is executed, the new state 𝑠(𝑡 + 1) and 𝑄
alue are obtained:

(𝑠(𝑡), 𝑎𝜆(𝑡)) = 𝐸[𝑟(𝑠(𝑡), 𝑎𝜆(𝑡)) + 𝛾𝑄(𝑠(𝑡 + 1), 𝜋(𝑠(𝑡 + 1)))] (10)

in formula (9), 𝑦(𝑡) is the target value of the target critic network,
expressed as:

𝑦(𝑡) = 𝑟(𝑡) + 𝛾𝑄′
(

𝑠(𝑡 + 1), 𝜋′
(

𝑠(𝑡 + 1) ∣ 𝜃𝜋
′
)

∣ 𝜃𝑄
′
)

(11)

The target value 𝑦(𝑡) can be calculated from the current reward and
the 𝑄 value 𝑄′

(

𝑠(𝑡 + 1), 𝜋′
(

𝑠(𝑡 + 1) ∣ 𝜃𝜋′
)

∣ 𝜃𝑄′
)

of the next executed
action, where is the action to be executed in the next state. 𝛾 is the
attenuation factor. In addition, the actor online network is responsible
for updating the strategy. It selects actions a𝜆(𝑡) based on the current
state 𝑠(𝑡). The actor target network selects the best next action a𝜆(𝑡+1)
based on the next state 𝑠(𝑡 + 1) sampled by the experience pool. The
actor network is based on the following equation updated:

∇𝜃𝜋𝐽 ≈ 𝜋

[

∇𝑎𝑄
(

𝑠, 𝑎 ∣ 𝜃𝑄
)

|

|

|𝑠=𝑠(𝑡),𝑎=𝜋(𝑠(𝑡))
∇𝜃𝜋𝜋 (𝑠 ∣ 𝜃𝜋 )

|

|

|

|𝑠=𝑠(𝑡)

]

(12)

For the same state, the online actor network will output different
actions, as the input of the online critic network will get different feed-
back 𝑄 values, according to the feedback actor network will increase
or decrease the probability of the corresponding action, in order to get
a larger 𝑄 value. The update functions of the target actor network and
the target critic network are as follows:

𝜃𝑄′
← 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′

𝜋′ 𝜋 𝜋′ (13)
7

𝜃 ← 𝜏𝜃 + (1 − 𝜏)𝜃
among them, 𝜏 is the soft update coefficient.

Algorithm 2 Node preferential algorithm based on DDPG
1: Initialization of neural network parameters of online network 𝑄𝜋

and 𝑄𝑄;
2: Initialize experience pool 𝑅;
3: for each episode do:
4: Initialize the random process as the introduced noise;
5: for 𝑡 = 1, 𝑇 do:
6: Actor network selects an action a𝜆(𝑡) according to strategy 𝜋;
7: Executing a𝜆(𝑡) returns 𝑅(𝑡) and the new state 𝑠(𝑡 + 1);
8: Store [𝑠(𝑡), a𝜆(𝑡), 𝑅(𝑡), 𝑠(𝑡 + 1)] in experience pool R;
9: Randomly sampling data from 𝑅 as the next mini-batch;
0: Update online critic network: Put 𝐿(𝜃𝑄) in optimizer to

minimize;
1: Update online actor network: update 𝑄𝜋 with optimizer;
2: Update target network parameter 𝜃𝑄′ and 𝜃𝜋′ ;
3: end for
4: end for

5. Performance evaluation

5.1. Experimental setup

The simulation is completed on a computer equipped with a Win-
dows7 system, the machine is configured with an Intel core i7 pro-
cessor, a CPU frequency of 6.4 GHZ, and the python programming
language is used to verify the effectiveness of the proposed scheme. In
this section, we will evaluate the performance of the proposed FL2S.
First, we study the performance of asynchronous federated learning
based on subtask classification. Secondly, we test the node selection
algorithm based on deep reinforcement learning.

In order to test the effectiveness of the proposed scheme, we con-
sidered the data sharing process for the same data request task in two
different situations. In one case, there are forty data nodes partici-
pating in the federated learning process in a network area. And the
coordination server is responsible for aggregating and distributing the
training parameters of these data nodes. Another situation is that there
are 80 data nodes participating in federated learning in a region, and
the coordination server ensures that the training process is carried out
efficiently and securely. The data set size, quality, and local computing
power of each data node are random. In addition, we divide a data
request task into four subtasks.

We evaluate our proposed asynchronous multi-federated learning
process on the cifar10 dataset. Cifar10 contains a total of 10 categories
of RGB color pictures, namely: airplanes, cars, birds, cats, deer, dogs,
frogs, horses, boats and trucks. The size of the picture is 32∗32. Because
cifar10 is a multi-classification task. So we split the cifar10 classifica-
tion task into four binary classification tasks to select the data nodes in
stages. The data set is randomly divided and then distributed to data
nodes participating in federated learning. The sharing task involved in
this paper is to share the parameters of the local data training model
of the shared data node. The coordination server uses the deep residual
network to train the local model. In each iteration, there is a process
of aggregation and delivery of model parameters. Then, we verified the
data node selection process based on DDPG.

5.2. Numerical results

We have used the cifar10 dataset to evaluate the accuracy and loss
of the scheme described in this article in a network area with forty data
nodes and 80 data nodes. As shown in the figure, the model training

results after the final task request is issued. The results show that the
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Fig. 7. Accuracy under 80 data nodes.

Fig. 8. Loss under 80 data nodes.

Fig. 9. DDPG average reward under the first subtask.
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Fig. 10. DDPG average reward under the second subtask.
Fig. 11. DDPG average reward under the third subtask.
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election of data nodes can have better accuracy and convergence. In
he two cases, there are data nodes with small data sets, poor data
et quality and poor computing power in the network area, so there
s no basis for subtasks. When selecting nodes, the accuracy of the
inal data request task will decrease, and the loss will be too large.
n the contrary, the filtered data nodes perform better in learning.
his is because in model training, high-quality data sets mean more
omplete and accurate data. The labels and features of the data are
ore reliable and effective, and the labels determine the final value

f the model, and the features determine the capability boundary of
he model. The results show that the proposed scheme can prevent
nefficient data nodes from affecting the completion quality of the final
equested task.

As shown in Fig. 5, in a network area with forty data nodes, for
he same data request task, when the learning rate is 0.01, the global
odel trained by the selected data nodes has higher accuracy and more

fficient. As shown in Fig. 6, the faster rate of loss reduction means that
he global model reaches a higher accuracy faster.

As shown in Figs. 7 and 8, the experimental results show that the
igh-quality node training model selected in the network area with 80
9

ata nodes has higher accuracy and better effect. b
We further studied the node selection process based on the DDPG
lgorithm proposed in this paper. The learning rate is set to 0.01, the
ttenuation factor is set to 0.9, the experience pool size is set to 6000,
nd the batch size is 128. As shown in Fig. 9, the average instant reward
f each segment during the first sub-task. Low-quality data nodes will
ffect the accuracy of the final model of the sub-task. After completing
he first sub-task, we have 40 data nodes and 36 high-quality data
odes and 75 high-quality data nodes were selected from the network
f 80 data nodes, and these high-quality nodes selected will continue
o participate in the training of the next subtask.

As shown in Fig. 10, the average reward convergence is better
han that of the first task, indicating that our proposed node selection
cheme worked well. After completing the second subtask, we selected
5 and 70 high-quality data nodes respectively.

Then, perform the third subtask training process in the data nodes
elected in the second time, and finally a batch of nodes are selected
o complete the fourth sub task. As shown in Fig. 11, after completing
he third subtask, 35 nodes and 70 nodes are selected respectively. As
hown in Fig. 12, after completing the four subtasks, 35 nodes and 66
odes are left respectively. The results show that the optimal return can

e achieved in both cases.
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Fig. 12. DDPG average reward under the last subtask.
6. Conclusions

In this paper, we propose a secure data sharing method based on
hierarchical asynchronous federated learning in IoT, which protects the
data owner’s data privacy when sharing data. Specifically, by dividing
the data request task, the divided multiple subtasks are used as the
task basis for selecting high-quality data nodes, and deep reinforcement
learning is applied to the data node selection process to complete each
subtask and the final task. And the task privacy of the data requester is
also protected. Simulation experiments show that in the network area
with different numbers of nodes, the data sharing method proposed in
this paper achieves better privacy protection and data quality.
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