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A B S T R A C T

In the Internet of Things (IoT), a huge amount of valuable data is generated by various IoT applications.
As the IoT technologies become more complex, the attack methods are more diversified and can cause
serious damages. Thus, establishing a secure IoT network based on user trust evaluation to defend against
security threats and ensure the reliability of data source of collected data have become urgent issues, in
this paper, a Data Fusion and transfer learning empowered granular Trust Evaluation mechanism (DFTE) is
proposed to address the above challenges. Specifically, to meet the granularity demands of trust evaluation,
time–space empowered fine/coarse grained trust evaluation models are built utilizing deep transfer learning
algorithms based on data fusion. Moreover, to prevent privacy leakage and task sabotage, a dynamic reward
and punishment mechanism is developed to encourage honest users by dynamically adjusting the scale of
reward or punishment and accurately evaluating users’ trusts. The extensive experiments show that: (i) the
proposed DFTE achieves high accuracy of trust evaluation under different granular demands through efficient
data fusion; (ii) DFTE performs excellently in participation rate and data reliability.
. Introduction

With the rapid development of edge computing and smart terminal
echnology, a large number of Internet of Things (IoT) applications
ave emerged one after another, greatly expanding data sources and
ringing massive amounts of valuable data [1]. In a ‘‘data-driven’’
ociety, various IoT networks contribute to the diversity of user roles,
hich inevitably leads to unreliable data sources [2]. For example, data

ources range from legitimate data collection nodes of heterogeneous
ystems and networks to malicious users or attackers. Due to the lack
f security protection, these data sources are vulnerable to multiple
ttacks, namely node replication attacks, denial of service attacks, re-
lay attacks, spoofing attacks, etc., causing unreliable data to seriously
eviate from real data [3].

Data security threats faced by IoT applications can generally be
ivided into two categories: one is the external threat, i.e., malicious
onitoring of transmission data, impersonating registered users to

nject wrong data or launching man-in-the-middle attacks to tamper
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with data; the other is the internal threat, i.e., legitimate users Pro-
vide wrong data to the network to influence decision-making [4].
Generally, external threats can be prevented by methods based on
signatures, authentication, and encryption, while internal threats are
widely prevented by trust management [5]. Trust management mainly
includes four steps: credit evidence collection, credit evaluation, trust
evaluation and trust value update. Specifically, the trust management
center first collects credit evidence for the trust evaluation object;
then, it computes the credit value of the object based on the collected
evidence by using the credit computation model; next, the trust level of
object is evaluated based on the trust-related factors such as network
security status, object area and object engagement time; eventually,
according to the credit evidence provided by the user and the trust
level of the object, the credit value of the user who provides the credit
evidence is updated [6].

As an important supplement to cryptographic methods, trust man-
agement can guarantee the authenticity and validity of IoT data. Trust
evaluation is a process of quantifying trust by analyzing relevant data,
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and it plays a decisive role in trust management. Trust assessment
has been widely used in many fields, such as social networks, digital
communications, e-commerce, cloud services, and peer-to-peer net-
works. With the rapid development of network systems accompanied
by a large influx of data, trust evaluation is shifting from model-based
trust evaluation to data fusion-based trust evaluation [7]. Compared
with traditional methods, data fusion has irreplaceable advantages in
intelligent trust assessment. First, data fusion can reduce the size and
dimensions of data and extract useful information from it. Secondly,
data fusion can accurately simulate human decision-making evaluation
on trust, so the evaluation results can be easily interpreted and accepted
by humans. However, the processing and processing of massive data
in the process of data fusion has become a key challenge [8]. To
solve the above challenges, transfer learning [9], as a revolutionary
breakthrough in artificial intelligence, can transfer models trained on
one data set to another, so it has advantages in model training based
on data fusion.

Considering the characteristics of massive, multi-modal and hetero-
geneous data collected from various sources for trust evaluation, in this
paper, a Data Fusion and transfer learning empowered granular Trust
Evaluation model, named DFTE, is proposed. The major contributions
of our work are as follows.

1. To meet granular demands of trust evaluation, two time–space
empowered trust evaluation models are built utilizing Deep
Reinforcement Learning (DRL) methods based on data fusion,
which are the fine-grained trust evaluation model constructed
using the Deep Deterministic Policy Gradient algorithm (DDPG)
and the coarse-grained trust evaluation model constructed based
on the Deep Q-learning Network (DQN). In addition, the Trans-
fer Learning (TL) algorithm is employed to reduce the model
training time.

2. To encourage honest users, a dynamic reward–punishment mech-
anism is developed, in which the scale of reward and punishment
is dynamically adjusted utilizing DRL methods.

3. The extensive experiments show that the proposed DFTE
achieves high accuracy in trust evaluation under different gran-
ular demands and it performs excellently in participation rate
and data reliability.

The rest of this paper is organized as follows. The related work
s introduced in Section 2. The system architecture and attack model
re given in Section 3. The proposed DFTE method is presented in
ection 4. The performance evaluations are given in Section 5. We
onclude this paper in Section 6.

. Related work

In order to ensure the validity and reliability of data collected from
arious data sources in different fields, the topic of trust evaluation
as recently attracted widespread attentions. This section introduces
systematic literature review in the field of trust evaluation based on
ata fusion and machine learning.

.1. Data fusion based trust evaluation schemes

In [10], Qiu et al. defined data fusion trust architectures with
ifferent trust levels, and then proposed an efficient and practical data
usion trust system for multi-source and multi-format data exchange in
eterogeneous networks. In [11], Liang et al. proposed a reliable trust
omputing mechanism based on multi-source feedback and data fusion
n fog computing to reduce trust computing overhead, communication
verhead and communication delay in the trust evaluation process.
n [12], Lv et al. proposed a data security collection trust evaluation
cheme based on wireless sensor networks to deal with threats in
he data collection process and ensure data quality. In [13], Wang
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et al. designed an effective trust evaluation strategy to calculate the
credibility of users in data collection during the data fusion process
in the context of big data. In [14], Yu et al. made full use of the
universally relevant characteristics of the data fusion process, evaluated
the reliability of the ordinary group by measuring the number of
communications between the ordinary group and the absolute trust
group, and measured different similarities of group attributes. In [15],
Gao et al. proposed a multi-criteria trust evaluation mechanism for
information sources, which combined identity-based trust, behavior-
based trust, relationship-based trust and feedback-based trust factors, to
present information sources. In [16], Yao et al. used the weights related
to vehicle nodes and their corresponding data as the main indicators for
calculating trust, and analyzed the relationship between the reporter’
s location and time through traffic experience and utility theory, so as
to achieve an effective trust assessment. In [17], Tang et al. proposed
a reputation-aware data fusion mechanism to ensure data integrity by
using the Gompertz function to evaluate the credibility of the data
reported by the participants.

2.2. Trust evaluation schemes using machine learning

In [18], Chen et al. proposed a trust evaluation framework based
on machine learning, which promotes policy by considering multiple
user characteristics and standards related to trust. In [19], Hesham
et al. proposed a new entity-centric trust evaluation framework, which
used decision trees and artificial neural networks to ensure reliable data
transmission between vehicles during the data fusion process. In [20],
Karmakar et al. proposed an innovative trust evaluation model based
on deep learning, which measured the trust score of IoT sensor values
through time correlation to improve accuracy and reliability. In [21],
Mayadunna et al. proposed a general trust evaluation framework,
which selected some characteristics of social networks for training, and
then designs training models and recommendation algorithms to calcu-
late node trust values. In [22], Wang et al. used logistic regression to
combine the node’s own information to propose an improved algorithm
for calculating the trust value of social network nodes.

Although these works contribute to trust evaluation in IoT applica-
tions, there are still the following challenges: 1) How to overcome the
efficiency difficulties of trust evaluation model training based on data
fusion; 2) How to meet the different granular requirements of trust eval-
uation; 3) How to satisfy the privacy and security requirements of trust
evaluation; 4) How to overcome the problem of data collected from
different but related domains, resulting in low efficiency and reliability
of data fusion, and thus unable to provide effective collaborative cross-
domain reputation evaluation. In this paper, a granular trust evaluation
model for data fusion and transfer learning is developed to solve these
four problems.

3. System architecture and attack model

3.1. System architecture

In this paper, a granular trust evaluation model DFTE for data
fusion and transfer learning is developed. Specifically, the historical
data collected in each area will be gathered in the data fusion center
to extract the user’s trust evidence, i.e., the user’s trust and task com-
pletion status, and use different DRL algorithms to train a unified trust
evaluation model to meet the granularity demand. After the training
is completed, the unified trust evaluation model is distributed to each
local trust evaluation center. For some local trust evaluation centers
that cannot train a trust evaluation model, a unified trust evaluation
model is directly used, while for local trust evaluation centers with
model training capabilities, migration learning can be used on the basis
of the unified model to reduce local model training time. Based on the
above analysis, three entities should be considered, namely users, local
trust evaluation centers, and the data fusion center.
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1. Users: Each user belongs to a specific area, so the trust evaluation
of users can minimize the potential security risks of non-local
users (i.e, unauthorized access to sensitive information, delib-
erately sabotage tasks, etc.). In addition, the trust value of
each user determines what kind of tasks the user can accept.
For example, users with a high degree of trust can apply for
high-level tasks. If the user completes the task well, his trust
will increase significantly. Therefore, it is necessary to design
a reasonable incentive mechanism to reward honest users and
punish malicious users.

2. Local Trust Evaluation Centers: Each local trust evaluation cen-
ter is deployed on a specific area, which assesses the trust of
each user within. Since the security risks imposed by mali-
cious users can result in significant damage, the trust of each
user should be properly evaluated. For a local trust evalua-
tion center, which is capable of implementing high-performance
computations (e.g., running deep reinforcement learning based
algorithms), the local trust evaluation model can be trained
individually based on trust evidences, i.e., users’ trusts and
corresponding task completions. In addition, each local trust
evaluation center can make a use of the unified trust evaluation
model trained by the data fusion center to reduce the local model
training time. In addition, the local trust assessment center also
dynamically adjusts the user’s trust level according to the areal
security level.

3. The Data Fusion Center : The historical data collected from each
area will be gathered in the data fusion center, and a unified
trust evaluation model will be trained through the edge data
fusion server, the edge trust evaluation server and the edge
security level evaluation server. Note that the security level of
an area directly affects the trust of users. For example, for areas
with high security levels, users’ trust levels should be evaluated
more rigorously, which will result in relatively low user trust
levels, while for areas with low security levels, The user’s trust
is relatively high. Therefore, the data fusion center must also
evaluate the security level of each area. Since the security level
of the area is gradually changing and the evaluation of the
security level is directly related to the user’s trust evidence, the
frequency of execution of this evaluation is lower than that of
the user. This implies the importance of trust evaluation for
time–space empowered trust evaluation.

In this article, we aim to design a trust evaluation model based
on data fusion to meet granular requirements. For fine-grained trust
evaluation, we choose the deep reinforcement learning algorithm DDPG
to determine whether the user is honest, normal or malicious, and for
coarse-grained trust evaluation, we use the deep reinforcement learning
algorithm DQN to determine whether the user is honest or malicious
of. The reason is as follows. Both DDPG and DQN can be used to find
the best strategy. However, in order to ensure the accuracy of trust
evaluation, the optimal evaluation threshold needs to be found through
continuous spatial search. Compared with DDPG, DQN is suitable for
searching in discrete space. The system model of the proposed DFTE is
given in Fig. 1.

3.2. Attack model

In this paper, we assume both data fusion center and local trust
evaluation centers are honest, while users are either honest or mali-
cious. Traditional trust evaluation often uses local trust evidence only,
so a local honest user may be malicious in other areas. Therefore,
this article considers privacy leakage attacks and mission destruction
attacks caused by malicious users.

1. Privacy Leakage Attack: Malicious users launch privacy attacks
on the local trust evaluation center by leaking sensitive in-
formation about tasks or sharing this information with other
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malicious users. This indicates that the trust evaluation mech-
anism should be able to dynamically adjust the user’s trust to
prevent malicious users from accessing sensitive tasks.

2. Task sabotage Attack: Once malicious users accept the task, they
deliberately sabotage the attack by providing unreliable data
tasks. In order to prevent such attacks, incentive mechanisms
will be introduced to reward honest users and punish malicious
users.

4. The proposed DFTE method

Data fusion-based trust evaluation is realized in two stages. In the
first stage, the data fusion center uses different DRL algorithms to
calculate a unified trust evaluation model based on the historical data
provided by each area and send the model to each local trust evaluation
center. In the second stage, the unified trust evaluation model is either
directly used to evaluate user trust, or transfer learning is used to
reduce the training time of the local trust evaluation model.

4.1. The unified trust evaluation model

The trust evaluation of users in each area depends on the user’s trust
evidence and cross-areal related information. The data fusion center
can collect all historical data in each area and analyze and process
it, so as to find the appropriate relationship between the user and the
completion of the corresponding local/foreign tasks, and finally build
users’ trust evidences, which is considered as the data fusion process
of the entire trust evaluation. the In addition, the data fusion center
manages to obtain the security level of each area. This is because the
security level is related to users’ trusts, i.e., users of a high trust level
can accept tasks in the areas of a low security level, while users of a
low trust level can hardly accept tasks in the areas of a high security
level.

4.1.1. Areal security level calculation
The security level of an area directly affects the trust of internal

users, but how to evaluate the security level of each area is an open
question. On the other hand, the completion of the user’s task will affect
the security level of the area. For example, the long-term outstanding
task completion of an area indicates that the security level of the area
is high, and vice versa. Thereby, we evaluate the security level of the
𝑖th area by

𝑎𝑟𝑒𝑎𝑖_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙 ∝
𝑚
∑

𝑗
𝑑𝑎𝑡𝑎𝑗 _𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, (1)

where 𝑚 denotes the number of task released from the area, and
𝑑𝑎𝑡𝑎𝑖_𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 denotes the data reliability for the 𝑖th task. Then, the
normalized value, i.e.,

𝑎𝑟𝑒𝑎𝑖_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙 =
𝑎𝑟𝑒𝑎𝑖_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙

max{𝑎𝑟𝑒𝑎𝑗 _𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙|𝑗 ≤ 𝑛}
, (2)

where 𝑛 denotes the number of areas, is considered as the security level
of the 𝑖th area. Once the security level of each area is calculated, we
can adjust the trust level of each user according to the security level of
the area.

4.1.2. User credit calculation
We evaluate the credit of users by evaluating the completion of

local tasks and the completion of external tasks. This indicates that the
user’s credit is the integration of the local credit 𝑢𝑠𝑒𝑟_𝑙𝑜𝑐𝑎𝑙𝑐𝑟𝑒𝑑𝑖𝑡 and
the foreign credit 𝑢𝑠𝑒𝑟_𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑐𝑟𝑒𝑑𝑖𝑡, that is,

𝑢𝑠𝑒𝑟_𝑐𝑟𝑒𝑑𝑖𝑡 = 𝛼 × 𝑢𝑠𝑒𝑟_𝑙𝑜𝑐𝑎𝑙𝑐𝑟𝑒𝑑𝑖𝑡 + (1 − 𝛼) × 𝑢𝑠𝑒𝑟_𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑐𝑟𝑒𝑑𝑖𝑡, (3)

where 𝛼 ≥ 0.5. Since the user’s credit is closely related to the task
completion, we can calculate the local credit and the foreign credit by
𝑢𝑠𝑒𝑟_𝑙𝑜𝑐𝑎𝑙𝑐𝑟𝑒𝑑𝑖𝑡 = 𝛽 × 𝑙𝑜𝑐𝑎𝑙𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛, (4)
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Fig. 1. The system model of the proposed DFTE.
𝑢𝑠𝑒𝑟_𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑐𝑟𝑒𝑑𝑖𝑡 = (1 − 𝛽) × 𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛, 0 < 𝛽 < 1. (5)

In this paper, either the local task completion or the foreign task com-
pletion of a user is measured by the data reliability 𝑑𝑎𝑡𝑎_𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 pro-
vided by the user. Once the user accepts a task, only when he provides
reliable data that make either 𝑙𝑜𝑐𝑎𝑙𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 or
𝑓𝑜𝑟𝑒𝑖𝑔𝑛𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 reach a certain threshold, can it be considered
as qualified to complete the task, then the user’s credit will increase.
In order to punish a malicious user who provided unreliable data, the
user suffered a significant loss in terms of trust level.

4.1.3. User trust calculation
Once the user’s credit is obtained, we can evaluate the user’s trust

𝑢𝑠𝑒𝑟_𝑡𝑟𝑢𝑠𝑡. Considering the case that a area might have a high security
level at the beginning and yet ends up with a relative low one, the
security level of a specific area is evaluated for the adjustment of users’
trusts. In addition, it might be difficult for an honest user within a area
of a higher security level to apply for the task with a high trust level
constrain, however it is relatively easy for this user to apply for the task
of the same trust level constrain in another area of a lower security
level. Thereby, we use the security level of each area to dynamically
adjust the trust of each user within this area by

𝑢𝑠𝑒𝑟_𝑡𝑟𝑢𝑠𝑡 = 𝑢𝑠𝑒𝑟_𝑐𝑟𝑒𝑑𝑖𝑡
𝑎𝑟𝑒𝑎_𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙 . (6)

4.1.4. Dynamic reward–punishment mechanism
Incentive mechanism design should consider rewards/punishment

for user trust, that is, users who complete tasks well should be re-
warded with trust-enhancing rewards, and malicious users who de-
liberately sabotage tasks should be severely punished for their trust.
Generally speaking, it is a feasible solution to share credit rewards
for uncompleted tasks among users who have completed tasks. Since
most security problems are caused by malicious users, increasing user
trust is much more difficult than reducing trust. Therefore, the re-
ward/punishment for user trust should be implemented based on the
trust level of the task, i.e.,

𝑢𝑠𝑒𝑟_𝑡𝑟𝑢𝑠𝑡 ← 𝑢𝑠𝑒𝑟_𝑡𝑟𝑢𝑠𝑡 + 𝜁 × 𝑡𝑎𝑠𝑘_𝑡𝑟𝑢𝑠𝑡𝑙𝑒𝑣𝑒𝑙; (7)
152
otherwise, the user’s trust drops, i.e.,

𝑢𝑠𝑒𝑟_𝑡𝑟𝑢𝑠𝑡 ← 𝑢𝑠𝑒𝑟_𝑡𝑟𝑢𝑠𝑡 − (1 − 𝜁 ) × 𝑡𝑎𝑠𝑘_𝑡𝑟𝑢𝑠𝑡𝑙𝑒𝑣𝑒𝑙, (8)

where 𝜁 ≤ 0.5.
To sum up, the traditional trust evaluation mechanism is mainly

designed based on the trust and task completion of users in a specific
area. However, a malicious user in one area may be an honest user in
another area. Therefore, all trust evidence should be aggregated to the
data fusion center to train a unified trust evaluation model. In order to
meet specific granularity requirements, the data fusion center will use
DRL algorithms, namely DDPG and DQN, to develop fine-grained trust
evaluation and coarse-grained trust evaluation models, respectively.

4.1.5. DRL based granular trust evaluation
In the fine-grained trust evaluation, the DDPG is employed. In

DDPG, four networks, namely the critic network 𝑄, the target critic
network 𝑄′, the actor networks 𝜋 and the target actor networks 𝜋′,
collaborate to make decisions. And the parameters of these networks
are denoted by 𝜗𝑄, 𝜗𝑄′ , 𝜗𝜋 and 𝜗𝜋′ , respectively.

As a DRL, DDPG requires three basic components, i.e., state, action
and reward. The action is given at a state to obtain the reward and then
the next state is observed from the environment. In the fine-grained
trust evaluation, users’ trusts consists of the state 𝑠. Based on each state,
we choose the triple ⟨𝛼, 𝛽, 𝜁⟩ as the action 𝑎. The reason for that is as
follows. Each dimension of the triple determines the scale of impact
of a specific factor. Specifically, 𝛼 represents whether the user’s credit
values the local credit over the foreign one due to the local credit of a
user might be higher than the foreign credit; 𝛽 reflects the importance
of the local task completion considering a user might perform well in
local task completion however fails in foreign ones or vice versa; 𝜁
affects the rewards on honest users and the punishments to malicious
users in trust value, i.e., if we encourage a user to be an honest one,
then 𝜁 should be less than 0.5 to ensure an honest user can have a
much higher trust than that of a malicious one. Since the data fusion
center aims to find the optimal value for each dimension to accurately
evaluate each user’s trust, we let each user’s trust fall into one of three
ranges, i.e., [0, 0.3), [0.3, 0.6), and [0.6, 1] to determine whether the
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Fig. 2. Granular trust evaluation based on DDPG or DQN.
user is an honest one, a normal one, or a malicious one. Then, we give
the reward 𝑟 by

𝑟 =
∑

𝑙

∑

𝑚
𝑑𝑎𝑡𝑎_𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦, (9)

where 𝑚 denotes the number of task posted on each area and then
accepted and completed by users, and 𝑙 represents the number of areas.
To maximize the reward 𝑟𝑡 in the 𝑡th timeslot, the optimal action 𝑎𝑡 for
each state 𝑠𝑡 is given by

𝑎𝑡 = argmax
𝑎∈𝐴

𝑄(𝑠𝑡, 𝑎). (10)

Then, experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is stored in experience poor  .
In DDPG’s training process, 𝑁 experiences are randomly sampled

from  to update the critic network utilizing the loss function

(𝜗𝑄) = 1
𝑁

𝑁
∑

𝑖
[𝑄(𝑠𝑖, 𝑎𝑖|𝜗𝑄) − 𝑖]2, (11)

where

𝑖 = 𝑟𝑖 + 𝛾(𝑄(𝑠𝑖+1, 𝜋(𝑠𝑖+1|𝜗𝜋
′
)|𝜗𝑄

′
)), 0 < 𝛾 < 1. (12)

Then, the actor network is updated utilizing policy gradient as

∇𝜗𝜋𝐽 = 1
𝑁

𝑁
∑

𝑖

[

∇𝑎𝑄(𝑠, 𝑎|𝜗𝑄)|𝑠 = 𝑠𝑖, 𝑎 = 𝜋(𝑠𝑖|𝜗𝜋 )

∇𝜗𝜋𝜋(𝑠|𝜗𝜋 )|𝑠 = 𝑠𝑖
]

.

(13)

Once networks 𝜋 and 𝑄 are updated, the parameters of target networks
𝜗𝑄′ and 𝜗𝜋′ are updated with a learning rate 𝜅, 0 < 𝜅 < 1

𝜗𝑄
′
= 𝜅𝜗𝑄 + (1 − 𝜅)𝜗𝑄

′
, (14)

𝜗𝜋
′
= 𝜅𝜗𝜋 + (1 − 𝜅)𝜗𝜋

′
. (15)

The coarse-grained trust evaluation is implemented by the data
fusion center utilizing another DRL algorithm DQN to train the unified
trust evaluation model. Similar to DDPG, the DQN still requires three
basic components: state, action and reward. The state, action and
reward of the DQN are identical to that of the DDPG. However, in
coarse-grained trust evaluation, we let each user’s trust fall into two
ranges, i.e., [0, 0.5) and [0.5, 1] to determine whether the user is an
honest one or a malicious one. Specifically, in DQN, a random action 𝑎
153

𝑡

in the 𝑡th timeslot is chosen with a probability 𝜖; otherwise, the action
𝑎𝑡 is chosen by

𝑎𝑡 = argmax
𝑎∈𝐴

𝑄(𝑠𝑡, 𝑎; 𝜃). (16)

Then, experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) is stored in experience poor  ′.
In DQN’s training process, we randomly sample minibatch of tran-

sitions (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) from  ′ to perform the gradient descent using the
following loss function on the parameter 𝜃

 = (𝑦𝑗 −𝑄(𝑠𝑡, 𝑎𝑡; 𝜃)2), (17)

where

𝑦𝑗 =
{

𝑟𝑗 , 𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝 𝑗 + 1,
𝑟𝑗 + 𝛿max𝑎′ �̂�(𝑠𝑗+1, 𝑎′; 𝜃−), 0 < 𝛿 < 1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(18)

Then, for each certain number of steps, we set

�̂� = 𝑄. (19)

The structure of the trust evaluation utilizing DDPG or DQN is given in
Fig. 2.

4.2. Transfer learning based user trust evaluation

4.2.1. Fine-grained TL based user trust evaluation
In the fine-grained user trust evaluation, we use TL [23] to construct

the trust evaluation model based on DDPG to reduce the training time
of the local trust evaluation model. Specifically, the data fusion center
trains DDPG to implement a unified trust evaluation, and then uses
the trained DDPG network as an initialization model for local training.
That is, the parameters of the hidden layer of the DDPG network of the
unified trust evaluation are shared as the initialization of the local trust
evaluation. We summarize the TL based user trust evaluation utilizing
DDPG in Algorithm 1.

Fig. 3 gives the relevant details about the fine-grained TL based user
trust evaluation.

4.2.2. Coarse-grained TL based user trust evaluation
In the Coarse-grained user trust evaluation, we use TL to construct

the DQN based trust evaluation model to reduce the model training
time. That is, the parameters of the hidden layer of the DQN network
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Algorithm 1 User Trust Evaluation using DDPG and TL
Input: Local Trust Evidences,Trust Evidences Collection, actor net-

works 𝜋1 and 𝜋′

1 and critic networks 𝑄1 and 𝑄′

1 of DDPG network
1, actor networks 𝜋2 and 𝜋′

2 and critic networks 𝑄2 and 𝑄′

2 of DDPG
network 2, states and actions of DDPG network 1 and 2
utput: User Trust Evaluation Model using DDPG and TL
for 𝐸𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 𝑇𝑚𝑎𝑥 do

for 𝑡 = 1, 𝑇 do
An action is chosen using 𝜋1(𝑠𝑡|𝜗𝜋1 )
Reward 𝑟𝑡 is calculated using (9) and next state 𝑠𝑡+1 is observed

after Executing action 𝑎𝑡
Experience poor  add (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)
𝑁 experiences are randomly sampled from 
Critic network is updated using (11) and (12)
Actor network is updated using (13)
Target networks are updated using (14) and (15)

end for
end for
Local trust evaluation model (DDPG Network 2) uses the parameters
of the unified trust evaluation model (DDPG Network 1)
Start to train the local trust evaluation model (DDPG Network 2)

Algorithm 2 User Trust Evaluation using DQN and TL
Input: Local Trust Evidences,Trust Evidences Collection, action–value

function 𝑄 with weight 𝜃, target action–value function �̂� with weight
𝜃− = 𝜃

Output: User Trust Evaluation Model based on DQN and TL
for 𝐸𝑝𝑖𝑠𝑜𝑑𝑒 = 1, 𝑇𝑚𝑎𝑥 do

for 𝑡 = 1, 𝑇 do
A random action 𝑎𝑡 is chosen with probability 𝜖
Otherwise, 𝑎𝑡 is selected using (16)
Reward 𝑟𝑡 is calculated using (9)and next state 𝑠𝑡+1 is observed

after Executing action 𝑎𝑡
Experience poor  ′ add (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1)
𝑁 experiences are randomly sampled from  ′

Parameter 𝜃 is updated using gradient descent through (17)
and (18)

Target net is updated for every 𝐶 steps using (19)
end for

end for
Local trust evaluation model (DQN Network 2) uses the parameters
of the unified trust evaluation model (DQN Network 1)
Start to train the local trust evaluation model (DQN Network 2)

of the unified trust evaluation are shared as the initialization of the
local trust evaluation. We summarize the TL based user trust evaluation
utilizing DQN in Algorithm 2.

Fig. 4 gives the relevant details about the coarse-grained TL based
user trust evaluation.

5. Performance evaluation

5.1. Simulation setup

The simulation is implemented to validate the performance of the
proposed strategy DFTE in Python on a computer equipped with In-
tel Core i7 processor, 64G running memory, CPU frequency 6.4GHZ
64-bit win7 system. We use the similar experimental scenario given
in [24]. To be specific, the trust evaluation center publishes the image
recognition task. If the user’s trust is higher than the task’s trust level
constrain, then the user can accept the task and complete the task
through federated learning. The trust evaluation center evaluates the
154

t

Fig. 3. TL based Fine-grained trust evaluation utilizing DDPG.

Fig. 4. TL based Coarse-grained trust evaluation utilizing DQN.

ser’s trust by measuring the accuracy of the model provided by the
ser. In order to distinguish users with different capabilities, we let
ach user have a part of images of the Mnist [25] dataset. In addition,
n order to achieve the transferability of the trust evaluation model
etween different areas, we set the number of areas with resemblances
quals to 10. The number of users are varying from 50 to 300 as that
f the tasks. We let all users have the same initial trust value, and give
ach task a trust level constrain. In the DRL based trust evaluation, the
iscount factors 𝛾 and 𝛿 are set to 0.9 and 0.7 respectively, while the
earning rate 𝜅 is set to 0.1.

.2. Performance metrics

We validate the performance of DFTE by comparing with baseline
pproaches BSDA [26] and BPDC [27] in terms of trust evaluation accu-
acy, data reliability and participation rate, while considering different
umber of tasks and users, respectively.

• Trust Evaluation Accuracy : Both false alarm rate (FAR) and miss
detection rate (MDR) consist of the trust evaluation accuracy.

• Data Reliability : The deviation between the provided data and the
reference is used to measure the data reliability.

• Participation Rate: The percentage of users who participate the
data fusion tasks.

ote that although both BSDA and BPDC can evaluate user’s trust in the
ask release scenario, they cannot meet different granular demands on
rust evaluation. In addition, they do not combine the dynamic reward
nd punishment mechanism with the trust evaluation, which will affect
he participation rate and the data reliability.
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Fig. 5. False Alarm Rate (FAR) and Miss Detection Rate (MDR), while varying number of users.
Fig. 6. False Alarm Rate (FAR) and Miss Detection Rate (MDR), while varying number of tasks.
5.3. Experiment results

5.3.1. Trust evaluation accuracy
As shown in Fig. 5, we find that as the number of users grows, the

trust evaluation based on DDPG reaches 3.7% FAR and 1.7% MDR,
while the trust evaluation based on DQN has higher FAR and MDR
which are 22.3% and 14.6% respectively on average. In addition, as the
number of tasks increases, the trust evaluation based on DDPG reaches
4.3% FAR and 2.7% MDR, while the trust evaluation based on DQN
has higher FAR and MDR which are 26.5% and 14.9% respectively on
average. The reason is as follows. Whether the user accepts the task
depends on the security level and credit reward of the task. In the initial
155
stage, the user’s credibility is low and can only receive low-level tasks.
Due to the limited number of tasks, the samples required for trust eval-
uation are insufficient, resulting in low evaluation accuracy. With the
increase in the number of users, users can obtain higher credit through
rewards and punishments based on completing more low-level tasks, so
that they can accept high-level tasks. This makes the trust evaluation
model to be trained on sufficient trust evidence. Therefore, the accu-
racy of trust evaluation is improved. In addition, compared to DQN-
based credit evaluation, DDPG-based trust evaluation can achieve fine-
grained user credit evaluation. This avoids the problem of insufficient
trust evidence due to the user’s inability to complete high-level tasks,
which reduces the credit rating and thus cannot receive low-level tasks.
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Fig. 7. Data reliability, while varying number of users and number of tasks.
Fig. 8. Participation rate, while varying number of users and number of tasks.
As shown in Fig. 6, as the number of users increases, the trust
valuation based on DDPG and TL reaches 4.8% of FAR and 2.55%
f MDR, while the trust evaluation based on DQN and TL has 24% of
AR and 17.1% of MDR. Moreover, with the increase in the number of
asks, the trust evaluation based on DDPG and TL reached 5.2% of FAR
nd 4% of MDR on average, while the trust evaluation based on DQN
nd TL has 26.8% of FAR and 17.6% of MDR. The reason is as follows.
e introduce transfer learning to reduce model training time. Using a

nified credit evaluation model for initialization in the training process
f the local credit evaluation model through the transfer learning
ethod between similar areas, not only can greatly reduce the model

raining time, but the accuracy of the credit evaluation model can also
e guaranteed.

.3.2. Data reliability
As shown in Fig. 7(a), we know that the data reliability of all

trategies increases as the number of users increases. The proposed
FTE achieves the highest data reliability, up to 88%, while BSDA and
PDC are 66% and 52%, respectively. The reason is as follows. Honest
sers will accept the task if their trust reaches the trust level of the
ask. Since the proposed DFTE uses machine learning to dynamically
djust data reliability factors and trust evaluation criteria to reward
onest users and punish malicious users, DFTE defeats BSDA and BPDC
n terms of the highest data reliability for any number of users. In
ig. 7(b), it is obvious that the proposed DFTE performs better than
he baseline strategy, that is, as the number of tasks increases, the data
eliability of DFTE is about 62% on average, compared to 53% of BSDA
nd 43% of BPDC. The reason is as follows. If all tasks are completed
eliably, more tasks will bring more credit rewards. However, some
sers may not be able to complete the tasks they accept, so trust
ewards and punishments will be shared by other users who complete
he tasks, and these users can apply for more tasks.

.3.3. Participation rate
Observing from Fig. 8(a) and Fig. 8(b), we find that the number of

sers and the number of tasks have similar effects on the participation
156
rate. For example, as the number of users grows, the participation rate
fluctuates. The highest participation rate of DFTE is as high as 75%,
while the participation rates of BSDA and BPDC are both lower than
65%. On the other hand, as the number of tasks increases, DFTE has a
higher participation rate of 77%, while both BSDA and BPDC are lower
than 65%. There is no doubt that the proposed DFTE is superior to
the baseline strategy. The reason is as follows. Once users complete
their tasks well, they can obtain credit rewards with a scale dynami-
cally adjusted using the DRL algorithm. By continuously and reliably
completing tasks, additional trust enhancement can enable users to be
rated as honest users, so that they can apply for tasks with higher trust
constraints. Compared with DFTE, neither BSDA nor BPDC can provide
accurate trust assessment or dynamically adjusted rewards/penalties.
In general, whether it is BSDA or BPDC, when considering different
numbers of users or tasks, the participation rate is nearly 10% lower
than that of DFTE.

6. Conclusion

The development of big data, edge computing, and smart terminal
technologies promotes the rapid development of IoT applications, and
generates a large number of valuable data. However, in the Internet
of Things, users usually lack security protection and are susceptible
to multiple attacks, especially internal attacks such as privacy attacks
and data reliability. As a result, the results of data analysis are quite
different from the actual situation, which ultimately affects the ap-
plication of the Internet of Things. To overcome these problems, in
this paper, a Data Fusion and transfer learning empowered granular
Trust Evaluation mechanism (DFTE) is proposed. In DFTE, time–space
empowered fine/coarse grained trust evaluation models is built based
on DRL algorithms, i.e., DDPG and DQN, to implement the different
granularity trust evaluation. And then, to prevent privacy leakage and
task sabotage, a DRL based dynamic reward punishment mechanism
is developed by dynamically adjusting the reward and punishment
scale for accurate evaluation on users’ trusts. Experimental results show
that the proposed DFTE achieves high accuracy of trust evaluation
under different granular demands through efficient data fusion, and it
performs excellently in user participation rate and data reliability.
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