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A B S T R A C T

Unmanned Aerial Vehicle (UAV) has become a significant part of 5G or beyond 5G (B5G) paradigm, and is used
in various scenarios, including cargo delivery, agricultural application, event surveillance, etc. Although plenty
of studies have been proposed on UAV-based data aggregation, how to ensure security and energy-efficiency
of the data aggregation process in 5G-enabled Internet of Things (IoT) is an open problem. In this paper, we
propose an Intelligent UAV-based Data Aggregation Algorithm, named IDAA for 5G-Enabled IoT. Specifically,
IDAA applies v-Support Vector Regression (v-svr) to predict the data collection rate. Then, a security level
based task decomposition mechanism is designed that allows UAVs to accept the tasks of corresponding security
levels. Finally, energy efficient routes for UAV are planned utilizing a deep reinforcement learning method to
achieve the trade-off between the sinking ratio and the energy cost. The theoretical analysis and simulation
results indicate that (i) IDAA improves the security of data aggregation; and (ii) IDAA enables UAVs to collect
more data and consume less energy compared with baseline strategies.
1. Introduction

Unmanned Aerial Vehicle (UAV), aka drone, can perform specific
aviation tasks by controls through wireless channels. Drones are cur-
rently widely used in various social fields, bringing great changes to our
work and life, i.e., drone broadcasting pesticide, drone logistics, drone
filming, drone light show, etc. UAVs are mainly controlled by human
through wireless communications, e.g., Wi-Fi and Bluetooth. However,
the communication distance of Wi-Fi or Bluetooth is short. For example,
the control supported by either Wi-Fi or Bluetooth is limited within
the visual range of 300∼500 m such that the flying range of UAVs is
greatly restricted. Compared with Wi-Fi, 4G/5G technologies have a
wider coverage, which will make UAV communications more flexible
and reliable.

The communication between the UAV and the ground serves mainly
three purposes: image transmission, digital transmission and remote
control. 4G LTE cellular communication can provide image transmis-
sion with the resolution of 1280 × 720. However, in some specific
scenarios, i.e., facial recognition, it still cannot meet the needs of
users. Theoretically, 5G can reach the bandwidth of up to 20 Gbps.
That indicates UHD videos of 4K or 8K resolution can be supported
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perfectly with 5G. Compared to traditional ground cameras with the
static and low-latitude view with 4G, the view of drones supported by
5G is dynamic, wide-angle, ultra-high-definition and high-latitude. In
addition, ultra-low latency of 5G can achieve the transmission delay on
millisecond-level. All these characteristics contribute to fast response
and accurate control for drones. On the other hand, the positioning
accuracy of 5G, which reaches centimeter-level, exceeds that of both
LTE and GPS such that the needs of flying over complex terrains of
urban areas are met.

Previous studies on UAV-based data aggregation in 5G-enabled IoT
fail to ensure both security and energy-efficiency of the data aggrega-
tion process. To address this problem, an Intelligent UAV-based Data
Aggregation Algorithm (IDAA) is proposed for 5G enabled IoT in this
paper. Specifically, IDAA consists of an v-support vector regression (v-
SVR) based data collection rate (DCR) prediction algorithm, a security
level based task decomposition scheme, and a deep reinforcement
learning (DRL) based UAV route design algorithm. Our contributions
are specified as follows.

1. To improve the security of data aggregation, IDAA adopts the se-
curity level based task decomposition, i.e., each UAV is restricted
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to accept a task of a specific security level inferior to that of the
UAV. That suggests the higher security level a task possesses the
less UAVs are allowed to access the task. Besides, a UAV of a
higher security level has a less chance to expose the sensitive
information contained in the task.

2. To ensure the energy efficiency of data aggregation, IDAA ap-
plies a Deep Reinforcement Learning (DRL) technology, DQN, to
design UAV routes considering the sinking ratio and the energy
cost. Note that the energy cost of a route is calculated based
on risks and elevations of realistic terrains, i.e., flying over a
high mountain or a dense forest is risky while it is easy to travel
through a flat of low attitude.

3. The theoretical analysis and simulation results shows that (i)
IDAA improves the security of data aggregation; and (ii) IDAA
ensures UAVs to collect more data and consume less energy cost
compared with contemporary strategies.

We organize the remainder of this paper as follows. The related
ork is given in Section 2. We introduce the system model in Section 3.
he implementation detail of proposed IDAA is presented in Section 4.
ection 5 presents the validation experiments. We conclude this paper
n Section 6.

. Related work

The UAV based data aggregation in 5G-enabled IoT has drawn a
reat attention in recent years with plenty of works proposed.

The data aggregation route design has been studied for years.
n [1], hyperedges of hypergraph are adopted for data aggregation
oute design utilizing Delaunay triangulation. In [2], efficient clustering
s employed to equalize energy cost. In [3], relays are exploited to
horten the data aggregation route. In the real environment, terrains
ffect energy cost much more than route length. In [4], the energy
ost is reduced utilizing stochastic geometry. In [5], the energy efficient
lustering is developed to reduce the energy cost meanwhile more data
s collected. In [6], Abbas and Younis convex hulls are employed for
ata aggregation and relays are deployed for communication reestab-
ishment. In [7], a hybrid method is developed for data aggregation
nd energy saving. In [8], terrain influences are quantified utilizing grid
ased technology to discover minimum energy cost routes. In [9], radial
ias function neural network is applied to predict the data collection
ate for a better data aggregation route design. In [10], the Deep
-Network (DQN) is utilized to design a simulation system with the
onsideration of 3D environment and different events distributions.

The drone location problem of the minimum cost is discussed
n [11]. Tuba et al. [12] aims to maximize the coverage of drones
n monitored area by discovering the optimal positions. Shakhatreh
t al. [13] focus on maximizing the uplink transmission time by locating
ptimal positions of UAVs. In [14], Rodriguez et al. try to solve the
raffic problem of drones in both routing and wavelength for drones.
ote that previous work cannot achieve the trade-off between the

inking ratio and the energy cost.
Although plenty of works have been proposed for UAV-based data

ggregation in 5G-enabled IoT, there are still two problems: (I) how to
estrict UAVs to collect data from sensors of corresponding security lev-
ls; and (II) how to increase the sinking ratio meanwhile decrease the
nergy cost. In this paper, an Intelligent UAV-based Data Aggregation
lgorithm (IDAA), is proposed to address these two problems.

. System model

In this paper, a 5G-enabled IoT network with a set of data aggrega-
ion tasks with different security levels are considered. Specifically, the
etwork is deployed with a set of sensors 𝑆 = {𝑠𝑖}, each of which is

responsible for collecting sensitive information. That suggests we can
partition sensors into clusters 𝐶 s such that each cluster of sensors have
2

𝑖

a certain security level. The UAVs are then assigned to aggregate data
from sensors under the constrain that the security level of the UAV
should be higher than that of the sensor. On the other hand, the energy
cost of the data aggregation should be considered due to the realistic
terrains will affect the energy cost of UAV. As a promising technology in
Machine Learning, DRL has been applied to tackle various challenging
problems in UAV [15], edge computing [16,17], IoT [18,19], etc.
In this paper, the UAV flying route is developed utilizing the deep
reinforcement learning algorithm DQN.

It is worth to mention that the energy cost consists of two parts,
i.e., the energy consumed by both receiving and transmitting data, and
the energy required within the data collection path that depends on the
velocity and different flight stages including acceleration, deceleration,
hovering, and turning. We use the energy model proposed by Ding
et al. [20] to quantify the effect of velocity on UAV energy consumption
during the flight.

1. Velocity : If the drone is flying in a straight line at different
speeds, i.e., 2 m/s, 4 m/s, 6 m/s and 8 m/s, then the power
consumption will be 242 W, 245 W, 246 W, and 268 W, respec-
tively.

2. Acceleration and Deceleration: The energy consumption of a drone
mainly depends on the power consumption while accelerating or
decelerating. The power consumption increases as the velocity
and vice versa during the acceleration and deceleration which
are similar to that described in the effect of velocity.

3. Turning : The power consumption of a drone is considered while
rotating at angles with the increment of 45◦. The power con-
sumption 𝑡𝑢𝑟𝑛 equal to 260 W when angular speed 𝑣𝑡𝑢𝑟𝑛 reaches
2.07 rad/s. Then, the energy consumption during turn
𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑢𝑟𝑛 is given by

𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑢𝑟𝑛 = 𝛬𝜃𝑡𝑢𝑟𝑛∕𝑣𝑡𝑢𝑟𝑛 (1)

where 𝑡𝑢𝑟𝑛 denotes the power consumption, 𝛬𝜃 denotes turning
angle, 𝑣𝑡𝑢𝑟𝑛 represents angular velocity while turning.

4. Flying Straight : If a drone is flying along a straight-line, then
apart from flying at uniform speed the acceleration and decel-
eration are considered. Then the energy cost 𝐸𝑛𝑒𝑟𝑔𝑦𝑣,𝑑 is then
calculated as

𝐸𝑛𝑒𝑟𝑔𝑦𝑣,𝑑 = ∫ 𝑎𝑐𝑐𝑑𝑡 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑇 + ∫ 𝑑𝑒𝑐𝑑𝑡 (2)

where acceleration power consumption is denoted by 𝑎𝑐𝑐 , deceleration
power consumption is denoted by 𝑑𝑒𝑐 , 𝐸𝑛𝑒𝑟𝑔𝑦𝑡 denotes the energy
consumption considering terrain influences, and the travel distance is
represented by 𝑑.

And we adopt the grid based terrain quantification for energy cost
calculation. Let 𝑟𝑐 , 𝑒𝑐 , and 𝑑𝑐 denote the risk, elevation and distance
respectively. Then, the weight 𝜔𝑐 of cell 𝑐 is given by

𝜔𝑐 = ∫𝑑𝑐 ∫𝑒𝑐
𝑟𝑐 , (3)

For a route 𝑇 , we then compute the energy consumption caused by
terrain 𝐸𝑛𝑒𝑟𝑔𝑦𝑇 as

𝐸𝑛𝑒𝑟𝑔𝑦𝑇 = 𝜇
∑

𝑐∈𝑇
𝜔𝑐 , (4)

where 𝜇 represents the energy coefficient.
On the other hand, the energy cost for communication between

drones and buoys consists of that of receiving 𝐸𝑛𝑒𝑟𝑔𝑦𝑟𝑒𝑐 and transmit-
ting 𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑟𝑎 of data, which is given by

𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑟𝑎 =
{

𝑝𝑠 ∗ (𝐸𝑛𝑒𝑟𝑔𝑦𝑐 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑠 ∗ 𝑑2) 𝑖𝑓 𝑑0 > 𝑑
𝑝𝑠 ∗ (𝐸𝑛𝑒𝑟𝑔𝑦𝑐 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑙 ∗ 𝑑4) 𝑖𝑓 𝑑0 ≤ 𝑑

𝐸𝑛𝑒𝑟𝑔𝑦𝑟𝑒𝑐 = 𝑝𝑠 ∗ 𝐸𝑛𝑒𝑟𝑔𝑦𝑐

(5)

where the energy dissipation on the circuitry of receiver or transmitter
is denoted by 𝐸𝑛𝑒𝑟𝑔𝑦𝑐 , the packet size is denoted by 𝑝𝑠, 𝑑0 is a pre-

determined threshold, 𝐸𝑛𝑒𝑟𝑔𝑦𝑠 and 𝐸𝑛𝑒𝑟𝑔𝑦𝑙 denote the energy cost on
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amplifier for short or long distance transmission of one bit, respectively.
Thereby, for the 𝑖th drone, the energy cost 𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑇 is then calculated
y

𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑇 =𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑟𝑎 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑟𝑒𝑐
+ 𝐸𝑛𝑒𝑟𝑔𝑦𝑡𝑢𝑟𝑛 + 𝐸𝑛𝑒𝑟𝑔𝑦𝑣,𝑑 .

(6)

Note that if a drone is surrounded by a number of sensors, then how
o choose a position to efficiently collect data remains a challenge. Ac-
ording to energy consumption model (6), which is a convex function,
y taking the gradient to 0 the centroid position of that of all sensors is
stablished. That suggests the drone will hover until all data is collected
nce it arrives at the center position. On the other hand, if a drone is
lying toward a sensor only, then the communication will be established
nce the drone reaches the communication range of that sensor.

. The implementation details of IDAA

.1. Data collection rate prediction

The v-Support Vector Regression (v-SVR) is applied to predict data
ollection rate 𝐷𝐶𝑅 prediction. Compared with traditional support
ector regression, the v-SVR can reduce the amount of calculation
hrough slack variables w.r.t the value of 𝑣, while maintaining a high
redicting accuracy. At first, a linear function of 𝐷𝐶𝑅 with respect
o historical data 𝑥𝑖 is constructed as 𝐷𝐶𝑅 = (𝑤 ⋅ 𝑥𝑖) + 𝑏. Note that
he historical data 𝑥𝑖 is a n-tuple with each dimension indicating the
elevant information of historical data aggregation, i.e., temperature,
ind speed, humidity, time, the amount of data collected, etc. Once
nough historical data is collected, we can use the v-SVR to predict new
ata collection rate. Then, v-SVR is trained using following equations
or complexity reduction.

in 1
𝑛

𝑛
∑

𝑖=1
|𝐷𝐶𝑅 − 𝑓 (𝑥𝑖)|𝜀 +

1
2
‖𝑤‖2 (7)

Furthermore, we further reduce the computational complexity by

min 1
2
‖𝑤‖2 +[𝑣𝜀 + 1

𝑛

𝑛
∑

𝑖=1
(𝜁𝑖 + 𝜁∗𝑖 )]

𝑠.𝑡.

⎧

⎪

⎨

⎪

⎩

𝜁∗𝑖 ≥ 0, 𝜀 ≥ 0
𝐷𝐶𝑅 − (𝑤𝑥𝑖 + 𝑏) ≤ 𝜀 + 𝜁∗𝑖 ,
(𝑤𝑥𝑖 + 𝑏) −𝐷𝐶𝑅 ≤ 𝜀 + 𝜁𝑖.

(8)

Accordingly, the Lagrangian 𝐿(𝑤, 𝑏, 𝛾 (∗), 𝜚, 𝜁 (∗), 𝜀, 𝜌(∗)) is constructed as

𝐿(𝑤, 𝑏, 𝛾 (∗), 𝜚, 𝜁 (∗),𝜀, 𝜌(∗)) = −𝜚𝜀 −
𝑛
∑

𝑖=1
(𝜌𝑖𝜁𝑖 + 𝜌∗𝑖 𝜁

∗
𝑖 )

−
𝑛
∑

𝑖=1
𝛾∗𝑖 (𝜁

∗
𝑖 + (𝑤.𝑥𝑖) + 𝑏 −𝐷𝐶𝑅 + 𝜀)

+ 1
2
‖𝑤‖2 +𝑣𝜀 + 

𝑛

𝑛
∑

𝑖=1
(𝜁𝑖 + 𝜁∗𝑖 )

−
𝑛
∑

𝑖=1
𝛾𝑖(𝜁𝑖 +𝐷𝐶𝑅 − (𝑤.𝑥𝑖) − 𝑏 + 𝜀)

(9)

Therefore, the derivative over 𝑤, 𝜀, 𝑏, 𝜁 (∗)𝑖 equals to 0 results in:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

𝑛
∑

𝑖=1
(𝛾∗𝑖 − 𝛾𝑖) = 0


𝑛 − 𝛾 (∗)𝑖 − 𝜌(∗)𝑖 = 0

𝑤 =
∑

𝑖
(𝛾∗𝑖 − 𝛾𝑖)𝑥𝑖

.𝑣 −
∑

(𝛾𝑖 + 𝛾∗𝑖 ) − 𝜚 = 0

(10)
3

⎩ 𝑖
hen, v-SVR based DCR prediction can be obtained as:

𝑚𝑎𝑥. − 1
2

𝑛
∑

𝑖,𝑗=1
(𝛾∗𝑖 − 𝛾𝑖)(𝛾∗𝑗 − 𝛾𝑗 )(𝑥𝑖, 𝑥𝑗 )

+
𝑛
∑

𝑖=1
(𝛾∗𝑖 − 𝛾𝑖)𝐷𝐶𝑅,

𝑠.𝑡.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑛
∑

𝑖=1
(𝛾∗𝑖 + 𝛾𝑖) ≤  ⋅ 𝑣,

𝑛
∑

𝑖=1
(𝛾∗𝑖 − 𝛾𝑖) = 0,

𝛾 (∗)𝑖 ∈
[

0, 𝑛
]

,

(11)

where (., .) represents a nonlinear mapping. Specifically, we imple-
ent the nonlinear mapping with the Gaussian kernel function by
apping the finite-dimensional data to high-dimensional space, in
hich data is linearly separable. Eventually, DCR is calculated by the
-SVR as

𝐶𝑅 =
𝑛
∑

𝑖=1
(𝛾∗𝑖 − 𝛾𝑖)(𝑥𝑖, 𝑥) + 𝑏. (12)

.2. Security level and energy efficiency based task partition

For 𝑁𝑢 optimal routes design of UAVs, we partition the set 𝑆 = {𝑠𝑖}
of sensors into clusters 𝐶𝑖s, in which the Hamilton cycle 𝐻𝐶𝑖 is used
as an UAV route of corresponding security levels. Further, for energy
efficiency, the time between two visits of the same sensor is less than
that of filling a buffer 𝐵𝑈𝐹𝑠𝑖 , as

𝐿(𝐻𝐶𝑖 )
𝑣

≤
𝐵𝑈𝐹𝑠𝑖
𝐷𝐶𝑅𝑠𝑖

(1 + 𝜓). (13)

ote that the sinking ratio is at least 1
1+𝜓 if (13) is satisfied. Therefore,

we aim to find the optimal partition 𝑃 = {𝐶𝑖}, in which each 𝐻𝐶𝑖 is a
UAV route to meet (13). We give a four-step greedy searching algorithm
to discover the optimum partition 𝑃 .

Step 1, the Hamilton cycle 𝐻𝑆 is built on set 𝑆, then sequentially
arked 𝑠𝑖 ∈ 𝐻𝑆 w.r.t the 𝐻𝑆 ;

Step 2, take the 𝐶𝑗 = {𝑠𝑘} as a start, then 𝑠𝑘+1 is add repeatedly for
𝑗 enpension, i.e., 𝐶𝑗 = 𝐶𝑗 ∪ 𝑠𝑘+1, if (13) is satisfied on each 𝑠𝑖 ∈ 𝐶𝑗
nd 𝑠𝑘+1; then repeat this step with 𝑠𝑙+1 as a starter;

Step 3, take 𝑠𝑘+1 sequentially as a starter to repeat step 2.
Step 4, there are many partitions established by taking previous

teps, the optimum grouping 𝑃𝑖 is discovered to satisfy the following
onstrains:
𝑚𝑖𝑛 𝐿(𝑃𝑖)

𝑠.𝑡. 1. 𝑃𝑖 = ∪𝐶𝑗 ,

2. ∀𝐶𝑘, 𝐶𝑗 ∈ 𝑃𝑖,∃𝐶𝑘 ∩ 𝐶𝑗 = ∅.

(14)

And the proper data loss rate 𝜂 is given by

=
𝐿(𝐻𝐶𝑗 ) ∗ 𝐷𝐶𝑅𝑠𝑖
𝑉 ∗ 𝐵𝑈𝐹𝑠𝑖

− 1. (15)

Note that although Eq. (15) gives the calculation of the data loss rate 𝜂
to ensure the sinking ratio of 1

1+𝜓 , a predetermined data loss rate could
always be either higher or lower than that calculated by Eq. (15). In this
case, if the predetermined data loss rate 𝜓 ′ is higher, i.e., 𝜓 ′ > 𝜓 , then a
number of clusters can achieve the sinking ratio 1

1+𝜓 ′ while the sinking
ratio of the rest of clusters might be much less than 1

1+𝜓 . On the other
hand, if the predetermined data loss rate 𝜓 ′ is lower, i.e., 𝜓 ′ < 𝜓 , then
he maximum sinking ratio for each cluster is still 1

1+𝜓 . That suggest
the correctness of the data loss rate utilizing Eq. (15).

Theorem 1. The established partition is the optimal one.
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Fig. 1. All nodes of 𝐻𝑆 on 𝐶𝐻𝑆 .
Fig. 2. At least one node of 𝐻𝑠 not on 𝐶𝐻𝑆 .
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Proof. Let the partition 𝑃 ′ = {𝐶𝑖} discovered on the set 𝑆 in a greedy
searching manner along the 𝐻𝑆 , in which each pair of adjacent nodes
𝑠𝑖, 𝑠𝑖+1 ∈ 𝐻𝑆 are closest to each other i.e. 𝐿(𝑠𝑖𝑠𝑖+𝑗 ) ≥ 𝐿(𝑠𝑖𝑠𝑖+1), 𝑗 ≥ 1,
uch that 𝐿(𝑃 ′) is minimum due to the satisfaction of Eq. (14). Then, we
istinguish two cases to prove that each 𝐻𝐶𝑖 is longer without searching
long 𝐻𝑆 .
Case 1: ∀𝑠𝑖 ∈ 𝐻𝑆 , 𝑠𝑖 ∈ 𝐶𝐻𝑆 .
In this case, we take two groups 𝐶1 and 𝐶2 shown in Fig. 1

s an example to prove this theorem, where 𝑠1, 𝑠𝑘, 𝑠𝑘+1 ∈ 𝐶1 and
𝑘+𝑚, 𝑠𝑘+𝑚+1, 𝑠𝑛 ∈ 𝐶2. Let each node be labeled clockwise as the

searching order. Since each optimum UAV tour is constructed in a
greedy searching manner, the fact that 𝑠𝑘+𝑚 not belonging to 𝐶1 implies
𝐿(𝑠𝑘𝑠𝑘+1 ∪ 𝑠𝑘+1𝑠𝑘+𝑚 ∪ 𝑠𝑘+𝑚𝑠1 ∪ 𝑠1𝑠𝑘) > 𝐿(𝑠𝑘𝑠𝑘+1 ∪ 𝑠𝑘+1𝑠1 ∪ 𝑠1𝑠𝑘). If the
searching is proceeded not along the 𝐻𝑆 (i.e., 𝑠𝑘+𝑚 joins 𝐶1 earlier than
𝑠𝑘+1), then we have 𝐿(𝑠𝑘𝑠𝑘+𝑚 ∪ 𝑠𝑘+𝑚𝑠𝑘+1 ∪ 𝑠𝑘+1𝑠1 ∪ 𝑠1𝑠𝑘) > 𝐿(𝑠𝑘𝑠𝑘+1 ∪
𝑠𝑘+1𝑠1 ∪ 𝑠1𝑠𝑘) such that Eq. (13) is not satisfied. That suggests either
𝑠𝑘+1 or 𝑠𝑘+𝑚 should join 𝐶2. If we add 𝑠𝑘+𝑚 to 𝐶1 and let 𝑠𝑘+1 join
𝐶2, which is 𝐶 ′

1 = 𝐶1∖{𝑠𝑘+1} ∪ {𝑠𝑘+𝑚} and 𝐶 ′
2 = 𝐶2∖{𝑠𝑘+𝑚} ∪ {𝑠𝑘+1},

then we have 𝐿(𝐶 ′
1 ∪ 𝐶

′
2) > 𝐿(𝐶1 ∪ 𝐶2). The reasons are as follows. For

quadrilaterals 𝑠𝑘+1𝑠𝑘+𝑚𝑠1𝑠𝑛 and 𝑠𝑘𝑠𝑘+1𝑠𝑘+𝑚𝑠𝑘+𝑚+1, we have 𝐿(𝑠𝑘+1𝑠𝑛 ∪
𝑠𝑘+𝑚𝑠1) > 𝐿(𝑠1𝑠𝑘+1 ∪ 𝑠𝑘+𝑚𝑠𝑛) and 𝐿(𝑠𝑘𝑠𝑘+𝑚 ∪ 𝑠𝑘+1𝑠𝑘+𝑚+1) > 𝐿(𝑠𝑘𝑠𝑘+1 ∪
𝑠𝑘+𝑚𝑠𝑘+𝑚+1) respectively.

Case 2: ∃𝑠𝑖 ∈ 𝐻𝑆 , 𝑠𝑖 ∉ 𝐶𝐻𝑆 as shown in Fig. 2.
Similarly, we can deduce that 𝐿(𝑃 ′

1 ∪ 𝑃
′
2) > 𝐿(𝐶1 ∪ 𝐶2). ■

Theorem 2. For a partition 𝑃 ′, we have 𝛾 = 𝐿(𝑃 ′)
𝐿(𝑃 ) , where 𝛾 ∈ (1.5, 2).

Proof. For any connected graph, there is a minimal Steiner tree 𝑇 =
∪𝑇𝑖, where each 𝑇𝑖 is a full Steiner tree, such that each Steiner point in
𝑇𝑖 has a degree between 3 and 5. In addition, we can transform a full
Steiner tree into the one of 3 degree Steiner points such that each angle
at a Steiner point is exactly 120◦. We call such tree a 3 full Steiner tree.
Suppose 𝑃 ′ is connected by a minimal Steiner tree 𝑇 such that for each
𝐶𝑖 ∈ 𝑃 ′ there exist two nodes 𝑠𝑖, 𝑠𝑗 ∈ 𝐶𝑖 adjacent to a Steiner point 𝑝𝑖
with 𝑑𝑠𝑖 ,𝑝𝑖 = 𝑑𝑠𝑗 ,𝑝𝑖 = 𝑅. Then, we are going to take Fig. 3 to complete
the proof.

For an optimum grouping 𝑃 , there exist at least two clusters, say
𝐶∗ ∗
4

1 = {𝑠𝑖|1 ≤ 𝑖 ≤ 𝑘} and 𝐶2 = {𝑠𝑗 |𝑘 + 3 ≤ 𝑗 ≤ 𝑘 + 𝑚}, such that T
𝐶∗
1 and 𝐶∗

2 are connected by the minimal Steiner 𝑇 with two Steiner
points 𝑠𝑘+1 and 𝑠𝑘+2 of degree 3 as shown in Fig. 3(a). Then we have
𝐿(𝑃 ) = 𝐿(𝐻𝐶∗

1
) + 𝐿(𝐻𝐶∗

2
). Let the 3-full Steiner tree connecting to 𝐶∗

1
possess longest edges 𝑠1𝑠𝑘+1 = 𝑠𝑘𝑠𝑘+1 = 𝑅. Note that 𝐻∗

𝐶1
and 𝐻∗

𝐶2
are

optimum UAV tours. Here, we assume the distance 𝑑(𝑠𝑖, 𝑠𝑗 ) between
ach pair of nodes 𝑠𝑖 and 𝑠𝑗 is beyond the communication range 𝑟, then
e have 𝑑(𝑠𝑖, 𝑠𝑗 ) ≥ 𝑟 + 𝜖 where 𝜖 is negligible. Since ∠𝑠1𝑠𝑘+1𝑠𝑘 = 120◦,

hen it is easy to get 𝑠1𝑠𝑘 =
√

3𝑅. Let 𝐿 denote the longest distance
between each pair of points within the deployment area. It is obviously
that 𝑠1𝑠𝑘+3 ≤ 𝐿 and 𝑠𝑘𝑠𝑘+3 ≤ 𝐿. If 𝑘 → ∞, then 𝑠𝑘−1 is infinitely closed
o 𝑠𝑘 such that we have 𝑠𝑘−1𝑠𝑘+3 ≤ 𝐿. If we add 𝑠𝑘 to 𝐶2 and let 𝑠𝑘+3
oin 𝐶1, which is 𝑃 ′

1 = 𝐶1∖{𝑠𝑘}∪ {𝑠𝑘+3} and 𝑃 ′
2 = 𝐶2∖{𝑠𝑘+3}∪ {𝑠𝑘}, then

e have 𝐿(𝑃 ′) = 𝐿(𝐻𝐶′
1
) + 𝐿(𝐻𝐶′

2
), 𝐻𝑃 ′

1
> 𝐻𝐶∗

1
and 𝐻𝑃 ′

2
> 𝐻𝐶∗

2
. The

easons behind that are as follows. According to the structure of 𝐻𝑃 ′
1

nd 𝐻∗
𝐶1

, we have

𝐿(𝐻∗
𝐶1
) ≥ (𝑟 + 𝜖)(𝑘 − 1) +

√

3𝑅

> 𝑟(𝑘 − 1) +
√

3𝑅

𝐿(𝐻 ′
𝐶1
) ≤ 2𝐿 + (𝑘 − 2)𝑟.

(16)

et the function 𝑓 (𝑘) = 2𝐿+(𝑘−2)𝑟
𝑟(𝑘−1)+

√

3𝑅
denote the approximation ratio

between 𝐿(𝐻𝑃 ′
1
) and 𝐿(𝐻𝑃1 ). Then, we have 𝑓 (𝑘)′ = (𝑘− 1)𝑟2 +

√

3𝑅𝑟−

(𝑘 − 2)𝑟2 − 2𝐿𝑟. Since 𝐿
𝑟 + 1 ≥ 𝑘 and

√

3𝑅 ≤ 𝐿, it is easy to verify
𝑓 ′(𝑘) < 0. That implies 𝑓 (𝑘) is a monotonic decreasing function. Since
3 ≤ |𝐶𝑖| ≤

𝐿
𝑟 − 1, then we have

𝑓 (𝑘 = 𝐿
𝑟
− 1) = 3𝐿 − 𝑟

√

3𝑅 + 𝐿
< 𝑓 (𝑘)

< 2𝐿 + 𝑟
√

3𝑅 + 2𝑟
= 𝑓 (𝑘 = 3).

(17)

It can be deduced 𝑓 (𝑘) ∈ (1.5, 2) due to lim𝐿→+∞
2𝐿+𝑟

√

3𝑅+2𝑟
= 2 and

lim𝐿→+∞
3𝐿−𝑟

√

3𝑅+𝐿
= 1.5. Similarly, we have 𝑓 (𝑘′) ∈ (1.5, 2), where

(𝑘′) denotes the approximation ratio between 𝐿(𝐻𝑃 ′
2
) and 𝐿(𝐻𝑃2 ).

herefore, the theorem holds. ■
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Fig. 3. An optimum partition vs. a suboptimal partition.
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In addition, the optimal partition should take the energy cost into
consideration. In order to approximate the real energy cost of a certain
partition, we first introduce the probability density functions (pdf) of
the distribution of different terrains. From the global perspective, the
energy cost for each cell 𝑐 should consider the pdf of the corresponding
terrain 𝑝𝑐 as

 ′
𝑐 = ∫𝑙𝑐 ∫𝑒𝑐

𝑟𝑐𝑝𝑐 , (18)

Then, we define the Approximated Route Energy Efficiency as the
proportion between aggregated data and corresponding energy cost.
Obviously, the optimal partition should be the one of the maximal
overall approximated energy efficiency. In addition, if two partition has
the same approximated energy efficiency, then we choose the one with
less energy cost. This is because more aggregated data requires more
aggregation time due to the limited data collection rate. That indicates
more aggregation time is required such that the sinking ratio drops.
Although, each cluster of the optimal partition is assigned a UAV for
data collection and aggregation, in which the energy efficient route
within each cluster should be discovered.

4.3. DQN based UAV route design

We design the UAV route utilizing a deep reinforcement learning
(DRL) [18] based technology DQN to increase the sinking ratio and
reduce the energy cost. The basic idea of applying DQN for UAV route
design is to give an action 𝑎𝑢𝑡 to the state 𝑠𝑢𝑡 of UAVs at time slot 𝑡 and
receive the reward 𝑟𝑢𝑡 and the next state 𝑠𝑢𝑡+1. Therefore, we need to
define the state space, the action space, and the reward, respectively.

1. State: Each state is consist of three important components, tasks
of corresponding security level 𝑡𝑎𝑠𝑘, positions of UAVs 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,
remaining tasks 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑎𝑠𝑘 required to be completed, that is
𝑆 = {(𝑡𝑎𝑠𝑘, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑎𝑠𝑘)};

2. Action: For each UAV, only 8 directions 𝑑𝑖𝑟 are considered,
i.e., East, South, West, North, Northeast, Northwest, Southeast,
and Northwest; In addition, we assume at each time slot the
travel distance of a UAV 𝑑𝑖𝑠 is less than a maximum value 𝑑𝑖𝑠𝑚𝑎𝑥;
That suggest each action can be written as 𝑎𝑡 = {𝑑𝑖𝑟𝑡, 𝑑𝑖𝑠𝑡};

3. Reward: Once the 𝑖th UAV is employed to perform data ag-
gregation tasks of different security levels, the ratio between
the amount of data 𝑑𝑎𝑡𝑎 collected and the energy consumed
𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑇 on route 𝑇 and the proportion of the completed tasks
in overall tasks are considered as:

𝑟𝑢𝑡 =

⎧

⎪

⎨

⎪

⎩

1
𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑇

, 𝑖𝑓 𝑑𝑎𝑡𝑎 = 0
𝑑𝑎𝑡𝑎∗𝑡𝑎𝑠𝑘

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑡𝑎𝑠𝑘∗𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑇
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

where the energy consumption 𝐸𝑛𝑒𝑟𝑔𝑦𝑖,𝑇 is calculated within a
time interval rather than that consumed on the entire route 𝑇 .

∑ 𝑢
5

Then, the reward for all UAVs can be rewritten as 𝑟𝑡 = 𝑖 𝑟𝑡 .
Note that once an action is chosen utilizing 𝜖-greedy policy based on
current state. Then the reward is obtained and the next state is observed
from the environment [17]. Different from the traditional DQN, only
the excellent experience, which possesses a reward higher than the
average reward of latest 𝑀 time slot can be store in the experience
pool in terms of a transition (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1), instead of the ordinary
experience. This is because excellent experiences are supposed to con-
tain more useful information about the interactions between UAVs and
the environment. That suggest learning from excellent experiences can
stabilize the learning process and accelerate the convergence.

In the training of DQN, we give the discount factor 𝛿 ∈ (0, 1], which
hows how uncertain the rewards are. Then, we update Q network
tilizing gradient descent w.r.t parameter 𝜃 based on the loss function

with a minibatch randomly sampled transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) as
ollows:

= [(𝑟𝑖 + 𝛿𝑄(𝑠𝑖+1, 𝑎𝑖+1|𝜃−)) −𝑄(𝑠𝑖, 𝑎𝑖|𝜃)]2, (19)

here 𝜃− represents the parameter of target network 𝑄̂. Next, we
pdate the 𝑄̂ for every 𝐶 steps by

̂ = 𝑄. (20)

ased on the 𝜖-greedy policy, we choose the optimal action to maximize
he utility with probability 1 − 𝜖. To stabilize the learning process of
QN, we consider the parameter 𝜖 a time-varying one. In the beginning
f the learning process, the parameter 𝜖 should be set a little bit larger
or deep exploration. However, when the learning process tends to
onverge, the parameter 𝜖 should decrease exponentially due to the
ptimal action has been found for each state to ensure the convergence
f the learning process. Eventually, the optimal action 𝑎∗ is chosen by
∗ = argmax𝑄(𝑠, 𝑎) (21)

e summarize the UAV route design with DQN in Algorithm 1.

Algorithm 1 UAV route design with DQN
for 𝑛 = 1, 2, 3,… do

Select the action 𝑎𝑛 via 𝜖-greedy policy
Execute action 𝑎𝑛
Observe 𝑠𝑛+1 and Calculate 𝑟𝑛
Store excellent transition (𝑠𝑛, 𝑎𝑛, 𝑟𝑛, 𝑠𝑛+1) in the experience pool

only
Sample a mini-batch of transitions (𝑠𝑖, 𝑎𝑖, 𝑟𝑖, 𝑠𝑖+1) randomly from

experience pool
Update 𝑄(𝑠𝑖, 𝑎𝑖) via (19)
Update 𝑄̂ via (20) for every 𝐶 steps

end for

5. Performance evaluation

5.1. Simulation setup

We conduct the experiments of IDAA considering the scenario
shown in Fig. 4. There are three type of tasks of different security
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Fig. 4. The performance evaluation scenario of proposed IDAA.

levels High, Medium and Low, each type of which are represent in
red dots, blue dots and green dots, respectively. With the intelligent
decision making, i.e., DQN based UAV route planning, v-SVR based
DCR prediction, and security level based task partition, UAVs aggregate
data from sensors w.r.t the corresponding security levels toward the
5G base stations. The experiment is implemented in Python on an Intel
Core i7 8550U, 62GB RAM computer. In addition, sensors are assumed
to be deployed within 3000 m × 3000 m area of complex terrains. We
give parameters of this experiment in Table 1.

We compare IDAA with CISIL [1], LEEF [2], DQNDA [10], and
HRSRT [19] in energy cost and sinking ratio.

5.2. Sinking ratio

The reverse effects on sinking ratio by velocity 𝑉 are shown in
Fig. 5. It is obviously that with the growth of 𝑉 the sinking ratio rises
for all approaches. IDAA obtains the highest sinking ratio. The reason
behind that is we employ DQN for UAV route design to increase the
sinking ratio and reduce the energy cost.
6

Fig. 5. Sinking ratio on different 𝑉 .

Fig. 6. Sinking ratio on different 𝑁 .

Fig. 7. Sinking ratio on different 𝐷𝐶𝑅.

See from Fig. 6, it is clear that with the increment of sensors 𝑁
the sinking ratio drops for all approaches. This is because more sen-
sors contributes to further distance to aggregate data with insufficient
time. When the area is densely populated with sensors, the distance is
shortened. IDAA performs better than baselines.

Observed from Fig. 7, the sinking ratio drops with the growth of
data collection rate 𝐷𝐶𝑅. Recall that (13) describes the tradeoff of
𝐷𝐶𝑅 and sinking ratio. It is no doubt that the sinking ratio drops if
𝐷𝐶𝑅 is set too high. As shown in Fig. 7, the sinking ratio reaches
the highest value when 𝐷𝐶𝑅 = 120 bit/s compared with the lowest
value when 𝐷𝐶𝑅 = 260 bit/s. All baselines obtains less sinking ratios
compared with IDAA.

The impact of the number of UAVs 𝑁𝑢 on the sinking ratio is shown
in Fig. 8. It is clearly that the increment of 𝑁𝑢 results in the growth
of the sinking ratio. This is because more UAVs with corresponding
security levels will collect more data. However, the experiment is
conducted in a fixed size area that 100% sinking ratio can be achieved
without further UAV deployment. IDAA still outperforms baselines with
the highest sinking ratio.
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Table 1
Simulation setup.
Parameter Value

Communication range 𝑅 [10, 50] m
Number of UAV 𝑁𝑢 [5, 12]
Speed of UAV 𝑉 [1, 8] m/s
Rotating angle 𝛬𝜃 [45◦, 90◦, 135◦, 180◦]
Energy level of UAV at Start Time 100 Wh
Sensitivity of receiver −100 dBm
Bit Rate 120 kbps
Frequency of transmission 2.45 GHZ
Energy coefficient 𝜇 50 J/m
Risk of terrain 𝑟𝑐 [0.005, 1]
Elevation of terrain 𝑒𝑐 [0, 3] m

Fig. 8. Sinking ratio on different 𝑁𝑢.

Fig. 9. Energy cost w.r.t 𝑁 .

Fig. 10. Maximum energy cost w.r.t different 𝑁𝑢.

5.3. Energy cost

Fig. 9 shows the impact of 𝑁 on energy cost. It is straightforward
that more tasks results in more energy cost. See from Fig. 10, we
know that the maximum energy decreases if 𝑁 increases. The IDAA
7

𝑢

outperforms baselines in both energy cost and maximum energy cost.
Furthermore, IDAA is affected by 𝑁𝑢 much less compared with other
strategies due to DQN based UAV route design for energy efficiency.

6. Conclusion

Unmanned Aerial Vehicle (UAV) has become an important part
of 5G communication, and is used in various scenarios, i.e., cargo
delivery, agricultural application, event surveillance, etc. In this paper,
an Intelligent UAV based Data Aggregation Strategy, named (IDAA),
is proposed for 5G-enabled IoT. Specifically, IDAA employs an v-SV
regression to predict the data collection rate. Then, a security level
based task partition is adopted. Eventually, a deep reinforcement learn-
ing based UAV route design is implemented for energy efficiency.
The theoretical analysis and simulations indicate that IDAA obtains
a higher sinking ratio and a lower energy cost while compared with
contemporary strategies.
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