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Abstract—The emergence of the Internet of Things enables
efficient connections between things through the Internet,
providing a professional platform for information collection,
transmission, and sharing. Nowadays, as an important com-
puting model in the Internet of Things, Mobile Crowdsens-
ing(MCS) has received more and more attention. It provides
strong technical support for the collection and interaction
of information between individuals or devices from different
regions. However, while realizing data sharing, it also inevitably
brings about the privacy leakage of related data. In order to
solve this problem, many privacy protection strategies based
on different technologies have been proposed to ensure the
privacy of crowdsensing tasks and crowdsensing data. They
include the strategies for classifying and grading crowdsensing
tasks and workers. In response to this strategy, this paper
proposes a algorithm to calculate the number of classifications
of the crowdsensing tasks and workers to improve classifica-
tion efficiency, that is, a reinforcement learning-based task
classification mechanism(RTCM). This mechanism uses the Q
learning algorithm in reinforcement learning. Through contin-
uous learning iterations, it is possible to select strategies with
higher privacy protection degree and task completion quality
from different classification strategies. In this way, the system
can implement a more efficient privacy protection function
according to the optimal strategy. Experiments show that this
mechanism can improve the efficiency of crowdsensing tasks
and workers classification. And, in different areas, according
to different demand standards, the appropriate classification
strategy can be quickly selected.

Index Terms—Mobile Crowdsensing, Privacy Protection,
Reinforcement Learning, Task Classification

I. Introduction
With the vigorous development of the Internet of

Things, mobile crowdsensing technology has also received
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2020J01169.

more and more attention. The typical system architecture
of mobile crowdsensing mainly includes three parts: server
group, data users(task releasers) and data providers(task
receivers). Specifically, there will be sensors in the cor-
responding equipment of the task receiver in the percep-
tion layer for task perception and data perception. The
data user is the data collection center in different IoT
applications, such as the medical treatment center in the
medical IoT, etc. Server group mainly refers to a set of
servers with different functions. In this system, on the one
hand, after the data users sending crowdsensing tasks to
the server, the server will process the relevant task data
and release it to the data providers. On the other hand,
after selecting a task, the data providers will upload the
corresponding crowdsensing data to the server as required.
Finally, the server is responsible for verifing the uploaded
data before sending it to the data users. Then, the data
users can use these data, which are collected from the
data provider and verified by the server, to complete
the application requirements [1], including patient health
data monitoring, road traffic status monitoring, bus arrival
status monitoring and so on [2].

However, while mobile crowdsensing technology brings
us convenience, there are also some unavoidable problems.
Including the leakage of sensitive information of crowd-
sensing tasks and task receivers in the process of data
transmission [3]. What’s more, the requirements of task
completion degree and the privacy protection degree of
the same kind of tasks in different areas may be different.
In our previous work [4], a strategy for classifying and
grading crowdsensing tasks has been proposed to protect
the privacy of tasks. So, how many types of tasks should
you specifically divide? Therefore, based on the previous
work, this paper proposes an algorithm to calculate the
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optimal classification method under different needs. And
this algorithm was not given in the previous work.

Reinforcement learning, as an important field in ma-
chine learning that often used to solve efficiency optimiza-
tion problems [5] [6], emphasizes how to choose actions
that can maximize benefits based on the environment
[8]. Reinforcement learning [7] can continuously optimize
choices in the corresponding state through the rewards
or punishments given by the environment, and finally
learn the optimal strategy. Therefore, this paper uses
the Q- learning algorithm in reinforcement learning to
complete the optimal strategy selection mechanism for
the classification of crowdsensing tasks [9]. In this way,
the degree of protection of sensitive information in tasks
is improved according to different actual needs. In this
paper, in order to enhance the privacy protection of the
mobile crowdsensing strategy, a Reinforcement Learning-
based Task Classification Mechanism, named RTCM, is
proposed for MCS. The main contributions of this paper
are listed as follows:

1) In order to protect the sensitive information in
the crowdsensing tasks from being leaked, this paper
proposes to classify the tasks and task receivers and to
add corresponding levels to different categories.Since only
the tasks of the same level can receive the tasks of the
corresponding level, the purpose of protecting the privacy
of the tasks is achieved.

2) On the basis of the above work, in order to cater to
the different needs of different applications for the degree
of privacy protection and the quality of task completion,
this paper uses the Q learning algorithm in reinforcement
learning to train the optimal classification strategy in
different situations to improve the efficiency of the system,
so as to better realize the privacy protection of the
crowdsensing tasks.

3) The experimental results show that the strategy
proposed in this paper can well adapt to the privacy needs
of different applications, and at the same time, achieve a
balance between the degree of privacy protection and the
quality of task completion.

The rest of the paper is organized as follows. We sum-
marized some related work in Section II. We introduced
the system model of this strategy in Section III. In Section
IV, we introduced the strategy RTCM proposed in this
paper in detail. In Section V, we analyze the relevant
experimental data and results. Finally, it is summarized
in Section VI.

II. Reated Work
At present, as there is not much work related to the

protection of the privacy of tasks in MCS, we will also
collect other privacy protection strategies in the MCS. In
our previous work [10], the authors proposed a blockchain-
based data aggregation strategy, in which the authors
designed a new blockchain header structure and block
generation method. And it is used to store the classified

crowdsensing tasks, so as to prevent the direct or indirect
leakage of task privacy. In [11], the authors are the first
to discuss the privacy protection of task locations and
propose a codebook-based task allocation mechanism to
protect it. In addition, the selected allocation codebook
(SAC) method is introduced to solve the problem of high
computational resource consumption in the task allocation
process and protect the task location privacy to some
extent. In [12], the authors regard each trajectory as a
vector in the high dimension space and design a trajectory
protection algorithm to perturb the true trajectory before
submission. They use the differential privacy (DP) as
the privacy model so they can estimate the amount of
noise given a privacy level. And their mechanism not only
guarantees privacy protection, but also preserves trajec-
tories’ utility. In [13], the authors construct a differential
game model to solve the trade-off problem between the
data utility and privacy preserving in mobile crowdsensing
system, and solve the feedback Nash equilibrium solutions
based on the dynamic programming in the MCS system.
In [14], the authors propose a location privacy protection
scheme (ELPPS) for a mobile crowd-sensing network in
the edge environment, to protect the position correlation
weight between sensing users through differential privacy.
In [15], the authors carefully design a scalable group-
ing based privacypreserving participant selection scheme,
where participants are grouped into multiple participant
groups and then auctions are organized within groups via
secure group bidding. By leveraging Lagrange polynomial
interpolation to perturb participants’ bids within groups,
participants’ bid privacy is preserved. In [16], the authors
propose SFAC, a secure federated learning framework for
UAV-assisted MCS. Specififically, by applying local differ-
ential privacy, they design a privacy-preserving algorithm
to protect UAVs’ privacy of updated local models with
desirable learning accuracy. In [17], the authors design
a location-based symmetric key generator, which enables
two parties to self-generate a symmetric key without
depending on fully trusted authorities. By utilizing this
key generator and Proxy Re-encryption, they propose a
privacy preserving protocol to protect location information
in task release and task allocation.

III. System Model
The system model of RTCM proposed in this paper is

shown in Fig. 1. The system mainly shows the calculation
process of mobile crowdsensing technology in different
areas and different types of IOT application environments.
The figure mainly contains three different IoT applica-
tions, including IOMT [18], IIOT [19] and the IOV [20].In
scenario 1, that is, the application environment of the
medical Internet of Things. The working process of MCS
in this scenario is mainly divided into four steps. In the
first step, task releasers(including doctors, private health
doctors, etc.) use the reinforcement learning algorithm [21]
proposed in this paper to select the best classification and
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Fig. 1. The system model of RTCM

grading strategy according to the actual needs. In the
second step, the task releasers classify the crowdsensing
tasks according to the results provided by the algorithm
and uploads the tasks to the crowdsensing server. In the
third step, after the server processes the relevant data, the
tasks will be assigned to task receivers(including patients,
health care workers, etc.) for completion. Finally, the
task receivers upload the completed crowdsensing data to
the crowdsensing server for processing. At this point, the
process of MCS in application 1 has been completed. The
task completion process of application 2 and application
3 in the system model diagram is basically the same as
application 1, except that the task releasers and task
receivers in different applications are different. In addition,
in the other actual application process, the task releasers
and task receivers will continue to change with demand.

In order to realize the privacy protection of sensitive
information in the crowdsensing tasks, we propose to
classify the tasks and classify the task receivers into the
same number of level according to the calculation results
of the proposed algorithm. This classification idea has
been proposed in previous work [4]. So, in RTCM, we
focus on how to choose a better classification strategy.
In this paper, the Q-learning algorithm in reinforcement
learning is used to achieve more efficient privacy protection
functions according to different actual needs [22].

IV. The Implementation Details of the RTCM

Reinforcement learning is an important field in machine
learning. It emphasizes how agents take actions based on
the environment, so as to maximize the benefits obtained.
A common model used in reinforcement learning is the
standard Markov Decision Process (MDP) [23]. Therefore,
this paper uses the Q-learning algorithm in reinforce-
ment learning to realize the optimal strategy selection of
crowdsensing task classification and grading. Q-learning
is a value-based algorithm in the reinforcement learning
algorithm group. The main idea is to construct a Q-table
to store the Q value of each pair of state and action,
and then select the action that can obtain the greatest
benefit based on the Q value. Next, it mainly introduces
the algorithmic decision-making process proposed in this
paper.

A. The RTCM-MDP of the Strategy
The standard Markov Decision Process(as shown in Fig.

2) is generally expressed as a five-tuple < S,A, P,R, γ >.
Among them, S represents the states, A represents the
actions that can be taken, P represents the state transition
function, R represents the reward that can be obtained by
taking a certain action in a certain state, and γ represents
the discount factor. In short, our goal is to be able to find
a strategy that can maximize returns.

Next, we will mainly introduce the five elements of
MDP of the RTCM in this paper which is different from
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Fig. 2. The standard Markov Decision Process

traditional MDP. State S mainly shows the changes in
the status of crowdsensing workers. In this paper, one
indicator is mainly used as the basis for status changes;
namely, changes in the proportion of malicious users in
the crowdsensing workers.

The action set A mainly includes a series of actions that
the agent can take in each state St. In RTCM, A contains
different task classification strategies that can be adopted
by the task releasers. However, it is still necessary for the
algorithm to learn and iterate the strategies contained in A
to obtain the optimal strategy, and then the task releasers
divide the tasks according to the results. For example,
A = {′3′,′ 4′,′ 5′} means that the task releasers can divide
the tasks into 3 categories(a1 =′ 3′), 4 categories(a2 =′ 4′)
or 5 categories(a3 =′ 5′).

At time t, the system state St becomes state St+1 after
taking action at, so the state St+1 at the next moment
is determined by the state St and the action at at the
previous moment, that is, P (St+1|St, at).

As the name implies, the reward R(St, at, St+1) repre-
sents the return value that will be generated by taking
the action at in the state St. In this paper, the formula
for calculating the return value R can be expressed as:

R = i ·
n∏

k=1

(1− Pk)
λ·Nn + j ·

∑n
k=1 (1− Pk)

n
. (1)

Where i and j respectively represent the proportion
of privacy protection degree and task completion degree
in actual demand(i + j = 1). n represents the number
of categories of task classification. Pk represents the
possibility of malicious actions by users in category k,
which is generated by a random function. λ represents the
proportion of malicious users, and N is the total number
of workers.

In this paper, Q-learning-based task classification strat-
egy, in which the algorithm for calculating the R value is
shown in Algorithm 1.

Finally, γ in the five-tuple refers to the discount factor,
usually between 0 and 1 (γ ∈ [0, 1]), which is used to
express the influence of current interests and long-term
interests. When γ is closer to 0, it means that the strategy
pays more attention to the influence of current benefits.
When γ is closer to 1, it means that the strategy pays
more attention to the influence of subsequent benefits.

Algorithm 1 R Value Calculation
Input: i, j,N, λ
Output: R
1: Choose at from St using ε-greedy, seeing Algorithm 3
2: Let n = at
3: Use random function to calculate Pk

4: Use equation (1) to calculate R
5: return R

Since both the state space and the action space are lim-
ited, the crowdsensing task classification strategy problem
is a limited Markov Decision Process. After the strategy
is transformed into MDP through the above process, the
task classification strategy problem can be transformed
into optimizing the return value. That is, by looking up
the Q-table, we can quickly catch the return that each
action can bring in each state.

B. Q-Learning-based Task Classification
The flow of Q-learning algorithm is shown in Fig. 3.

First, a Q-table needs to be created and initialized. The
rows in the table indicate different states and the columns
indicate the actions that can be taken. And at the very
beginning, each state-action value in the table is initialized
to 0. Then, under the initial state, the agent selects
an action from the action space to perform, and then
calculates the reward value according to equation (1),
which is used to calculate the Q value. The next step
is to update the Q value just obtained to the original
Q-table, and update the state to the next state. Finally,
repeat the previous steps to optimize the Q-table through
continuous update iterations.

Fig. 3. The Flow of Q-Learning Algorithm

In the update iteration process, we use the time differ-
ence method (TD) to achieve the update, and the update
formula can be defined as:

Q(St, at)←− Q(St, at)+α[R+γmax
at+1

Q(St+1, at+1)−Q(St, at)].

(2)
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Where,

loss = [R+ γmax
at+1

Q(St+1, at+1)]−Q(St, at). (3)

In the above equation (2), α indicates the learning
rate(α ∈ [0, 1]). If α is smaller, it means more previous
training results are retained; otherwise, less previous
results are retained. γ represents the discount factor,
γ = 0 means that only the current benefit influence is
considered, and if γ = 1, it means that the long-term
benefit influence is more considered. R represents the
actual return value obtained in the previous state St.
And max

at+1

Q(St+1, at+1) represents the estimated value of
the maximum benefit in the next state St+1. Q(St, at)
represents the estimated value of benefit in state St.
Therefore, through training, the gap between reality and
estimation can be continuously narrowed, and the Q value
can be continuously optimized.

Then, the algorithm of Q-learning-based crowdsensing
task classification strategy is shown in Algorithm 2:

Algorithm 2 Q-learning Algorithm
Input: S,A, episode, h
Output: Q(S,A)
1: Initialize Q(S,A) arbitrarily
2: for i = 1 to episode do
3: Initialize S
4: for j = 0 to h do
5: Choose at from St using policy derived from

Q(e.g., ε-greedy), seeing Algorithm 3
6: Take action at to get R seeing Algorithm 1
7: Update Q(St, at) according to equation (2)
8: S ←− St+1

9: end for
10: end for
11: return Q(S,A)

The input of Algorithm 2 is the state space S, the action
space A, and episode, h parameter values, where episode
indicates the number of training rounds and h indicates
the number of states in the set S. Then, the output is Q
table. In Algorithm 2, step 1 is to initialize Q(S,A), that
is, the initial assignment is all 0. Steps 2 to 10 are to train
the Q table episode times. Step 3 enter the initial state S,
and then, step 4 to 9 are also a loop, but this loop is to
train the Q value in each state St. Step 5 is to select one
of several actions at to execute, and the greedy algorithm
is used here. As shown in Algorithm 3, in order to prevent
local optimization, a certain action at is randomly selected
in the state St with the possibility of ε; and the action at
with the largest Q value is selected under the possibility
of 1− ε. Step 6 and step 7 mean that after selecting the
corresponding action at, observe the obtained reward value
R and the next state value St+1. Finally, return the result
of the episode round iteration.

Algorithm 3 ε-greedy Algorithm
Input: The result of random function
Output: at
1: if rand() < ε then
2: Choose at in A at random
3: else
4: at = argmaxaQ(St, at)
5: end if
6: return at

The above is the process of selecting crowdsensing task
classification strategy based on Q-learning proposed in this
paper. The return value under different states and different
actions can be observed intuitively through the Q table,
and the task releasers can choose different strategies for
task classification according to actual needs. In this way,
the protection of sensitive information in the sensing task
is realized indirectly and efficiently.

V. Simulation Results
A. Experiment Setup and Parameter Setting

• Experiment Setup
The simulation of RTCM is implemented in Python
on a computer equipped with Intel Core i7 processor,
16G running memory, CPU frequency 1.50GHz 64-bit
win10 system.

• Parameter Setting
Table I gives the parameters of this simulation.

TABLE I
Experimental parameter setting

Parameter Name Value or Range
The number of crowdsensing workers N 1000
Number of states h 11
Set of actions that can be taken at 3/6/9
The percentage of the importance
of privacy protection i [0,1]
The percentage of the importance
of task completion j [0,1]
Learning rate α 0.1
Discount factor γ 0.6
ε of ε-greedy algorithm 0.1

B. Experimental Results
The strategy proposed in this article is to adapt to

different needs in different applications. We divide the
experimental part into three situations. The first case is
that when the application pays more attention to the
degree of privacy protection of the collected data than
the degree of data completion, we set the corresponding
parameter values (ie, i=1, j=0) to conduct the experiment.
The second case is that when the application pays more
attention to the completion of the posted task than
the privacy protection of the collected data, we set the
corresponding experimental parameters (ie, i=0, j=1) for
experimental analysis. The third situation is that when
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the application has high requirements for the privacy
protection of the collected data and the completion of
the task, we set the experimental parameters (ie i=0.5,
j=0.5) to complete the experiment. Of course, in the actual
application process, we can set the parameters differently
according to different needs.

• More emphasis on privacy protection(i = 1, j = 0)
In some regional applications, task releasers pay more
attention to privacy and security issues in tasks than
task completion. Therefore, in order to present the
experimental results in a clearer way, we set the
parameters i = 1 and j = 0; that is, only the privacy
and security issues of the task are considered. The
experimental results are shown in the Fig. 4, which
mainly contains 3 subgraphs.
Fig. 4 (a) shows the theoretically obtainable return
value R under different conditions. As shown in the
figure, each state represents a different proportion of
malicious users, and the task releasers want to divide
the task into 3, 6 or 9 categories. Moreover, the return
value R of any classification strategy will decrease
with the continuous increase of malicious users. At
the same time, comparing the three classification
strategies, the degree of privacy protection when the
task is divided into 9 categories is significantly higher
than the other two. For example, when S = 30%,
R(a1) = 0.37, R(a2) = 0.71, and R(a3) = 0.87. Next,
Fig. 4 (b) shows the actual Q value obtained under
different conditions, although the curve in the figure
is not as smooth as that in Fig. 4 (a) (for example,
when s = 15%, R(a1) = 0.71, while Q(a1) = 0.83),
but the trend of the curve is still similar; that is, the
more malicious users, the smaller the Q value. And
in most states, the Q value that divides tasks into 9
categories is significantly higher than other strategies.
For example, when s = 30%, Q(a1) = 0.42, Q(a2) =
0.71, and Q(a3) = 0.92. Finally, Fig. 4 (c) is the basis
for our final selection strategy. This figure shows the
sum of Q values after 10 iterations of the update. The
Q value in this figure begins to stabilize after about
6 iterations. From this figure, we can clearly see that
the Q value of the strategy that divides the task into
9 categories is significantly higher than the other two
strategies. Therefore, when the task publisher pays
more attention to the privacy and security of the task,
the strategy divided into 9 categories is the optimal
choicet. For example, from the 7th to the 9th round,
the Q value is stable at 6.66 when a1 = 3, stable at
8.53 when a2 = 6, and stable at 8.97 when a3 = 9.

• More emphasis on task completion(i = 0, j = 1)
In some regional applications, task releasers pay more
attention to task completion than task privacy and se-
curity. Therefore, in order to present the experimental
results in a clearer way, we set the parameters i = 0
and j = 1; that is, only the degree of completion

of the task is considered. The experimental results
are shown in the Fig. 5, which mainly contains 3
subgraphs.
Fig. 5 (a) shows the theoretically obtainable return
value R under different conditions. As shown in the
figure, each state represents a different proportion
of malicious users, and the task releasers want to
divide the task into 3, 6 or 9 categories. Moreover,
the return value R of any classification strategy will
remain stable as malicious users continue to increase.
At the same time, comparing the three classification
strategies, the task completion degree when the tasks
are divided into 3 categories is significantly higher
than the other two. For example, when s = 40%,
R(a1) = 0.76, R(a2) = 0.71, and R(a3) = 0.66.
Next, Fig. 5 (b) shows the actual Q value obtained
under different conditions, although the curve in
this figure is not as smooth as that in Fig. 5 (a)
(for example, when s = 20%, R(a1) = 0.76, while
Q(a1) = 0.80), but the trend of the curve is still
similar; that is, the more malicious users, the Q value
fluctuates slightly, but it is basically stable. And in
most states, the Q value that divides the task into 3
categories is significantly higher than other strategies.
For example, when s = 15%, Q(a1) = 0.85, Q(a2) =
0.71, and Q(a3) = 0.70. Finally, Fig. 5 (c) is the basis
for our final selection strategy. This figure shows the
sum of Q values after 16 iterations of the update. The
sum of Q value in the figure begins to stabilize after
about 10 iterations. From the figure, we can clearly
see that for the strategies that divide the task into
3 categories, the sum of the Q values is significantly
higher than the other two strategies and is stable
around 8.90. Therefore, when the task releasers pay
more attention to the task completion, the 3-category
strategy is the best choice. For example, from the 11th
to the 16th round, the sum of theQ value is stable at
8.90 when a1 = 3, stable at 8.40 when a2 = 6, stable
at 8.01 when a3 = 9.

• More emphasis on the balance of privacy protection
and task completion(i = 0.5, j = 0.5)
In some regional applications, the task releasers re-
quire both a certain degree of privacy protection and a
proper degree of task completion for the crowdsensing
tasks. Therefore, in order to present the experimental
results in a more intuitive way, we set the parameters
i = 0.5 and j = 0.5; that is, the degree of privacy
protection of the crowdsensing tasks is as important
as the degree of completion. The experimental results
are shown in the Fig. 6, which mainly contains 3
subgraphs.
Fig. 6 (a) shows the theoretically obtainable return
value R under different conditions. As shown in the
figure, each state represents a different proportion
of malicious users, and it is still assumed that the
task releasers want to divide the task into 3, 6 or
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(a) R value (b) Q value (c) The sum of Q value

Fig. 4. Experimental comparison chart of Q table when i = 1, j = 0

(a) R value (b) Q value (c) The sum of Q value

Fig. 5. Experimental comparison chart of Q table when i = 0, j = 1

(a) R value (b) Q value (c) The sum of Q value

Fig. 6. Experimental comparison chart of Q table when i = 0.5, j = 0.5

9 categories. Moreover, the return value R of any
classification strategy will decrease with the contin-
uous increase of malicious users. At the same time,
comparing the three classification strategies, the task
completion degree when the tasks are divided into 3
categories is obviously lower than that of the other
two; and when a2 = 6 and a3 = 9, the R values under
the two strategies are relatively close. For example,
when s = 20%, R(a1) = 0.67, R(a2) = 0.79, and
R(a3) = 0.80. Next, Fig. 6 (b) shows the actual Q
value obtained under different conditions, which is the
same as the above, although the curve in the figure is
not as smooth as that in the Fig. 6 (a) (for example,

when s = 20%, R(a1) = 0.67, and Q(a1) = 0.72),
but the trend of the curve is still similar, especially
when a2 = 6 and a3 = 9, the Q value of the two
strategies is closer to the R value. For example, when
s = 25%, Q(a2) = 0.79 and Q(a3) = 0.78. And in
most states, the Q value that divides the task into
three categories is significantly lower than the other
two strategies. For example, when s = 35%, Q(a1) =
0.57, Q(a2) = 0.71, and Q(a3) = 0.74. Finally, Fig.
6 (c) is the basis for our final selection strategy. This
figure shows the sum of Q values after 10 iterations of
the update in this case. The sum of the Q value in the
figure began to stabilize after about 6 iterations. From
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the figure, we can clearly see that in the strategies
that divide tasks into 6 categories and 9 categories,
the sum of Q values is significantly higher than the
other strategy. Therefore, when task releasers pay
more attention to the balance between task privacy
protection and completion, the 9-category strategy is
the relatively optimal choice, but according to the
experimental results, the 9-category and 6-category
strategies are not too much difference. For example,
from the 11th to the 16th round, the sum of the Q
value is stable at 6.66 when a1 = 3, stable at 8.60
when a2 = 6, and stable at 8.90 when a3 = 9 .

In summary, the task releasers can reasonably set the
values of i and j (i+ j = 1) according to different require-
ments in different scenarios. Therefore, a more appropriate
classification and grading strategy for crowdsensing tasks
can be selected to indirectly and efficiently improve the
privacy protection ability of sensitive information in the
tasks in the MCS technology.

VI. Conclusion

In order to more efficiently improve the ability of mobile
crowdsensing technology to protect sensitive information
in the crowdsensing tasks in different application scenar-
ios, this paper proposes a task classification mechanism
(RTCM) based on reinforcement learning. Specifically, the
task releasers can use the algorithm in advance to select
the optimal classification strategy in different situations
according to different requirements for privacy protection
and task completion. Furthermore, we can clearly see from
the experimental results that the algorithm can effectively
calculate task classification strategies that meet actual
needs based on different regions. So as to achieve the
purpose of improving the privacy protection function of
the tasks in the mobile crowdsensing technology.
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