
A Mobile Crowd Sensing Ecosystem based on Fog
Computing Infrastructure

1st Liwei Lin
School of Computer Science and Mathematics

FuJian University of Technology
Fuzhou, Fujian, China

llw02@fjut.edu.cn

2nd Xia Lin
Technology Center of Fuzhou Customs District

Fuzhou, Fujian, China

379816876@qq.com

3rd Xiaoding Wang
College of Computer and Cyber Security

Fujian Normal University
Fuzhou, Fujian, China

wangdin1982@fjnu.edu.cn

Abstract—Mobile crowd sensing (MCS) applications are
rapidly increasing and becoming a vital technique affecting the
daily lives of people. However, large scale mobile sensing systems
and the rapid growth of diverse applications have generated
a huge volume of sensing data that need to be efficiently and
effectively processed and managed. This poses the need of a
new assistive platform powerful enough to boost the development
of MCS. Researchers and practioners have considered to adopt
cloud computing as an approach to promote such development.
With the assistance of the cloud, massive data can be processed
more effectively. However, centralized cloud datacenters still have
some issues that need to be addressed: (1) High latency: since
most of the sensed data need to be transmitted to the remote
cloud, it introduced high latency to MCS applications. (2) Heavy
load: the centralized cloud datacenter undertakes most of the
load in the MCS system that may lead to hotspot. (3) Limited
scalability: the centralized cloud datacenter may not be easily
extended as the scale of MCS increases.

To overcome these issues, in this paper, we propose a novel
Mobile Crowd Sensing framework based on Fog computing
(MCSF). Instead of using a centralized cloud, MCSF adopts fog
computing infrastructure with decentralized micro datacenter-
s, which can be used for large-scale deployment with better
scalability. In MCSF, each micro datacenter of the fog just
needs to handle the portion of the load within its service area.
This reduces the oversubscription probability that occurs with
the system of using a centralized cloud datacenter. Since the
distributed micro datacenters are close to mobile nodes, fog
computing is more effective than cloud computing for assisting
MCS applications, as it reduces latency. MCSF enables the data
to be preprocessed in micro datacenters and mobile nodes, which
can reduce the amount of transmitted data and thereby reducing
the transmission latency.

Keywords—mobile crowd sensing, fog computing, secondary
allocation, community

I. INTRODUCTION

Mobile devices developed in recent years incorporate var-
ious sensors from GPS, camera, to microphone, and have
a light-weight portable size. These features enable mobile
devices capable of data sensing and processing. It has been

reported that the number of user-companioned devices, includ-
ing smartphones, smart vehicles, wearable devices, and so on,
reach approximately 6.58 per person in 2020 [1].

The quick growth of mobile devices in number and in
various types has made a new service paradigm called Mobile
Crowd Sensing (MCS) [2] viable, which extends the vision of
participatory sensing by leveraging both participatory sensory
data from mobile devices (offline) and user-contributed data
from mobile social networking services (online). MCS has
penetrated into various fields of peoples’ life and work, in-
cluding environment monitoring [3], transportation and traffic
planning [4],healthcare, social recommendation [5], to name
only a few. MCS can serve as a useful complementary tool for
researching and working. Generally speaking, MCS explores
complementary roles and presents a fusion or collaboration
between machines and human intelligence in crowd sensing
and computing processes [6] [7].

Traditionally, MCS relies on a centralized cloud datacenter
for data aggregation and mining [8] [9], as shown in Figure1.
All sensing data/results generated by mobile devices are sent
to the remote cloud datacenter to be processed and used for
responding to the requesters.

In MCS, a task execution procedure can be simplified as
follows: a task is requested by a user (requester). Task is
submitted to the remote cloud datacenter, and then is allocated
to one or several other mobile devices (accepters) to participate
and finish the task together. In this case, the task may need
to be executed by devices located across different space (e.g.
towns or cities), which is called cross-space task. A large
number of cross-space tasks will generate large data flow in
the network.

However, this centralized cloud-based MCS has the follow-
ing drawbacks:

• High latency: Transmitting the data from a mobile
device to a remote cloud datacenter and the response
to the requesters add latency to MCS applications.

• Heavy load: MCS applications can generate huge

108

2021 20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS)

978-1-6654-6667-7/21/$31.00 ©2021 IEEE
DOI 10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00030

20
21

 2
0t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 U
bi

qu
ito

us
 C

om
pu

tin
g

an
d

Co
m

m
un

ic
at

io
ns

 (I
U

CC
/C

IT
/D

SC
I/

Sm
ar

tC
N

S)
 |

 9
78

-1
-6

65
4-

66
67

-7
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IU

CC
-C

IT
-D

SC
I-S

M
AR

TC
N

S5
51

81
.2

02
1.

00
03

0

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

Internet

Cloud
Datacenter

Mobile

Data flow
Heavy load

Remote

Fig. 1: Architecture of cloud based MCS system.

amount of data, including raw data collected from
sensing devices and the respnses to the requests. All
of these huge amount of data need to be sent to the
centralized data center to be processed and only the
datacenter could respnse or answer myriad and various
users’ requests. This may cause the problems of incast
and outcast.

• Limited scalability: The centralized cloud datacenter
may not be easily extended as the scale of MCS
increases.

The fog computing is an emerging architecture [10] [11]
that can be leveraged to overcome the issues addressed above
by inserting a set of networked micro clouds in between the
crowd datacenter and the mobile devices. Fog computing is a
decentralized architecture, and it can extend cloud computing
capacity to better serve mobile traffic applications. In this
article, we propose a novel Mobile Crowd Sensing ecosystem
architecture, shown in Figure 2, based on Fog computing
(MCSF). In MCSF, tasks are directly managed by a local micro
datacenter, which naturally reduce the latency. As fog is a de-
centralized architecture, the communication and computation
loads are distributed to local micro datacenters, in order to
reduce the probability of overload. Building micro datacenters
needs much lower cost than building a large scale cloud
datacenter and is with better scalability. Additional local micro
datacenters, when needed, can easily join the fog network.
This approach can improve the scalability of MCS system
efficiently.

The rest of this paper will elaborate on the architecture of
MCSF, and present the benefits of this architecture in terms of
a better responsiveness and reduce power consumption, owing
to combining fog computing and mobile crowd sensing appli-
cations. Then we introduce the API use case and aptitude of
MCSF platform. We will finally summarize our contributions
in proposing MCFS.

II. OVERVIEW OF MCSF ECOSYSTEM

The architecture of an MCSF system can be divided into
three layers, namely crowd center layer, the fog network
layer and the mobile layer. The top layer is crowd center. It
provides resource information query service for fog network.
The middle layer is fog network. It is the key layer of the
MCSF ecosystem. Fog network consists of a set of networked
micro datacenters. The main functions of fog network are
mobile node management, servicing the task requester, pre-
processing the sensing data, allocation of tasks and cooperation
with other micro datacenters. The third layer is mobile layer.
Each mobile device belongs to a mobile space dominated by
a micro datacenter. A mobile node can be task requester or
accepter. In MCSF, crowd center connects with fog network,
and fog network connects with mobile nodes in mobile layer.
As shown in Figure 2, we will introduce the layers in detail
in the following three subsections.

A. Crowd Center

The crowd center is the top layer of MCSF system. The
crowd center maintains the resource information of each micro
datacenter in a fog network and provides the information query
service for the micro datacenters in this network. In contrast
to cloud data centers, the main duty of a crowd center is
to maintain information of the micro datacenters in the fog
network for query purposes. Resource information querying
is one of the steps required for the task allocation procedure.
This can overcome the shortcoming of centralized datacenters
that is introduced before. When a task is launched, the agent in
micro datacenter queries the resource information in the crowd
center. When the state of a fog network changes (e.g., a new
micro datacenter join the MCFS system), the crowd center will
update its information to ensure accuracy of the service.

The centralized datacenter bears most of the computation
and traffic load in cloud-based MCS ecosystem. Unlike central-
ized cloud datacenter, the crowd center only bears the query
load. The bulk of the computation and communication load
are offloaded to corresponding micro datacenters in the fog
network. The flow generated by queries is much lighter than
the sensing data flow, and the crowd center does not need
to store and process the sensing data. The functions of fog
network will be introduced in the next subsection.

B. Fog Network Layer

The fog network is the key component of the MCSF. It
consists of interconnected micro datacenters located in differ-
ent geographic locations. Compared with a cloud datacenter,
micro datacenters are closer to mobile nodes, and a mobile
crowdsensing management platform is deployed for the mobile
nodes to accomplish crowdsensing tasks cooperatively between
the micro datacenters.

Each micro datacenter dominates and serves a particular
mobile space. For example, in Figure 2, micro datacenter
communicates and dominates mobile space, and the mobile
nodes in this mobile space are managed by the micro data-
center. Micro datacenter records mobile node information in
the mobile space that it dominates. It manages the mobile
nodes, the services for the task requesters, pre-processes the

109

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

Crowd
center

Fog network
layer

Mobile layer

Micro
datacenter

Mobile
space

resource query

coordinating

requesteraccepter

secondary allocation Task allocation
Data response

User interface

Platform in mobile device
(Task requester)

Result response

Data process

Data receive

Wireless
communication

module

Task
request

Sensing
module

Platform in fog network
Mobile task service

Task
request
receive

Result
data

receive

Agent
Resource

query
request

Data
process

Query
result

receive
Result
return

coordinator

Task allocation

Crowd center
Request
receive

Resource
query

Platform in mobile device
(Task accepter)

User interface
Task

accept

Data
process

Sensing
module

Wireless
communication

module

Data source

Task
request

Platform in mobile device
(Task accepter)
User interface

Task
accept

Data
process

Sensing
module

Wireless
communication

module

Task
decompose
& allocation

Secondary
allocation

Fig. 2: Architecture and platforms of MCSF Ecosystem.

sensing data, allocates tasks and cooperates with other micro
datacenters.

1) Mobile Node Management: Mobile node management is
the basic issue of MCSF. Each mobile node in MCSF connects
with its dominating micro datacenter directly through some
wireless communication method (e.g., wifi or a base station).
The micro datacenter records the mobile node information in
its dominated mobile space.

Node Join: When a new mobile node joins an MCSF
ecosystem, it will register on the fog network. Each mobile
node reports its personal information, including its community
tag, its device function configuration tag and its location
information.

Node Quit: When a node applies to exit the ecosystem,
the crowd center and micro datacenter will delete that node’s
information from the corresponding database.

Node Roaming: Mobile nodes may roam to other mobile
areas. When a node leaves the current mobile space and moves
to another mobile space, the dominating micro datacenter in
the previous mobile space will delete the information of that

node and the destination micro datacenter will record the
node’s information.

2) Servicing the Task Requester: When a requester submits
a task, the dominating micro datacenter will create an agent
service for the requester. The task requester will then offload
the computation and communication load to the agent.

3) Pre-processing the Sensing Data: In many MCS appli-
cations, the task requester needs only the result rather than the
sensing data. For example, for an environmental monitor, the
task requester only requires knowledge of whether the mon-
itored area is abnormal. Each micro datacenter receives data
from its dominant mobile space, and pre-processes this data
in order to obtain an intermediate result. These intermediate
results are aggregated by the requesters agent. The agent pre-
processes the results and sends the final result back to the
requester. This pre-processing method can reduce the overall
data transmission in network.

4) Allocation of Tasks: When a micro datacenter receives
a task allocation command, it will allocate the tasks to the
corresponding community mobile nodes. (We will introduce
the community in next subsection)

110

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

5) Cooperation With Other Micro Datacenters: As a cross-
space task cannot be finished within a single micro datacenter,
multiple micro datacenters need to cooperate with each other
to finish the task. Therefore, each micro datacenter has a local
system to deal with multi micro datacenters cooperation. In
a cooperation scenario, an efficient cooperation scheme will
improve the performance of the overall system. The local
system manages the mobile crowd sensing node in its area,
and communicates with the local system platforms in the other
micro datacenters and crowd centers.

An example will be given next to illustrate the micro data-
center cooperation procedure. Assume that there are two micro
datacenters mcd1 and mcd2. A mobile user submits a task to
mcd1. mcd1 queries the information from the crowd center,
and then sends the cooperation request and task requirement
information to mcd2. Depending on the task requirement, the
local system in mcd2 selects appropriate mobile crowd sensing
nodes for the task allocation. The task should be executed
within the space dominated by mcd2. In order to finish the
task, mcd1 and mcd2 should cooperate with each other. In
this procedure, micro datacenter mcd1 cooperates with mcd2
and crowd center.

C. Mobile Layer

The mobile layer combines mobile devices with human
skills and knowledge, where mobile devices can produce and
contribute participatory data by leveraging human mobility
and intelligence and representing and conducting the humans
ability. Mobile devices are labelled with the community tag
based on its owners professional area. In an MCSF system,
tasks can be classified into many professional areas, such as
environmental monitoring and analysis, and medical diagnosis.
These types of applications need special professional skills
or professional software to be handled. These professional
skills or software are used to organize the devices in terms
of different communities. This community organization pattern
can more precisely choose a member node, and thus solve the
problem more professionally.

A mobile node can join several communities. In reality,
a person may have more than one professional skill, and
can manage problems arising from different areas. Thus, his
(or her) mobile device can be capable of solving different
problems that arise from different fields. The other advantage
of community mobile nodes is that when they accept a task,
they can use other idle mobile devices and allocate sub-tasks
to them, which we call secondary allocation.

Secondary allocation: In MCSF, tasks will be allocated
to corresponding community mobile nodes that have the pro-
fessional skills or applications (software) to manage particular
professional tasks. When a community mobile node accepts
a task, it can re-allocate the task to another mobile node.
If there are idle mobile devices in the same mobile space,
the community mobile node can divide the task into several
sub-tasks and then allocate these tasks to the idle devices.
This method can balance energy consumption and can also
reduce the running time of the task. This flexible organization
can improve device utility and guarantee a better QoS. The
community mobile node divides the task into serval smaller
sub-tasks and employs other nodes to finish these sub-tasks

who then send the intermediate results back to the community
mobile node. The community mobile node performs final
processing of the intermediate results and then sends the final
result to the micro datacenter.

During this secondary allocation, the following factors
should be considered for selection of the collaborative nodes
in order to optimize the procedures.

• Constraints: The secondary allocation should satisfy
the QoS and physical resources of the task require-
ment.

• Data Transmission: The community mobile node allo-
cates sub-tasks to cooperative nodes. The intermediate
data that is generated by these cooperative nodes will
be returned to the community mobile node. The com-
munity mobile node processes this intermediate data,
and returns the final result to the micro datacenter.

• Energy-aware: In order to balance energy consumption
in the mobile area, the energy remaining in the mobile
device should be taken into consideration and nodes
should be chosen that have more remaining energy.
This will prevent devices from running out of energy
too quickly, allowing more tasks to be accommodated.
Mobile devices will consume a lot of energy when
transmitting the data, and the longer the communi-
cation distance, the higher the energy consumption.
Therefore, community mobile nodes should attempt
to find collaborative nodes which are close to the
community mobile node to save energy consumption
in the data transmission.

• Data Pre-process: In secondary allocation, the com-
munity node will process the intermediate data that is
received from the collaborative nodes. The community
mobile node obtains the intermediate results from the
collaborative nodes and this intermediate data does not
need to be transmitted to the micro datacenters, which
also reduces the storage cost.

Additionally, a mobile node in MCSF can play the role
of both the task requester and the task accepter. In an MCSF
system, mobile nodes in a mobile area are dominated by a
micro datacenter. Nodes can connect to the micro datacenter
through some form of wireless communication such as wifi
or a base station, or can also communicate with each other
directly, such as using Bluetooth.

III. CROWD SENISNG PROCEDURE AND API

In this section, we will introduce the overall procedure for
task requests and responses. Figure 2 and 3 show the MCSF
platform that provides the API that is used for the cooperative
communication between mobile nodes, micro datacenters, and
the crowd center.

A. Procedure

Task requester uses the request() command to submit a
task request to a micro datacenter, and informs the micro
datacenter of the resources required. After receiving the re-
quest, the micro datacenter creates an agent service for the
task requester and submits an application for resources query

111

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

requester micro datacenter crowd center micro
datacenters accepters accepters

task request
resource query

response

coordinate with other micro datacenters

task allocate
task decompose and allocate

data response

data response

data response

response

data sensing

data process

data process

data process

data sensing

task
allocation

secondary
allocation

result
response

Fig. 3: The sequence diagram of task request and result response.

to the crowd center using the resourceQuery() command.
The crowd center returns the resource information (includ-
ing the required resources location) to the agent. The agent
sends the coordinate() request command to the destination
micro datacenters. request command to the destination micro
datacenters. The coordination micro datacenters allocate the
task to the community mobile nodes that they are dominating.
These community mobile nodes can then perform a secondary
allocation of the task to other mobile nodes based on the status
of the neighboring mobile nodes. If idle neighboring mobile
nodes exist, the community mobile node can decompose and
can re-allocate the sub-tasks to these other nodes by secondary
allocation. As shown in Figure 3, the acceptors sense the data
and send data or results back to the requester using the same
route that was used for the task request and allocation.

B. Other APIs

As well as the methods described above, the MCFS plat-
form also provides applications with additional API commands
that are listed here:

• getRequiredResource(task) is used by the crowd
center, and returns the micro datacenters information
that is needed by the agent for coordination.

• addTask(microDC mcd, task) is used by mcd a
newly arriving task to its task queue.

• removeTask(microDC mcd, task) is used by mcd
to remove a completed task from its task queue.

• deadline(task) return the deadline of task.

• finished(taskId) return the finished task Id.

• ifIdle(dev d) is used to detect the status of device
d. If it is idle, it can accept the task or sub-task.
Otherwise, no task will be allocated to it.

• remainEnergy(dev d) return the remaining energy
of device d.

• getNeighborIdleNodes(dev d, task) returns the
idle neighbor node list for d that task needs..

• decompose(task, idleList) is used to decompose the
task according to the idleList.

• secondaryAllocate(subTask, dev d) is used to
allocate the subTask to the device d by secondary
allocation.

• releaseDev(dev d, task|subTask) is used to release
the device d after the task or subTask is finished by
that device.

• getMoney(nodeId,money m) is used to add virtual
money m to the balance of nodeId’s virtual money
account, when nodeId accept a task or sub-task.

• costMoney(nodeId,money m) is used to minus
virtual money m to the balance of nodeId’s virtual
money account, when nodeId request a task or sub-
task.

• speed(dev d) return the moving speed of mobile
device d.

• predictDestination(dev d) is used to predict the
next destination mobile space of d during its roaming
among the mobile spaces.

• migrateService(service,microDC mcd1,microDC
mcd2) is used to migrate the service for mobile
application from micro datacenter mcd1 to mcd2.

• distance(dev d1, dev d2) return the distance between
mobile device d1 and d2.

• energyConsume(dev d, data, distance) is used to
estimate the energy consumption when device d send
data with the distance transmission distance.

• hop(microDC mcd1,microDCmcd2) return the
hops between micro datacenter mcd1 and mcd2.

112

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

C. API Use Cases and Aptitude

The general API framework can provide a rich and power-
ful development platform for sophisticated and comprehensive
use cases with flexible and ubiquitous constraint. In this
subsection, we will discuss some development examples and
use cases on the MCSF framework with specified system
design objectives.

1) Incentive Mechanism Design: Incentive mechanisms
motivate the participation of people in crowdsourcing or hu-
man tasking systems. It is still an open problem to design an
optimal model to encourage mobile nodes people to actually
perform tasks and contribute meaningfully, which will be an
important part of an MCS system [12] [13]. Good incentive
mechanisms will inspire mobile nodes to participate in the task,
and improve the performance of the MCS.

One common type of incentive mechanisms for raising
user participation in MCSF. The developer can establish an
ecosystem to encourage the mobile nodes to take part in the
task through the virtual money as fortune reward to the service
provider, and virtual money owner can purchase the MCS
service in the ecosystem. For example, each mobile user can
get the basic virtual money when it joins the MCSF. Virtual
money can be used in this ecosystem. When mobile node
requests a task, it should cost its own virtual money. Nodes
will earn the virtual money through participating tasks or sub-
tasks. Such complex incentive mechanism can be developed
on the basic API of getMoney() and costMoney().

2) QoS Aware Task Allocation: Mobility is an inherent
factor of mobile applications and close to the QoS. The
mobility of nodes will cause more complex problems which
may lower the performance of the MCSF. For example, the
mobility of a mobile node may cause the task service to break.
Additionally, locality-aware applications are also sensitive to
mobility. This type of task allocations should consider the
moving speed of the node.

Therefore, the task allocation should take mobility factor
into consideration to devise a robust and efficient mechanism
for MCSF system to further optimize the performance and
improve the QoS of the MCSF system. In QoS aware task
allocation algorithm,tasks will be allocated to the mobile nodes
who will not move out the communication range before the
task’s deadline. This can ensure that the tasks be executed
successfully. This algorithm can be developed on the basic
API of deadline() and speed().

3) Cost Manage in Task Allocation: Completing the tasks,
especially the cross-space tasks, requires serval micro data-
centers to work together. The main cost in MCSF are mobile
cost and fog cost, including energy, network, computing and
storage cost. Due to the heterogeneous of micro datacenters
and their dominate mobile resource, inefficient task allocation
will increase the cost of whole system. Minimizing the overall
cost in MCSF will largely affect the system’s performance.

Reducing the cost of MCFS system can be conducted
by efficient tasks allocation. To achieve such objective, the
optimization algorithm can be designed in two aspects: (1)S-
electing cost efficient cooperative micro datacenters in fog
network layer. We could combine the routing scheme and
reducing the number of hops of data transmission to reduce

the bandwidth cost in fog network.The API hop() can assist
the routing scheme development. (2) Allocating/Secondary
allocating the task/sub-task to mobile nodes with cost efficient
scheme in mobile layer. For example, we can get distance
between two devices, and estimate its energy consumption.
So MCFS can adopt the allocation scheme with efficient cost.
This function can be developed on the API distance() and
energyConsume().

4) Seamless Handover in Mobile Nodes Roaming: In M-
CSF system, mobile nodes may move from one mobile space
to another space. Its service will also be moved from one
micro datacenter to another one. This will cause the temporary
interruption of the services or increase the service latencies.

Seamless handover in mobile nodes roaming is an impor-
tant factor to improve user experience. Aiming to achieve this
effect, MCSF needs to predict the destination micro datacenter
of a mobile device, and migrate the service before its arriving,
so as to decrease the service latencies. As soon as the mobile
nodes arrive, the destination local service between mobile
nodes and micro datacenter can be reestablished quickly.
These function module can be developed on the basic API
of predictDestination() and migrateService().

IV. BENEFIT ANALYSIS OF MCSF

Currently, cloud based architectures are popular for MCS.
There is a lot of architecture research related to the integration
of MCS and the cloud from different views. However, the
general framework of cloud-based MCS architecture is similar.
Therefore, we choose a recent work [14] for the purposes of
comparison. The other recent different architecture for MCS is
a mobile fog based framework [15]. In Table I. the difference
between cloud based, mobile fog based and MCSF is given.

Based on the previous description, in this section we will
discuss the benefits of MCSF as follows:

A. Benefits of a Fog Network

1) Scalability : The number of mobile devices is increas-
ing rapidly, and scalability is very important for MCS. As
discussed previously, a micro datacenter has a lighter weight
and is more scalable than a cloud datacenter. This type of
decentralized architecture is less limited by space and geo-
graphical position than a cloud datacenter. This flexible manner
is suitable for mobile node deployment and organization.

2) Low Latency: A fog network is at the edge of the
infrastructure and can closely service mobile nodes. Mobile
devices can access the micro datacenter more easily than a
cloud data center. Each micro datacenter dominates the mobile
devices in their dominant area. This manner can be easily
adapted for an increasing MCS.

3) Light Load: Fog computing is a decentralized infrastruc-
ture. Compared with centralized cloud-based MCS systems,
MCSF scatter the overall traffic, storage and computation load.
Each micro datacenter in a fog network only undertakes its own
portion of the load. This decentralized method can effectively
reduce the oversubscription probability which occurs in a cloud
datacenter.

113

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison With Other Architectures

Crowd sensing
architecture

Scalability Data process Latency Classified management

Cloud based
[14] [9] [16]

Scalability is limited
by centralized datacen-
ter infrastructure

Sensing data can be fil-
tered or aggregated by
specific mobile devices
and remote cloud data-
center

Data is sent to remote
cloud datacenter. This
causes high latency

Does not take the diversity of
tasks into consideration

Mobile fog
based [15] [17]

More scalability than
cloud based, but is stil-
l limited by central-
ized datacenter infras-
tructure

Sensing data can be
analysed by specific mo-
bile devices and remote
cloud datacenter

Data is sent to remote
cloud datacenter. This
causes high latency

Does not take the diversity of
tasks into consideration

MCSF Decentralized fog net-
work can be scaled
much easier than cen-
tralized infrastructure

Data can be processed
by both community mo-
bile nodes and local mi-
cro datercenters. This
manner is more flexible
and lighten the load for
datacenter.

Data is sent to nearby
local micro datacenter.
This can reduce laten-
cy

Mobile nodes and tasks are
classified into communities,
and task can be secondary
allocated according to the local
mobile devices’ status. Such
flexible allocation can reduce
the task’s response time and
improve the resource utilization

4) Reduction of Transmission Data Size by Pre-processing
in the Micro Datacenter: All sensing data will be transmitted
to the micro datacenter dominating the mobile nodes. The
micro datacenter can pre-process and fuse this data to reduce
the data transmission size and latency. For both local and cross-
space tasks, data pre-processing can reduce the data traffic in
the fog networks.

B. Benefits of Secondary Allocation

Within different communities, each mobile node has its
own professional skills and knowledge to manage the tasks,
and thus the tasks will be allocated to corresponding commu-
nity mobile nodes. After the community mobile nodes accept
these tasks, they can divide the tasks into several sub-tasks,
and perform secondary allocation to nearby idle nodes using
wireless communication such as Bluetooth. This can balance
the energy consumption and reduce the running time of the
task.

1) Improvement of the Device Utility: Flexible organization
can improve the device utility and guarantee a better QoS.
Community mobile nodes divide the task into several smaller
sub-tasks, and employ other nodes to finish these sub-tasks
and then send the intermediate results back to the community
mobile node.

2) Reduction of Transmission Data Size and Energy Con-
sumption: In secondary allocation, the community mobile
node becomes a secondary link, since nearby nodes are chosen
for the allocation. A short distance will consume less power for
the wireless communication. The node can also pre-process the
data from the acceptors to reduce the overall transmitted data.
This manner can further save the energy for mobile devices.

V. CONCLUSION

In this paper, we proposed a novel mobile crowdsensing
ecosystem architecture based on fog computing (MCSF) aim-
ing at overcome the shortcomings of cloud based MCS archi-
tectures. Compared with a centralized cloud, fog computing

can be deployed more easily for large scale applications. In
MCSF architecture, loads are distributed among the local micro
datacenters. This decreases the probability of oversubscription
that occurs to cloud datacenters. Therefore, fog computing
can service MCS applications more efficiently and MCSF can
reduce the latency of MCS applications. In the MCSF, the
mobile nodes and tasks are classified within the community ac-
cording to their professional area attributes. This classification
enables more effective management of diverse applications.
MCSF allows community mobile nodes and micro datacenters
to pre-process the sensing data, which can further reduce the
latency and energy consumption for mobile nodes.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China under Grant No. U1905211 and 61702103,
Natural Science Foundation of Fujian Province under Grant
No. 2020J01167 and 2020J01169.

REFERENCES

[1] D. Evans, “The internet of things how the next evolution of the internet
is changing everything. cisco white papers, 2011.”

[2] T. N. Nguyen and S. Zeadally, “Mobile crowd-sensing applications:
Data redundancies, challenges, and solutions,” ACM Transactions on
Internet Technology (TOIT), vol. 22, no. 2, pp. 1–15, 2021.

[3] N. Maisonneuve, M. Stevens, M. E. Niessen, and L. Steels, “Noisetube:
Measuring and mapping noise pollution with mobile phones,” in Infor-
mation Technologies in Environmental Engineering. Springer, 2009,
pp. 215–228.

[4] Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao, “Automatically char-
acterizing places with opportunistic crowdsensing using smartphones,”
in Proceedings of the 2012 ACM Conference on Ubiquitous Computing.
ACM, 2012, pp. 481–490.

[5] R. K. Ganti, N. Pham, H. Ahmadi, S. Nangia, and T. F. Abdelzaher,
“Greengps: a participatory sensing fuel-efficient maps application,” in
Proceedings of the 8th international conference on Mobile systems,
applications, and services. ACM, 2010, pp. 151–164.

[6] B. Guo, Z. Yu, X. Zhou, and D. Zhang, “From participatory sensing to
mobile crowd sensing,” in Pervasive Computing and Communications
Workshops (PERCOM Workshops), 2014 IEEE International Confer-
ence on. IEEE, 2014, pp. 593–598.

114

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

[7] B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Y. Yen, R. Huang,
and X. Zhou, “Mobile crowd sensing and computing: The review
of an emerging human-powered sensing paradigm,” ACM Comput.
Surv., vol. 48, no. 1, pp. 7:1–7:31, Aug. 2015. [Online]. Available:
http://doi.acm.org/10.1145/2794400

[8] X. Hu, X. Li, E. C.-H. Ngai, V. C. Leung, and P. Kruchten, “Mul-
tidimensional context-aware social network architecture for mobile
crowdsensing,” IEEE Communications Magazine, vol. 52, no. 6, pp.
78–87, 2014.

[9] A. Antonic, K. Roankovic, M. Marjanovic, K. Pripuic et al., “A mobile
crowdsensing ecosystem enabled by a cloud-based publish/subscribe
middleware,” in Future Internet of Things and Cloud (FiCloud), 2014
International Conference on. IEEE, 2014, pp. 107–114.

[10] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its
role in the internet of things,” in Proceedings of the first edition of the
MCC workshop on Mobile cloud computing. ACM, 2012, pp. 13–16.

[11] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application manage-
ment in fog computing environments: A taxonomy, review and future
directions,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–43,
2020.

[12] K. Han, C. Zhang, J. Luo, M. Hu, and B. Veeravalli, “Truthful schedul-
ing mechanisms for powering mobile crowdsensing,” IEEE Transactions
on Computers, vol. 65, no. 1, pp. 294–307, 2016.

[13] X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao,
“Incentives for mobile crowd sensing: A survey,” IEEE Communications
Surveys & Tutorials, vol. 18, no. 1, pp. 54–67, 2016.

[14] A. Antonić, M. Marjanović, K. Pripužić, and I. P. Žarko, “A mo-
bile crowd sensing ecosystem enabled by cupus: Cloud-based pub-
lish/subscribe middleware for the internet of things,” Future Generation
Computer Systems, vol. 56, pp. 607–622, 2016.

[15] P. P. Jayaraman, J. B. Gomes, H.-L. Nguyen, Z. S. Abdallah, S. Kr-
ishnaswamy, and A. Zaslavsky, “Scalable energy-efficient distributed
data analytics for crowdsensing applications in mobile environments,”
IEEE Transactions on Computational Social Systems, vol. 2, no. 3, pp.
109–123, 2015.

[16] M. Marjanović, L. Skorin-Kapov, K. Pripužić, A. Antonić, and I. P.
Žarko, “Energy-aware and quality-driven sensor management for green
mobile crowd sensing,” Journal of Network and Computer Applications,
vol. 59, pp. 95–108, 2016.

[17] P. P. Jayaraman, J. B. Gomes, H. L. Nguyen, Z. S. Abdallah, S. Kr-
ishnaswamy, and A. Zaslavsky, “Cardap: A scalable energy-efficient
context aware distributed mobile data analytics platform for the fog,” in
East European Conference on Advances in Databases and Information
Systems. Springer, 2014, pp. 192–206.

115

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 13,2024 at 11:25:27 UTC from IEEE Xplore. Restrictions apply.

