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Abstract—The combination of big data and machine learning
brings more convenience to people, but also brings security risks
of data privacy leakage. The services provided by traditional ma-
chine learning can no longer meet the needs of privacy protection.
The emergence of federated learning technology has alleviated
privacy disclosure threats, however adversaries can still infer
from the data model or even reconstruct the raw training data,
causing the data privacy of the raw training data to be leaked.
To solve this problem, we propose a secure federated learning
mechanism based on variational autoencoder (VAE) to resist
inference attacks. Participants use raw data to generate forged
data through a VAE and train a local model with forged data,
thereby protecting the data privacy and guaranteeing the quality
of the global model. The experimental results show that the
proposed secure federated learning mechanism can guarantee the
high accuracy of the global model while reducing the probability
of the raw data of the participants being reconstructed.

Index Terms—Federated Learning, Variational Autoencoder,
Data Privacy

I. INTRODUCTION

Today, we are in the post-Internet era where big data appli-

cation is an important feature. The emerging new-generation

information technologies such as edge computing, Internet of

Things (IoT), Intelligent Digital Twin (IDT), and 5G have

made it impossible to hide personal data and even biometric

information [1], [2]. Every time we search on the Internet,

every song we listen to, every takeaway we order, every place

we go, and every means of transportation we take, can be

obtained by the company and transferred after in-depth data

analysis for commercial purposes [3]. On the other hand,

Artificial Intelligence (AI) technology is one of the greatest

scientific achievements of mankind. AI has changed human

society, but today AI technology is also facing two major

bottlenecks in the actual application process. First, the “small

data” owned by most companies is difficult to gather and learn

This work is supported by National Natural Science Foundation of China
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from each other. Second, the increasing emphasis on data

privacy and security has become a worldwide trend. As an

encrypted distributed machine learning paradigm, “federated

learning” [4] can enable all parties to achieve the purpose

of building a model without disclosing the raw data, which

provides more possibilities for coping with the predicament

of the actual application of AI technology. To be specific,

federated learning requires users to use private data to train a

local model, and then upload the trained model to the service

provider for model aggregation. The service provider offers

the required services through an aggregated model, and this

process is not be able to access the user’s raw data.

Because federated learning can make full use of the data and

computing capabilities of the participants, it can build a global

and more robust machine learning model through multi-party

collaboration without sharing data. Therefore, in the context

of increasingly strict data supervision, federated learning can

solve key issues such as data ownership, data privacy, data

access rights, and access to heterogeneous data. From the

perspective of the entire data industry, federated learning can

increase the total amount of available data and can solve the

problem of existing data islands. Therefore, federated learning

has been widely used in fields such as national defense,

telecommunications, mobile services, medical care, Internet

of Vehicles [5] and Internet of Things [6].

However, there is still the threat of privacy leakage in

federated learning, such as inference attack, and the adversary

can infer and reconstruct the raw data used to train the model

from the local model or the global model. The author proposes

a privacy leakage scheme in [7], through which the adversary

can infer the label features of the training data from the global

gradient parameters and restore the raw training data without

any prior knowledge. Furthermore, due to the threat of privacy

leakage, most users are unwilling to participate in federated

learning to contribute their models. Therefore, it is necessary

to solve the raw data inference attack in federated learning.
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Based on the above analysis, we propose a secure federated

learning mechanism based on variational autoencoder [8] to

mitigate inference reconstructed attack initiated by the adver-

sary. Our main contribution can be summarized as follows:

• To alleviate the threat of raw data being reconstructed by

inference in federated learning, we propose a secure fed-

erated learning mechanism based on VAE. Specifically,

participants use the raw data to generate the forged data

through a VAE, and then use the forged data to train a

local model, thereby protecting the privacy of the raw

data.

• To further improve the privacy protection in federated

learning, participants add differential noises to their

data before local model training, thus producing noise-

perturbed local models that increases the difficulty of

successful inferences by adversaries.

• The experimental result shows that the proposed secure

federated learning mechanism can guarantee the high

accuracy of the global model while greatly reducing

the probability of the raw data of the participants being

reconstructed.

We organize the rest of this paper as follows. The related

work is given in section II. Both system model and threat

model are presented in section III. The implementation of the

secure federated learning mechanism is elaborated in section

IV. The performance evaluation is given in section V. Section

VI concludes this paper.

II. RELATED WORK

In order to alleviate the problem of privacy leakage of par-

ticipants through inference attacks in federated learning, many

researchers have introduced differential privacy technology in

federated learning to ensure the privacy protection. A lot of

research work has shown that differential privacy technology

can alleviate the privacy leakage problem in federated learn-

ing. Truex et. al [9] proposed a privacy-protected federated

learning scheme LDP-Fed, which allows users to perturb the

uploaded model parameters through personalized local differ-

ential privacy settings to prevent the leakage of deep-level

information of the gradient. The effect of introducing noise

on the performance of the federated learning global model

can be minimized. Hu et. al [10] proposed a personalized

federated learning privacy protection algorithm based on a

heterogeneous Internet of Things background by introducing

differential privacy technology, and restricts privacy lost by

using the system uncertainty caused by the heterogeneity of

Internet of Things devices. Mohammadi et. al [11] proposed

a privacy protection scheme in federated learning. Before

uploading the model, the participants use Gaussian distributed

random noise to perturb the model to achieve (ε, δ)-DP privacy

guarantee, and through the use of small Batch sub-sampling

to achieve privacy amplification technology. By introducing

differential privacy technology and self-normalization tech-

nology, and adding a differential privacy noise layer and

a SELU layer to the network model, Ibitoye et. al [12]

manage to protect the privacy of the uploaded model and

improves the model’s robustness against confrontation. Kumar

et. al [13] proposed a centralized federated learning training

system based on blockchain, where differential privacy and

homomorphic encryption are used to ensure the privacy and

security of model data transmission and aggregation.

In addition to differential privacy technologies, some stud-

ies have shown that other privacy and security technologies

can also protect data privacy in federated learning. Luo et.

al [14] protects the privacy of users’ data by introducing

generative adversarial networks. Participants use the forged

data generated by the trained GAN for local training, and

propose a new loss function to make the forged data generated

by GAN have the same characteristics as the raw data and

have indistinguishable visual features. Liu et. al [15] uses

the sparsity characteristics of the feature map in the network

model to represent the raw local data of the participants

to realize the privacy protection of the raw data. Xu et. al

[16] proposes an efficient and privacy-protected vertical joint

learning framework, named FedV, which implements a two-

stage non-interactive secure federated aggregation method by

introducing functional encryption to achieve privacy protection

and improve training efficiency.

III. SYSTEM MODEL AND THREAT MODEL

A. System Model

In this paper, the system model we consider is a server-client

structured federated learning system, which uses the FedAvg

[17] algorithm to achieve federated learning. As shown in

the Fig. 1, the secure federated learning system includes

an aggregation server Saggregation and multiple federated

learning participants {p(1), p(2), p(3), · · · , p(i)}Ni=1. When the

federated learning begins, the aggregation server initializes the

global model M t of federated learning. Participants download

the initialized global model. All participants construct a forged

data with the same distribution as the local raw data to protect

the raw data from refactoring leaks. Then, the participants per-

form local model training with the forged data to generate the

forged local model mf
(i). After all participants completing the

local training, the aggregation server selects n(n < N) partic-

ipants which upload its trained local model to the aggregation

server for model aggregation and generating a new global

model M t+1. Through multiple rounds of model transmission

iterations between the participants and the aggregation server,

a final global model is generated when the round limit or other

end conditions are reached. When the federated learning is

over, the aggregation server distributes corresponding rewards

to participants through the reward server.

B. Threat Model

The local model parameters are trained by the participants’

local data, so the local model contains the characteristic infor-

mation of the user’s local data. The global model is generated

by aggregating local models, so the global model also contains

the user’s data information. By inversely analysing the global

model parameters, the adversary can infer a large amount of

private information, such as tag-like features, the affiliation
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Fig. 1: System model.

of participants, and the attributes associated with the training

data. Even worse, the adversary can infer and reconstruct the

raw training data from the gradient or model without any prior

knowledge about the training data [7].

According to the adversary’s ability, inference attacks can

be divided into black box inference and white box inference

[18]. In Black-box inference, the adversary cannot check the

model parameters before or during the inference. This kind of

inference attack is inappropriate in federated learning, because

in federated learning, both the participants and the aggregation

server may access the global model. In White box inference,

the adversary has the ability to directly analysis the parameters

of the model and perform inference. The inference attack in

federated learning is usually based on white box inference.

In this paper, we assume that the adversary has the ability

to implement the white box inference with an excellent com-

putational capability. Although the adversary performing the

inference attack may be an honest and curious aggregation

server or a participant, the purpose is roughly the same

which is inferring from the local model or the global model

to reconstruct the corresponding training data, causing the

privacy leakage in federated learning.

IV. IMPLEMENTATION OF THE PROPOSED STRATEGY

A number of studies have shown that the training process of

federated learning involves the risk of data being reversed from

the model to cause privacy leakage. This risk directly leads

to some participants reluctant to join the federated learning.

Therefore, in order to protect the privacy of participants in

federated learning and improve the enthusiasm of different

participants to join the federated learning, we propose a

secure federated learning mechanism based on VAE, which

aims to alleviate malicious participants or server initiated

inference attack has an impact on the privacy leakage of

normal participants.

A. Kullback-Leibler Divergence and Variational Autoencoder

Kullback-Leibler divergence (KL), also known as relative

entropy, is used to describe the asymmetry of the difference

between two distributions. Let P (X) and Q(X) be two

probability distributions on random variable X . When it is

a continuous random variable, the KL is defined as:

KL(P (X)||Q(X)) =

∫
P (X) log

P (X)

Q(X)
dx (1)

When X is a discrete random variable, the KL is defined as:

KL(P (X)||Q(X)) =
∑

P (X) log
P (X)

Q(X)
(2)

Relative entropy can measure the distance between two

random distributions. When two random distributions are the

same, their relative entropy is zero. When the difference

between two random distributions increases, their relative

entropy will increase.

Variational autoencoder (VAE) [8] is a kind of autoencoder,

which belongs to the neural network model. The VAE network

structure contains an encoder and a decoder. The encoder is

to map the feature of the training sample to a hidden variable

that can represent the feature distribution of the training

sample. In addition, the encoder is also a neural network

for dimensionality reduction manipulation. And the decoder

that randomly samples from the distribution and decodes the

samples to generate data similar to the raw training samples.

Moreover, the decoder is a neural network that performs

dimension-up manipulation. The generated data has the same

distribution and characteristics as the raw training data. The

loss function of VAE can be defined as two parts, one part

refers to the reconstruction loss:

LR = RC(x, x̂) (3)

Among them, RC(·) represents the reconstruction error be-

tween the reconstructed sample x̂ and the raw sample x. The

second part of the loss function is defined by KLD:

LKL = KL(P (z|x)||N(0, I)) (4)

Where, KL(·) represents the calculation of the KL between

the two distributions; P (z|x) represents the posterior probabil-

ity of the latent variable z of the sample x, and VAE assumes

that this posterior probability is close to the standard normal

distribution [8].

B. Secure Federated Learning

The purpose of exposing privacy in federated learning

considered in this paper is to infer and reconstruct the cor-

responding training data from the local model or the global

model. However, with the increase of equipment computing

power and the development of feature learning technology, the

pure differential privacy technology has been unable to prevent

the user’s training data from being inferentially reconstructed.
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Therefore, we propose a VAE based secure federated learning

mechanism, which consists of three modules with respect to

data forging, differential privacy enabled local data improve-

ment, and privacy-preserved local model training and global

model training.

• Data Forging: Specifically, for a participant p(i) preparing

to participate in federated learning, its local raw data can

be expressed as D(i) = {(x1, y1), · · · , (xj , yj)}. In order

to confuse the raw data and increase the randomness of

generating forged data, p(i) will add random disturbance

to the data of training VAE model. The disturbed data

D(i)
′ can be expressed as follow:

D(i)
′ = {D(i), δ} (5)

Where δ is a random disturbance sampled from a standard

normal distribution. After disturbance, each data sample

in D(i)
′ can be represented as {(x1, y1), · · · , (xj , yj), δ}.

Participants use D(i)
′ to train a VAE model which struc-

ture is shown in Table. 1. The VAE model is composed

of Encoder and Decoder. The Encoder is composed of

two Dense layers. The first Dense layer has an activation

function of ReLu, and the second Dense layer has no

activation function; the Decoder is also composed of two

Dense layers, The first Dense layer activation function is

ReLu, and the second Dense layer activation function is

Sigmod. The VAE’s loss function L is expressed as:

L = CE(xj , x̂j) +KL(P (zj |xj)||N(0, I)), (6)

Where x′
j represents a sample in the forged data; x̂j is

the sample generated by the VAE through sampling; zj
represents the latent variable that can be decoded into

the sample xj ; P (zj |xj) represents the distribution of

the latent variable exclusive to the sample xj ; CE(·)
represents performing cross-entropy; N(0, I) represents

standard normal distribution. When the VAE model train-

ing is completed, it generates a forged data Df
(i) =

{(xf
1 , y

f
2 ), · · · , (xf

j , y
f
j )} by the decoder in the VAE.

Because random disturbance is added during the training

process of VAE, Df
(i) not only retains the feature distri-

bution of the raw data, but also increases the randomness

and confusion provided by the distribution.

TABLE I: VAE Model Structure

Layer Number Layer Type Activation Function

Encoder
Layer 1 Dense ReLu

Layer 2 Dense None

Decoder
Layer 1 Dense ReLu

Layer 2 Dense Sigmod

• Differential Privacy Enabled Local Data Improvement: To

further improve the data privacy, we will perform differ-

ential privacy operations on the generated forged data. We

implement differential privacy protection for the forged

data through the Laplacian mechanism. Specifically, we

add the noise satisfying the Laplacian distribution to the

forged data to achieve differential privacy protection, as

shown below:

noise ∼ Laplace(0,
Δf

ε
) (7)

where, the ε denotes privacy budget , the Δf denotes

sensitivity. The forged data after differential privacy

Df ′

(i) = {(xf ′
1 , yf

′
2 ), · · · , (xf ′

j , yf
′

j )} is represented as:

Df ′

(i) = Df
(i) + noise (8)

Note that adding random perturbation within the VAE

model training is to make the images in the generated

forged data more random. And adding Laplacian noise in

the local model training is to achieve differential privacy

protection for the forged data and further prevent the raw

data from being maliciously reconstructed by adversaries.

• Privacy-preserved Local Model Training and Global

Model Training: We initialize the global model M t

and the local model mt
(i) of the participant p(i) into

a convolutional neural network (CNN) to ensure the

consistency of federated learning. The model contains

three convolutional layers and two fully connected layers.

Specifically, in the first convolutional layer, the number

of neurons is 32, the size of the convolution kernel is 3,

the activation function is ReLu, including a pooling layer.

In the second layer of convolutional layer, the number of

neurons is 64, the size of the convolution kernel is 3, the

activation function is ReLu, including a pooling layer.

In the last layer of convolutional layer, the number of

neurons is 64, the size of the convolution kernel is 3, the

activation function is ReLu, not including a pooling layer.

In the first fully connected layer, the number of neurons

is 64 and the activation function is ReLu. In the second

fully connected layer, the number of neurons is 64 and

there is no activation function.

Participant p(i) download global model M t of the t-
th round federated training from the model aggregation

server, and use the gradient descent algorithm to train the

t + 1-th round new local model fmt+1
(i) with the forged

data Df ′

(i), as shown below :

fmt+1
(i) = M t − η · ∂loss(f(x

f
j ,M

t), yfj )

∂xf
j

(9)

where loss(·) is the loss function, f(·) is the CNN

simulation function of the forged model, and η is the

learning rate of local model training.

When all participants complete local training, the server

select N participants and aggregate their trained local

models using the Fedavg algorithm to produce new global

models M t+1:

M t+1 =
1

n

n∑
i

fmt+1
(i) (10)
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When the aggregation server completes the model aggre-

gation, the participants re-download the global model and

perform a new round of federated training until the end

condition set when the federated learning is initialized is

reached.

In each round of federated learning, participants will

generate a new forged data to train the local model, and

use differential privacy technology when training the local

model to further ensure the security of the training data.

Specifically, the forged data generated by the participants

through the VAE retains the characteristic information of

the raw data, but is different from the raw data content.

The local model uploaded to the server is trained through

a forged data. Even if the adversary try to reconstruct

the data for training the model, the true content of the

raw data cannot be restored, thus protecting the privacy

of the raw data. At the same time, the participants

added appropriate noises to achieve differential privacy

protection when performing local training, which further

increased the difficulty for the adversary to reconstruct

the training data.

This secure federated learning mechanism is summarized in

Algorithm. 1.

Algorithm 1 The Secure Federated Learning Mechanism.

Input: Participant raw data D(i), Round t global model M t,

Stochastic distribution samples δ, Laplace noise noise
Output: Global model M

1: Participant downloads round t’s global model M t from

the aggregation server;

2: Participants train the VAE model using the raw data D(i)

and stochastic distribution samples δ;

3: Participants use the trained VAE to generate forged data

Df
(i);

4: Differential privacy is applied to the forged data by

participants with Laplace noise noise;

5: Each participants trains a local model fmt
(i) using the

forged data with differential privacy Df ′

(i);

6: The aggregation server selects n participants to upload

their completed training local models fmt
(i);

7: The aggregation server aggregates the models uploaded

by the participants to generate the global model M t+1 in

round t+ 1;

8: if End conditions of federated learning are met then
9: Output the global model M ;

10: end if

V. EXPERIMENT

A. Experiment Setup

This section comprehensively evaluates the proposed

scheme through the scientific computing libraries Tensorflow

and scikit-Learn [19] in python. The experimental environment

is configured on the computer of Intel(R) Core(TM) i5-

10300H CPU @ 2.50GHz and RTX2060 6G, and the version

of Tensorflow used is 2.2.0; the version of scikit-Learn is

0.23.2.

The data used in the simulation are Mnist [20], Fash-

ion Mnist [21] and Cifar10 [22]. The Mnist is a widely

used handwritten digit recognition data, usually used for the

performance evaluation of image classification algorithms in

the computer vision field. There are 10 number categories in

this data, from number 0 to number 9; Fashion Mnist is an

extended version of Mnist, including different types such as

T-shirt, Dress, Ankle boot, etc. Cifar10 contains 60,000 color

images. All images belong to 10 different categories, such as

airplane, dog, truck et al.

B. Experiment Result

We simulate the results of the participants training the

VAE generation model. As shown in Fig. 2 (a)(b)(c), as the

number of training rounds increases, in different data, the

training loss of the generated model VAE gradually decreases

until the training model converges. The loss when the Mnist-

VAE model converges is about 125, the loss when the Fash-

ion Mnist-VAE model converges is about 240 and the loss

when the Cifar10-VAE model converges is about 1700.

In order to evaluate the feature difference between the raw

data generated by VAE and the raw data, we use the same

neural network model to train on the forged data and the

raw data, generate a forged model and a raw model, and

Perform an accuracy test on the test data. As shown in Table.

2, simulations were performed on three different datasets. For

different datasets, the models generated by forged data have

decreased in predictive accuracy, but they are all within the

acceptable range.

TABLE II: Accuracy of Model Trained by Raw and Forged

Data

Dataset
Accuracy of Model

Trained by Raw Dataset Trained by Forged Dataset

Mnist 97.6% 95.3%

Fashion Mnist 91.1% 88.6%

Cifar10 70.6% 67.2%

When performing secure federated learning, participants

need to perform local model training and then upload the

local model to the aggregation server. In our solution, the

participants use the trained vae model to generate forged data,

and use this for local training. We evaluated the local training

results of forged data on the three datasets. As shown in Fig.

3 and Fig. 4, with the number of training rounds increasing,

the local loss and accuracy will continue to converge until the

participant ends the local training.

We use forged data to further evaluate the prediction ac-

curacy of the global model under local training. As shown

in Fig. 5, we have considered the cases where the number
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of participants in federated learning is 10 and 20. In a 10-

person federated learning system, due to the requirements of

the FedAvg algorithm, 5 participants are randomly selected

for model aggregation each time. Under the simulations of

Mnist, Fashion Mnist and Cifar10, the prediction accuracy of

the global model reached 92%, 87% and 76% respectively.

In a 20-person federated learning system, 10 participants are

randomly selected for model aggregation each time. Under
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the simulations of Mnist, Fashion Mnist and Cifar10, the

prediction accuracy of the global model reached 91%, 86% and

64% respectively. Even if participants use forged data for local

training, as the number of federated training rounds increases

at a high level in different datasets, the accuracy of the global

model can still converge to a higher level.
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Fig. 6: Probability of Reconstruction Sucess in Different

Dataset.
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We evaluate the privacy protection of our proposed scheme

by reconstructing the probability of success (PoRS). In the

literature [23], the author shows that the probability that the

opponent reconstructs the training data used by the participant

through reasoning is as high as 76%. We compare our ap-

proach with the benchmark scheme FedAvg that incorporates

differential privacy (DP). Specifically, we believe that the

opponent rebuilds the participant’s training data at 76%. We

perform simulations in three datasets. As shown in Fig. 6, our

proposed approach can effectively reduce the probability of

reconstruction of the raw data.

VI. CONCLUSION

In order to reduce the success probability of inference

reconstruction attack in federated learning, we proposed a

VAE based secure federated learning mechanism. Specifically,

participants use raw data to generate forged data through

a VAE and train a local model with forged data, thereby

protecting the data privacy and guaranteeing the quality of

the global model.Experimental results show that the proposed

secure federated learning mechanism not only ensures the

accuracy of the global model, but also reduces the probability

of the successful inference and reconstruction of participants’

raw data.
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