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A B S T R A C T

With the development of the Internet of Things (IoT), the massive data sharing between IoT devices improves the
Quality of Service (QoS) and user experience in various IoT applications. However, data sharing may cause serious
privacy leakages to data providers. To address this problem, in this study, data sharing is realized through model
sharing, based on which a secure data sharing mechanism, called BP2P-FL, is proposed using peer-to-peer
federated learning with the privacy protection of data providers. In addition, by introducing the blockchain to
the data sharing, every training process is recorded to ensure that data providers offer high-quality data. For
further privacy protection, the differential privacy technology is used to disturb the global data sharing model.
The experimental results show that BP2P-FL has high accuracy and feasibility in the data sharing of various IoT
applications.
1. Introduction

With the development of the Internet technology, the Internet of
Things (IoT) is widely used in various industries [1]. Sensors are an
important part of the IoT and the most important data source for the IoT
system. The perception data collected by a single sensor often cannot
meet users’ needs, and the real value of the IoT lies in the comprehensive
utilization and sharing of various data and information [2–4]. For
example, in healthcare, data sharing can provide valuable health records,
including treatment and physical examination information, and can offer
more targeted treatments for patients. In industry, by analyzing the
collected data, data sharing can accurately understand the preferences of
tourists and predict future tourism hot spots to improve the quality of
service. However, data sharing in IoT may face various problems. First, it
is very difficult for each pair of organizations to build mutual trust. As a
result, it is unlikely to share reliable local data. Second, data privacy has
become a big problem that hinders data sharing because data owners
suffer from privacy leakage. Therefore, achieving effective data sharing is
a challenge, especially when these two problems have not been solved.

Machine learning [5] technologies are widely used in data sharing.
Traditional machine learning technologies collect data first and then
focus on model training. However, data collection is often difficult
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because data owners are worried about privacy leakage. Federated
learning is a distributed machine learning framework, which not only
reduces the computing burden of centralized devices by aggregating the
local training model of data owners rather than the original data, but also
protects the data privacy of data owners [6]. As a distributed shared
ledger and database, the blockchain [7,8] has the characteristics of
decentralization, non-tampering, tracing, collective maintenance, open-
ness, and transparency, which can provide reliable technical supports for
the privacy protection of data sharing. For example, the blockchain can
record the sharing behavior of each participant who provides a data
model, thus forcing the participants to provide a reliable data model.

According to abovementioned analysis, we propose herein a secure
data sharing mechanism, called BP2P-FL, using peer-to-peer federated
learning with the privacy protection of data providers. The contributions
of this paper are summarized as follows:

● A data sharing mechanism based on federated learning is proposed.
This mechanism transforms the data sharing problem into a model
sharing problem and realizes team-based data sharing. In addition,
the reward and punishment mechanism is introduced. Specifically,
the data requester will reward and punish each team according to the
results of data sharing, such that teammembers can complete the data
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Fig. 1. System architecture.
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sharing with high quality and reliability. Moreover, the “mortgage-
penalty” mechanism is introduced to further punish members who
provide unreliable data. Each team can further manage and supervise
members, such that they can efficiently and reliably complete the data
sharing tasks.

● Differential privacy is applied to data sharing by adding a Laplacian to
the global data sharing model, preventing the inference attack initi-
ated by data requesters and providing further privacy protection to
the data.

● The experiment results show that BP2P-FL achieves high accuracy
and feasibility for privacy-enhanced data sharing in IoT.

The rest of this paper is organized as follows. Section 2 presents the
related work. Section 3 introduces the systemmodel. Section 4 elaborates
the proposed strategy BP2P-FL. Section 5 presents the experiment. Sec-
tion 6 concludes this paper.

2. Related work

Secure data sharing in IoT has drawn an ever-growing interest, and
many data sharing mechanisms have been proposed.

In [9], the author proposed a secure data sharing framework using the
blockchain and the proxy re-encryption technology. To perform
fine-grained control on visitors and prevent privacy leakage [10], pro-
posed a new encryption algorithm based on hierarchical attributes,
which assigns attributes to authorization centers based on blockchain to
realize data security sharing. In Ref. [11], the authors embedded access
control rules into smart contracts to control user access to data and
divided the blockchain into multiple channels to protect data privacy and
security. To solve the problem of insecure data sharing caused by an
untrusted environment [12], proposed an efficient and secure data
sharing model based on the blockchain, which was based on attribute
encryption and can resist multiple attacks.

Although the encryption and decryption technologies can effectively
protect the privacy and security of data sharing, they are inefficient in
large-scale computing environments, and federated learning [13]
methods bring new opportunities for data security sharing. In Ref. [14],
the authors proposed an efficient federated learning scheme to ensure
data privacy. This scheme can resist collusion attacks in a distributed
environment and, at the same time, prevent personal data privacy
leakage. To solve the communication overhead of model training, the
authors in Ref. [15] proposed a sparse compression framework suitable
for broadband constrained environments. In Ref. [16], the authors
improved federated learning by evaluating the participant's model
feedback and the update method of participant weights. In Ref. [17], the
authors combined data sharing, machine learning, blockchain, and
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federated learning to solve the privacy protection problem in data
sharing. Meanwhile, to further optimize federated learning, the authors
in Ref. [18] used deep reinforcement learning to select the participating
nodes of federated learning, thereby improving the efficiency of the data
sharing process. In Ref. [19], the authors combined federated learning
and cryptography to protect the data privacy of data sharing participants
in the social IoT, and used a sparse differential gradient to improve data
transmission and storage efficiency. To solve the security problem of
resource sharing under the Internet of Vehicles, the authors in Ref. [20]
constructed a safe and hierarchical federated learning scheme to protect
the privacy of the local data model. Although the abovementioned work
has made positive contributions to privacy protection, how to ensure the
reliability of the data sharing process still needs further research.
Therefore, this study proposes a data sharing mechanism based on
federated learning to realize the safe and reliable sharing of data without
trust.

3. System model

We considered the collaborative data sharing scenario in this study.
That is, after the data requester sends a data sharing request, multiple
data providers collaboratively train a data model to realize data sharing.
Therefore, two entities should be considered in this scenario, namely task
receivers and the task publisher. Specifically, a team of users receive data
sharing tasks, and each user will participate in the training process of
federated learning. In this paper, we call these users data nodes, and they
will complete the blockchain consensus process. Each team has a team
leader who is responsible for receiving data sharing tasks, supervising the
federated learning process in data sharing, and sending the global model
combined with differential privacy to the task publisher, to prevent the
task publisher from inferring the privacy information of data providers. A
data requester is also called the task publisher, that is, the party who
needs data, and usually publishes its own data sharing request tasks on
the blockchain.

The blockchain-based data sharing can trace each data sharing node,
ensuring the traceability of data sharing. Therefore, we consider the
alliance chain and federated learning modules. The blockchain module
establishes a secure connection between all nodes, and all transactions
are packaged into blocks by miners. Considering audibility, the alliance
chain will record all data sharing records to track the nodes participating
in the data request task and the data usage. The architecture of the
scheme proposed in this article is shown in Fig. 1. Our proposed archi-
tecture includes the following processes: the data requester issues the
request task; the team responds to the task; shared transaction records are
generated; the data nodes reach a consensus; and the data requester is-
sues credit rewards are generated. The data requester specifically sends
the data request task to the nearby blockchain node. If it is a new data
request, the blockchain node broadcasts it on the blockchain. The data
nodes respond to tasks in the form of teams. All shared records between
the data requester and the data node are packaged into shared trans-
actions by the transaction record node. Finally, the task publisher will
give corresponding credit rewards based on the completion of the work.
The flowchart of this process is shown in Fig. 2.

Data providers and requesters are not trusted, which may lead them
to act dishonestly. The proposed architecture is vulnerable to two threats.
First, dishonest data providers may provide false or malicious models,
resulting in unreliable training results. Unreliable data providers may
temporarily withdraw, which will adversely affect the quality and effi-
ciency of the global model. Second, the data requester may attempt to
infer the data providers’ privacy information from the data model,
resulting in privacy leakage.



Fig. 2. Architecture flow diagram.
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4. BP2P-FL implementation

4.1. Management of team members

The traditional blockchain allows individual nodes that do not trust
each other to register; however, this method is not suitable for tasks that
require collaboration. In this article, to ensure the high-quality comple-
tion of the data request task, we propose a new registration method in
which the mutual trust node is registered as a team. When the data
requester issues the requested task, the team that meets the credit rating
requirements on the blockchain responds to the task. In other words, the
credit rating of each node in the team meets the requirements.

It is an efficient and mutually beneficial way for multi-data nodes to
complete the assigned tasks through collaboration. First, the team
sponsor initiates the member recruitment information, and the team
leader Sp sets the deadline for the recruitment response, work tasks, and
member requirements. The member requirements are formulated ac-
cording to the specific tasks to be solved, such as quantity and capacity
requirements. The data node registers for the election according to its
own abilities and sends the work preference to the team sponsor. The
team leader evaluates the capabilities of the data node and comprehen-
sively selects the teammembers that meet the requirements. The teaming
algorithm is shown in Algorithm 1.

In reality, it is easy to form a teamwhen data nodes have similar work
preferences or complementary work abilities. However, forming a team
based on these alone will be unreliable because data nodes may be
selfish(e.g., temporary withdrawal or lazy behavior in collaborative
tasks), which affects the global work quality and efficiency of the entire
team. In response to this problem, we designed an internal team man-
agement mechanism based on “mortgage-punishment”; that is, a certain
amount of mortgage must be provided when forming a team, and nodes
with the abovementioned bad behaviors must be “punished” to make up
for the losses of the other nodes. The mortgage is determined by the team
to ensure the honesty of each team member. The mortgage will set the
minimum value but not the maximum value. The greater the mortgage of
the team member, the higher the cost of malicious behavior, and the
better the honesty of the teammember. Rewards are provided by the task
publisher after the task is completed and distributed based on contribu-
tions. The penalty mechanism within the team is presented as follows:

punishðNiÞ ¼ Nimortgage � k (1)

where, Nimortgage is the mortgage of the data node i, and the penalty is
executed by the team leader. In a real scenario, the team leader may also
be malicious because this situation will cause greater losses to the team;
therefore, the team leader should mortgage more. When the team
sponsor has a malicious behavior, the punishment process will be per-
formed by the other teammembers. k is the penalty coefficient defined as
638
k ¼ pþ q
v

(2)
where v is the total number of work rounds to complete the collaborative
task, p is the number of temporary exits, and q is the number of laziness.
Thus, the compensation that each other member can get is

C ¼ punishðNiÞ � 1N (3)

Reasonable rewards and punishments are an important guarantee for
team stability. The “mortgage-punishment” mechanism plays an impor-
tant role in maintaining team stability.
4.2. Data sharing process

Most of the existing data sharing methods realize the purpose of data
security sharing by encrypting the data. However, in actual data sharing
scenarios, encryption algorithms will reduce the data sharing efficiency.
With the increasing demand for data sharing in a distributed environ-
ment, a safer and more efficient method is to share the data model
instead of the original data, thereby protecting the data privacy of the
data provider.

After the data requester publishes the data sharing task, the nodes
that own the data will form a team to respond to the task. Specifically,
after a number of nodes form a team, a member trains a data model
locally selects another data node i from the team, and sends the model
parameters to this node. The data node i then updates the model pa-
rameters according to the local data and again selects a data node j from
the team and sends the model parameters that it has trained to the data
node j. This process will be repeated until the K data nodes jointly verify
that the model reaches the accuracy or maximum training time required
by the requester. The specific steps for data sharing are as follows:

Step 1 Initiate a data sharing request task: The data requester initiates a
data sharing request. The task contains the requester's ID,



Fig. 3. Shared transaction storage model.
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requested task category, timestamp, and task level and is signed
by its private key.

Step 2 Team response task: After the data requester publishes the request
task, the node connected to it will first verify its identity and then
search the blockchain for whether or not the request has been
processed before. The query result is directly returned if there is a
cache record. If it is a new request, the task will be broadcast on
the blockchain, and the data team that meets the credit re-
quirements will respond to the task.

Step 3 Training data model: This is the data node in the above team that
responds to the requested task. These nodes perform joint
learning to train the global model M. An initial data model is
generated first. A private key is then used to sign the model pa-
rameters. Signed model parameters are randomly sent to the next
data node. The next data node updates the model parameters
based on local data and randomly sends them to the next node.
Repeat this process.

Step 4 Generate shared transaction records: All shared records between
the data requester and the data node are regarded as shared
transactions. These transactions will be packaged into blocks by
the transaction record node. The process is shown in Fig. 3.

Step 5 Reaching consensus: The consensus process is executed by the
data nodes that perform data sharing tasks. Each data node
competes for the opportunity to write transaction records into the
block through the work contribution mechanism. Nodes with
accounting rights broadcast their blocks to other data nodes for
verification. After the verification is passed, the block is added to
the blockchain for further audit.

The combination of blockchain and federated learning not only solves
the privacy and security issues of data sharing in distributed scenarios,
but also improves the quality of shared data. The shared records of each
participant can be tracked, making security audits possible. However, a
consensus mechanism based on proof-of-work requires a large amount of
resources. In this study, we propose a consensus algorithm based on the
training model contribution to the improvement of the computational
efficiency in the consensus protocol.

4.3. Consensus mechanism: proof of model contribution (POC)

We transformed the shared data problem into the shared model prob-
lem, which not only protects the data privacy of the data providers, but
also solves the problem of new data requests. For the collaborative tasks,
639
we propose a consensus algorithm based on the data node contribution.
The POC can use the training results of the data nodes to reach a consensus
without additional computing resources. Team members who meet the
level requirements form a consensus node set responsible for promoting
the consensus process and training the data model to meet the corre-
sponding requirements of the task through cooperation. The purpose of
federated learning is to train a global model as a response to the task re-
quests. A completed model training means a completed request task.

4.3.1. Inference attack prevention
For each data node in the team, the tasks should be completed locally

using the two following steps:

Step1 Use local data to update the received model parameters and
broadcast the results to the other participants after the update.

Step2 If each data node has completed the iteration, enter the verifica-
tion phase. Each data node will verify the received data (accuracy
of the classification task and average absolute error of the
regression task). If it does not meet the requirements of the
requested task, it will continue training, and the verification phase
will be recorded as a transaction.

Considering the inference attack launched by dishonest data re-
questers, the team leader should add interference to the model because
doing so to the local training model of each teammember will reduce the
efficiency of the entire training process. In addition, because data pro-
viders have a certain degree of trust among team members, adding noise
mainly prevents the inference attacks initiated by the data requesters. A
model protection method based on differential privacy is designed. Given
a random algorithm G, O is any subset of the set composed by all possible
outputs of G. For two adjacent datasets D and D0 with at most one
different record, G satisfies:

Pr ½GðDÞ 2O� � expðϵÞ �Pr ½GðD0 Þ 2 O � (4)

where, E represents the privacy budget, which is usually a small constant.
This suggests that we can apply the Laplacian mechanism to the global
model against the inference attack by

eG ¼ Gm þ LapðΔf = ϵÞ (5)

where, Gm is the global model of training, and Δf is the sensitivity, as
shown in the formula:

Δf ¼ max
D;D'

kGðDÞ � GðG'Þ k (6)

Algorithm 2 presents the federated learning algorithm with differential
privacy. Fig. 4 illustrates the process of model training within the team.

4.3.2. Consensus based on node contribution
The consensus-reaching process is executed by the data nodes

participating in the model training, which is related to the contribution of
each node to the global model. The process of federated learning is that
each data node is trained on a data node model; thus, the contribution of
each node should be quantified to achieve fairness, that is, the greater the
weight of the training result in the global model, the greater the contri-
bution. In addition, after the local training, we obtained the local and
global models of each data node. These shared transaction records are
signed by the data nodes with their own private keys and broadcast to
other data nodes. The node contribution serves as the proof of the node's
training workload.



Fig. 4. Model training process.
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The correlation between the updated local gradient and the global
model gradient is used to measure the contribution of each node. Spe-
cifically, the contribution of each data node is balanced based on the
cosine similarity defined as follows:

θk ¼ arccos
hrFk�cðwÞ;rFðwÞi

krFk�cðwÞk �krFðwÞk (7)

where rFk�c(w) ¼ rFk(w) � rFk�1(w), rFk�c(w) represents the node,
which is the actual update gradient of k; rFk(w) is the local update
gradient of the kth node; and rFk�1(w) represents the data node k's
model gradient before update; and rF(w) is the gradient of the global
model. According to the formula, a small angle means that the actual
update of the data node has a similar direction to the global model and
has a positive impact on the global model, that is, the contribution to the
global model is greater.

Considering that the actual contribution of a node can be measured by
the above formula, to realize the reward fairness, the node that contributes
more to the global model can get more rewards. Therefore, we propose a
reward mechanism based on the contribution weight ratio. First, we give
the mapping function, which uses a similarity-based perspective, to mea-
sure the actual contribution of the data nodes as follows:

f ¼ 1� e�e�θk (8)

After obtaining the contribution through the mapping function, we use
the soft-max function as follows to calculate the weight ratio of the data
node's contribution to the global model:
640
Wk ¼ ef ðθkÞP
ef ðθk Þ

(9)

k

At the beginning of the consensus process, the data node with the
highest contribution percentage is selected as the node that records the
transaction by voting. The accounting node is responsible for packaging
all previously shared transactions and the global model into a block and
broadcasting the block to all data nodes. The data node verifies the
generated block. After the verification of each data node, the node
responsible for generating the block will broadcast the block signed with
its private key to all nodes and write the block to the blockchain. Another
advantage of our proposed consensus mechanism is that it can prevent
the lazy behavior of nodes. In the process of the multi-party cooperation
training model, some lazy nodes may directly copy the previous model
parameters to the next data node. We introduced a credit rating mech-
anism to reward or punish data nodes based on their contributions to
promote honest and effective training of data nodes.

4.4. Credit management

The original credit of the team leader or each member is zero. They
can get corresponding credit rewards after completing related tasks.
Considering that the responsibilities of the team leader and the team
member are different, their credit rewards should be different. Specif-
ically, the team leader should be rewarded more than the teammembers.
Similarly, if they are punished, the team leader will be punished more. A
new contribution-based reward algorithm that achieves fair rewards and
motivates participants to provide excellent training models is designed.
In general, credit rewards should be given according to the task
completion. That is, for the team leader, the reward is given by

Cleader
obtain ¼ 1

N
Credit þWk �Credit (10)

The team leader guarantees the quality of the entire data sharing process
during the data sharing process and prevents data requesters from
launching inference attacks; hence, they will obtain more than 1

NCredit

reward. Credit is the credit reward provided by the task publisher, while
Wk is the contribution of the weight ratio data node to the global model.
The reward for each member of the team is given by:

Cobtain ¼
�
1� 1

N

�
Wk �Credit (11)

The credit of each data node is updated by



Fig. 5. Training rounds.

Fig. 6. Network traffic.

Fig. 8. Accuracy of adding disturbance.
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C ¼ Cbase þ Cobtain (12)
where Cbase is the original credit accumulation of the data node.

5. Experiments

5.1. Experimental setup

The simulation was completed on a computer equipped with a Win-
dows 7 system. The machine was equipped with an Intel Core i7 pro-
cessor with 6.4 GHZ CPU frequency. The Python programming language
was used to verify the effectiveness of the proposed scheme. In this
section, we perform an experimental verification on the proposed
scheme. First, we verified the effectiveness of the proposed data-based
team to complete shared tasks and conducted experiments on the per-
formance of running on the blockchain.

5.2. Experimental results

We conducted an evaluation on the mnist dataset containing 0–9
number categories. The size of each picture was 28*28, which is widely
used for the evaluation of the classification tasks. We used this data set to
simulate data fragments in the IoT. We randomly divided the mnist
dataset into multiple partial datasets to simulate the situation that each
data node has small-scale data in reality. Each team member randomly
Fig. 7. Test accuracy.
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had 0 � 20, 20–40, 40–60, 60–80, 80–100, 100–120, 120–140, 140–160
and 160–180 different data sizes, with the local batch size set to 128. We
will evaluate the proposed scheme from two aspects: different numbers
of team members and different local training models. The first is to
experiment from the perspective of the number of team members. The
experiment set up three teams of different sizes with different numbers of
members, each with 100, 150, and 200 people. The size of the dataset
and the quality of the teammember dataset are randomly distributed, but
the team leader will review and screen each teammember before forming
the team. We believe that the data quality can be guaranteed to a certain
extent.

Fig. 5 shows the communication rounds and steps performed within
each team. There are 83 steps in a data group of 100 people, 123 steps in
a data group of 150 people, and 163 steps in a data group of 200 people.

Fig. 6 illustrates the network traffic of each team during the model
training period. The network load of a 200-person team is not the largest,
indicating that the proposed solution is feasible, and completing the data
sharing tasks in the form of a team will not affect the efficiency.

Fig. 7 shows the accuracy of the global model delivered by teams of
different sizes. The classification accuracy increases as the data scale
increases. The red curve in Fig. 7 depicts the training result of a 150-per-
son team using a deeper neural network. At the end of each team
member's iteration, its accuracy is lower than the training result of a
smaller neural network layer. Therefore, in addition to considering the
data size, the team must also evaluate the models used in training.

We took Δf ¼ 1 in formula (4), transformed the value of ϵ, and added
disturbance to the global model trained by a team of 200 people. The
results are shown in Fig. 8. The larger the value of ϵ, the larger the privacy
budget. The greater the usability, the higher the test accuracy rate. When
ϵ¼ 20, the test accuracy rate can still reach 90%. Even if there is a certain
amount of interference, the model's usability can be guaranteed. The
experiments proved that the solution to prevent the data requester from
launching inference attacks is effective.

In addition, we selected eight data nodes and calculated the cosine
similarity with the global model. As shown in Fig. 9, three of them had a
negative impact on the overall model training. In actual scenarios,
Fig. 9. Similarity test.



Fig. 10. Read write rate.

Fig. 11. Network status.
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different effects on the global model training will be observed because
each person's data quality and computing ability are different.

We verified the proposed scheme on the Ethereum platform and set
the transaction volume of the blockchain network to four transactions per
second. According to the strategy mentioned herein, we design smart
contracts such that the nodes that contribute the most packaged trans-
actions will receive corresponding rewards. The block generation rate
was one block every 2 s. The system and blockchain performance data
were written into the influxdb database. As a time series database, the
influxdb database can record the performance indicators that change
over time. As shown in Figs. 10 and 11, we obtained the read and write
rate of blockchain data in the database and system network status. We
also verified that the team members who have contributed the most to
the global model were responsible for packaging the transaction records
of each shared process into blocks for teams of 100, 150, and 200 people.

6. Conclusions

The data sharing between IoT devices helps to improve the quality of
service and user experience in various IoT applications; however, data
sharing may lead to the privacy disclosure of data providers. To solve this
problem, a secure data sharing mechanism, called BP2P-FL, was pro-
posed herein using peer-to-peer federated learning, which can protect
data providers’ privacy by realizing themodel sharing instead. Moreover,
the blockchain was introduced within the data sharing, in which every
training process is recorded to ensure that the data providers offer high-
quality data. For further privacy protection, the differential privacy
technology was applied to the global data sharing model. The experi-
mental results showed that BP2P-FL has an excellent performance in
accuracy and feasibility.
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