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Abstract— The convergence of Maritime Transportation
Systems (MTS) and Internet of Things (IoT) has led to the
promising IoT-empowered MTS (IoT-MTS). However, abnormal
trajectories of maritime transportation ships can have highly
negative impacts on the management of IoT-MTS. Therefore,
anomaly detection of trajectories is important for the successful
deployment of IoT-MTS. In this paper, we propose a Transfer
Learning based Trajectory Anomaly Detection strategy, named
TLTAD, for IoT-MTS. Specifically, a variational autoencoder
is used to discover the potential connections between each
dimension of the normal trajectory, while a graph variational
autoencoder is used to explore the spatial similarity between
normal trajectories. Based on internal connection of trajectories,
a deep reinforcement learning algorithm, Twin Delayed Deep
Deterministic policy gradient (TD3), is employed to train the
trajectory anomaly detection model. To reduce the model training
time, transfer learning is used to migrate the trained anomaly
detection model between different regions of an ocean area
or between similar ocean areas. Moreover, an efficient data
transformation module is designed to improve the efficiency
of model transfer. The experiments were conducted on a real-
world automatic identification system (AIS) dataset. The results
indicate that the proposed TLTAD can provide accurate anomaly
detection on ships’ trajectories in IoT-MTS with reduced model
training times.
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I. INTRODUCTION

MARITIME Transportation Systems (MTS) have become
an indispensable part of modern economy and life [1].

At the same time, Internet of Things (IoT) can provide effec-
tive security monitoring and remote management for maritime
transportation ships, thus leading to the IoT-empowered MTS
(IoT-MTS). With the rapid development of ship positioning
technology, communications technology, IoT [2], and big
data [3], a large amount of ship trajectory data is generated
during the ship’s voyage. As time-series data, trajectories are
presented in the form of temporal and spatial correlations, i.e.,
it records the location and time information of ship activities.
Ship trajectory data is obtained from multiple data sources
such as radar and automatic identification system (AIS). Due
to the different positioning errors of various data sources,
anomalies may appear in the trajectory data [4]. Therefore, it is
important to have effective anomaly detection of trajectories
for IoT-MTS [5], [6].

The IoT-MTS trajectory anomaly detection determines
whether the ship’s behavior is normal by analyzing the AIS
information captured and sent back by IoT devices, as well
as the ship’s navigation information. In addition, the ship’s
trajectory characteristics can be used to predict its general
behavior and perform abnormal trajectory detection. Specif-
ically, by analyzing AIS information through data mining
and machine learning [7], we can extract main characteristics
of maritime transportation. If the ship’s trajectory does not
conform to the general law of motion, it could be regarded as
abnormal [8].

However, the accurate detection of abnormal ship trajectory
is still an open issue. The existing anomaly detection methods
can be categorized into three categories, namely statistical
analysis-based, prediction-based, and machine learning-based.
Generally, methods based on statistical analysis use specific
datasets to fit the statistical model of the ship’s normal
behavior, so as to obtain the probability that its trajectory
may be abnormal. Prediction-based methods usually establish
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Fig. 1. The intelligent trajectory anomaly detection architecture for IoT-enabled maritime transportation systems.

a predictive model to predict the future state of the ship,
including position, speed, and heading, and then compare the
actual state with the predicted one to detect the ship’s abnormal
trajectory. Machine learning-based methods learn the model
of the ship’s normal behavior, if the ship’s behavior deviates
significantly from the learned model, it is considered that the
ship’s trajectory is abnormal.

Given that a ship’s abnormal behavior is related to its tra-
jectory, speed and position, if any of the following occurs, the
ship’s trajectory is considered to be abnormal: The trajectory
is inconsistent with the normal operating characteristics of this
type of ship, the ship has been in inappropriate positions for
a period of time, or the course and speed of the ship is not
consistent with its adjacent trajectory. Therefore, the anomaly
detection process needs to be sensitive to the information
hidden in data and the relationship between data samples, and
analyze the root causes of abnormal ship behavior, such as
environmental uncertainty, crew operations, and interactions
between ships. This shows that it is not only necessary to
discover the potential connections between each dimension of
the normal trajectory, but also to explore the spatial similarity
between the normal trajectories. In fact, these requirements
can be met either by analyzing the ship trajectory data
with the variational autoencoder (VAE) [9], or by using the
graph variational autoencoder (GVAE) [10] to find the spatial
correlation between ship trajectories. The emergence of deep
reinforcement learning (DRL) [11] can help to combine these
two, thereby greatly improving the accuracy of trajectory
anomaly detection. However, deep reinforcement learning may
bring about the problem of long training time for anomaly
detection models. This can be solved by introducing transfer
learning (TL) [12] to transfer the parameters of the trained
model to others.

In this paper, we design an intelligent anomaly detection
architecture (see Fig. 1) for IoT-empowered MTS, where dif-
ferent advanced machine learning technologies are employed

and integrated. Based on this architecture, we propose
a Transfer Learning based Trajectory Anomaly Detection
strategy, named TLTAD, for IoT-MTS. The main contributions
of this paper are summarized as follows:

1) We use the variational autoencoder to discover the poten-
tial connections between each dimension of a trajectory,
and use the graph variational autoencoder to explore the
spatial similarity between the trajectories. On this basis,
a deep reinforcement learning algorithm, Twin Delayed
Deep Deterministic policy gradient (TD3) is utilized to
train an abnormal trajectory detection model.

2) We take advantage of the similarity of ship trajectories
between different regions of each sea area, and use
transfer learning to migrate the parameters of the trained
anomaly trajectory detection model between regions,
or between sea areas, thereby reducing the model train-
ing time. In addition, we designed an efficient dataset
transformation module to improve the efficiency of
model transfer.

3) The experiments were conducted using the real-world
AIS dataset. The results show that the proposed TLTAD
scheme can achieve a highly accurate ship trajectory
anomaly detection in IoT-MTS and reduces the detection
model training time.

We organize the rest of this paper as follows. The related
work is presented in section II. The system model is introduced
in section III. The implementation of the proposed TLTAD
scheme is elaborated in section IV. The performance eval-
uation is conducted in section V. We conclude this paper
in section VI.

II. RELATED WORK

It is an open question to detect abnormal trajectory points
or abnormal behavior from ship trajectory data. In response
to this problem, a large number of scholars have proposed
corresponding solutions.
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There exist some statistical analysis based methods for
abnormal trajectory detection. Pallotta et al. [13] uses traffic
route extraction and anomaly detection to acquire maritime
traffic knowledge to detect low-probability behaviors and pre-
dict the future location of ships. In addition, for low-likelihood
detection, Weibull model and sliding time window technology
can be used to avoid incomplete and segmented trajectories.
Rong et al. [14] characterize typical vascular behavior and
calculate the Gaussian function value of the lateral distribution
of ships to detect deviation behavior. If the value is lower
than the threshold, it is detected that the ship is not traveling
along the specified route. Shuai et al. [15] use the k-order
multivariate Markov chain and multiple related parameters to
establish a state transition matrix, and only predict the next
time of the ship’s trajectory based on the state of the last time
with the highest probability, but insufficient consideration is
given to the ship’ s historical track status at each moment.
Wang et al. [16] analyze the distribution characteristics of
maritime traffic hazards, draw ship trajectory diagrams based
on AIS information and made statistics using the distance to
closet point of approach and kernel density estimation. The
choice of statistical method mainly involves calculation cost,
fitting accuracy and so on. Due to different model require-
ments, each model has different fitting effects on different
data anomalies. Different statistical models can be used to
detect ship behavior in combination with specific application
scenarios, and the changes in specific statistical variables and
the correspondence of specific behavior abnormalities can be
analyzed through experiments. If the abnormalities in the
sample are uniformly distributed, the statistical method is
invalid. In addition, the statistical method is still a challenge
for processing high-dimensional data.

Some prediction based abnormal trajectory detection meth-
ods are proposed. Laxhammer and Falkman [17] use Hausdorff
distance to measure trajectory similarity, and generates a
prediction set through shape-preserving prediction. Aiming
at the improvement of the normal trajectory pattern learning
algorithm, the sequence Hausdorff nearest neighbor conformal
anomaly detection is proposed and studied, which is used for
online learning and trajectory sequence anomaly detection.
Nouretdinov et al. [18] introduced a multi-level conformal
clustering method MLCC. Without making any assumptions
about the data distribution, there will be a clear statistical
result with the help of conformal prediction in clustering.
MLCC combines clustering and anomaly detection to provide
statistical robustness, and clustering and anomaly detection can
be performed at the same time. Mazzarella et al. [19] use the
k-nearest neighbor algorithm and Mahalanobis distance mea-
surement method to cluster AIS data to eliminate the influence
of redundant data, and propose a knowledge-based velocity
model and particle filter for ship motion track prediction.
The method based on the prediction model is to establish a
prediction model when familiar with the historical situation,
and judge whether it is abnormal by comparing the actual
value with the predicted value. For example, by extracting
historical ship motion data, predicting future ship motion. But
this is also a limitation. The choice of forecasting method and

the acquisition of historical conditions have a certain impact.
Whether the grasp of historical conditions is comprehensive
and accurate is not well judged.

Machine learning methods are widely used in abnormal
trajectory detection. Yin et al. [20] proposed an anomaly
detection model combining convolutional neural networks and
recursive autoencoders. Through the first stage sliding window,
the original time series containing abnormal points is expanded
into a fixed-length series with normal or abnormal labels.
Then through another smaller sliding window, each sequence
is converted into a continuous time-related subsequence.
Injadat et al. [21] used Bayesian optimization to find the global
minimum of the objective function, and set the parameters
of three traditional classifiers with Gaussian kernel, support
vector machine, random forest, and K nearest neighbors to
improve the performance of the anomaly detection method.
Wang and Ahn [22] cascaded the autoregressive integrated
moving average model and the artificial neural network, estab-
lished an independent detection process, and analyzed the cor-
rectness of the data. The use of Bayesian information criteria
effectively reduces the impact of over-fitting or non-fitting
on real-time prediction and improves prediction accuracy.
Pozi et al. [23] proposed a classifier method based on support
vector machines. Through a new post-SVM optimization algo-
rithm, the intrusion detection rate for rare attacks is improved
without reducing the overall accuracy, and it can be extended
to hidden data with different input and attack distributions.
Zheng et al. [24] used a density-based spatial clustering algo-
rithm to obtain the density distribution of ship berthing points
in the Waigaoqiao port area, and clustered all berthing ships,
and finally used the historical trajectory of ships to identify
abnormal ships. To identify normal data patterns and different
types of anomalies, Liu et al. [25] constructed auxiliary feature
vectors of each condition variable for clustering, and proposed
a parameter selection method for database scanning in an
unsupervised environment based on a threshold curve based
on the number of clusters. The methods based on machine
learning mainly include classification, nearest neighbor, and
clustering. The classification method has strong robustness and
fault tolerance, and requires plenty of parameters for calcula-
tion with results difficult to interpret. The premise for nearest
neighbors to be effective is to have enough neighbors, no need
to estimate parameters, no training, but the calculation is more
complicated. The principle of clustering algorithm is simple,
the calculation speed is fast, and it can handle clusters of any
shape and size, but the effect is not ideal when processing
clusters with large differences in density, high-dimensional
data, or when the clustering distance is very different.

Although these works provide various good solutions to
the problem of ship trajectory anomaly detection, there are
still the following two problems: (i) How to analyze the
difference in time and space between the normal trajectory and
the abnormal trajectory to improve the anomaly detection (Ii)
How to reduce the training time of anomaly detection model
while ensuring detection accuracy. To address these problems,
this paper proposes an intelligent trajectory anomaly detection
strategy for IoT-MTS.
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Fig. 2. The system model of the proposed TLTAD.

III. SYSTEM MODEL

To realize the accurate and efficient trajectory anomaly
detection of IoT-MTS, two entities are mainly considered,
namely the ship and the ship traffic center (STC).
• Ships: The ship is responsible for transporting the goods

to the destination. In the transportation process, due to the
changeable ocean weather, the shipping routes are often
affected by bad weather, causing the problem of the goods
cannot be delivered on time or even cannot be delivered.
Therefore, in the process of cargo transportation, it is
necessary to adjust the ship’s route according to the
ocean weather conditions, the location of the reef and
the location of the ship. The position of the ship can be
directly sent to the STC through low-orbit satellites. After
the reef position and sea surface conditions are sensed by
the buoys, they can be sent to the STC through multi-hop
between buoys or buoy-satellite transmission.

• Ship Traffic Center (STC): The STC guides ships to avoid
dangerous areas and reach their destination safely based
on AIS data. Considering that the sensing equipment
of ships and buoys may malfunction, which may cause
abnormal problems in data such as ship position, reef
position and sea surface conditions, STC should detect
abnormal trajectories based on the internal connection of
the trajectory.

Note that the trajectory of the ship can be obtained from
the AIS data, while the trajectory features extracted from
the original trajectory data can be used by the STC for
abnormal trajectory detection. However, the accuracy of this
detection mechanism needs to be improved, because the
internal connection between the various dimensions of the
ship’s trajectory is the key to judging whether the trajectory
is abnormal, which can be discovered through a variational
autoencoder. In addition, the normal trajectories may have a
certain degree of similarity, which indicates that the spatial
similarity between the normal trajectories helps the detection
of abnormal trajectories, which can be found by the graph
variational autoencoder. On this basis, STC can transform the
problem of abnormal trajectory detection into a 01 decision
problem. As an efficient decision-making algorithm, the DRL
algorithm TD3 will be used by STC to detect abnormal tra-
jectories. The framework of the abnormal trajectory detection
strategy TLTAD is given in Fig. 2.

IV. THE IMPLEMENTATION OF THE TLTAD

The proposed TLTAD consists of two modules, namely
trajectory preprocessing and TL-based anomaly detection.
Among them, trajectory preprocessing includes AIS-based
trajectory construction, trajectory feature extraction and tra-
jectory spatial similarity graph construction, while TL-based
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anomaly detection includes intelligent abnormal trajectory
detection and TL-based detection model transfer.

A. Trajectory Pre-Processing

1) AIS-Based Trajectory Construction: The trajectory of the
ship over a period of time according to the AIS data can be
presented as

⎡
⎢⎢⎢⎢⎣

Longitude
Latitude

SOG
COG
Time

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

long1 long2 · · · longN

lat1 lat2 · · · latN

v1 v2 · · · vN

c1 c2 · · · cN

t1 t2 · · · tN ,

⎤
⎥⎥⎥⎥⎦

(1)

where longi , lati , ci , si and ti represent the longitude, the
latitude, the course over ground, the speed over ground and the
receiving time of the ship in the i th AIS message, respectively.

2) Trajectory Feature Extraction: Considering that the
sending frequency of AIS messages is related to the sailing
speed of the ship itself, that is, ships of different speeds
send data at different frequencies, while the same ship sends
different frequencies at different speeds. Since AIS messages
have different time intervals, and a ship’s displacement is
determined by the speed and time interval between two adja-
cent messages, the ship’s true movement cannot be obtained
by using AIS data directly [4]. Therefore, we use the ship’s
displacement R, i.e., Ri = [Longi − Longi−1 Lati − Lati−1],
and the deviation in time of two adjacent AIS data �, i.e.,
�ti = ti − ti−1, to indicate the movement of the ship. Specif-
ically, the displacement Ri is represented by the modulus of
the displacement, i.e., |Ri |, the sine and cosine values, denoted
by sin�Ri ,�i� and cosine cos�Ri ,�i�, of the angle between the
x-axis and the displacement vector Ri . In addition, the speed
over ground vi is replaced by the average speed of the ship
between two adjacent AIS messages, i.e., vi−1+vi

2 , and the
course over ground ci is replaced by the cosine and sine
values, i.e., cos ci and sin ci , of the ship’s course. Therefore,
a more accurate ship trajectory in a continuous period of time
is given by a matrix composed of N − 1 trajectory points,
and each trajectory point is represented by a vector, that is,
[|R j |, cos�R j ,�i�, sin�R j ,�i�, v j−1+v j

2 , cos�ci �, sin�ci �, t j ], 2 ≤
j ≤ N . Generally speaking, if the ship’s motion law is satisfied
for each element in the matrix, the ship’s trajectory is normal.

3) Trajectory Spatial Similarity Graph Construction: The
graph structure can reflect the spatial correlation between
objects, so it can be used to explore the spatial similarity
between trajectories. Considering that the trajectory of a ship
in a period of time is represented as a 7 × (N − 1) matrix,
if we regard it as a 7 × (N − 1) dimensional vector, then
the similarity simi, j between two trajectories Ti and T j can
be measured by the cosine of the angle between them, that is,

simi, j = Ti ·T j
|Ti ||T j | . In fact, the similarity of each pair of adjacent

trajectories can be used to construct a spatial similarity map of
the trajectories. Specifically, we take the trajectory of the ship
in a fixed time period as a node on the spatial similarity graph,
and then combine the grid division of the channel to fit the
similarity distribution. If the similarity of the two trajectories
deviates too far from the expectation, then there are no edges

Fig. 3. VAE-LSTM based ship trajectory reconstruction.

between the nodes representing these two trajectories in the
graph.

It is worth to mention that the choice of ship trajectory
length will affect the accuracy of anomaly detection. The
reason for that is as follows. If we choose a relatively short
trajectory length, then the difference between adjacent trajec-
tories may be small. Thereby, it is difficult to accurately judge
whether a trajectory is abnormal regardless of the relationship
between the dimensional data of the trajectory or the spatial
similarity between the trajectories. Otherwise, there may be
differences in length between adjacent trajectories. This is
because different ships have different voyages, which causes
the problem of incomparable trajectories.

B. TL-Based Anomaly Detection

1) Intelligent Trajectory Anomaly Detection: In this paper,
we will use VAE, GVAE and TD3 to discover the relationship
between the dimensions of the trajectory and explore the
spatial similarity between the trajectories, so as to achieve
abnormal trajectory detection.

In VAE, each input x can be mapped to a hidden variable
zk , and the final output x̂ can be generated by a Gaussian
distribution pθ (xk|zk). The parameters of the latent vari-
able distribution qφ(zk |xk) generated by the encoder function
fθ (zk) and the decoder function gθ (xk) are all subject to a
set of constraints on the parameter θ . Note that the purpose
of variational inference in VAE is to find an approximate
distribution p(zk) to replace the distribution qφ(zk |xk). And
Kullback-Leibler (KL) divergence is used to measure the
similarity between these two distributions. Then, the following
loss should be minimized as the objective.

L(θ, φ; xk) = DK L[qφ(zk |xk)||p(zk)] − Eq [lg pθ (xk|zk)],
(2)

In order to take the advantages of LSTM in processing time
series data and improve the accuracy of abnormal trajec-
tory detection, this paper will implement the ship trajec-
tory anomaly detection based on VAE-LSTM (see Fig. 3).
Specifically, we take the VAE model as the main struc-
ture and replace the BP neural network with LSTM.
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A fixed-time sequence of trajectory point feature vectors, i.e.,
[|R j |, cos�R j ,�i�, sin�R j ,�i�, v j−1+v j

2 , cos�ci �, sin�ci �, t j ], 2 ≤
j ≤ N , is the input. The LSTM encoder will automatically
extract the time series features of the input data and encode the
data into a series of hidden variables. Another LSTM decoder
completes the reconstruction of the hidden variables. For each
sample from the encoder, the probability decoder will output
the mean and variance, and use these mean and variance to cal-
culate the probability of generating the original data from the
distribution. The average value of the probabilities obtained,
named pV AE , is used as the reconstruction probability.

pV AE = 1

n

n�
i=1

pθ (x |μx̂i , δx̂i ) (3)

In general, trajectory points with low reconstruction proba-
bility might be considered as abnormal, and the trajectory
with abnormal trajectory points will be judged as an abnormal
trajectory.

As another variant of the self-encoder, GVAE can use a
graph convolutional network (GCN) as an encoder and a sim-
ple inner product as a decoder to learn the latent representation
Z of an undirected graph G of N nodes, where the adjacency
matrix A, node degree matrix D and node features matrix X
of G are required [10]. The inference model used in GVAE
is parameterized by a two-layer GCN, i.e., GC N(X ,A) =
ÃReLU(ÃXW0)W1 with the weight matrices Wi and Ã =
D− 1

2 AD− 1
2 is the symmetrically normalized adjacency matrix,

such that q(Z |X ,A) = 	N
i=1 q(zi |X , A) and q(zi |X ,A) =

N (zi |μi , diag(σ 2
i )). And μ = GC Nμ(X ,A) and logσ =

GC Nσ (X ,A) share the first-layer parameters W0. The inner
product between latent variables is used as the generative
model of GVAE. Similar to VAE, GVAE takes the variational
lower bound as the optimization target w.r.t the variational
parameters Wi . To detect abnormal trajectories, we use the
symmetrically normalized adjacency matrix Ã of the spatial
similarity map of normal ship trajectories and its trajectory
characteristics X as the input of GVAE, and the output
reconstruction probability pGV AE = p(A|Z), which is cal-
culated by

p(A|Z) =
N


i=1

N

j=1

p(Aij |zi , z j ), (4)

where p(Aij = 1|zi , z j ) = sigmoid(zT
i z j ), can be used to

measure the spatial similarity of trajectories. Theoretically,
the spatial similarity between each pair of normal adjacent
trajectories is close, while the spatial similarity between the
abnormal trajectory and the adjacent normal trajectory is quite
different.

Relying solely on the reconstruction probability of the
trajectory or that of the trajectory spatial similarity graph
is difficult to improve the detection accuracy, which means
that these two need to be deeply integrated. As an efficient
deep reinforcement learning algorithm, by comprehensively
considering a variety of factors, the Twin Delayed Deep
Deterministic policy gradient algorithm (TD3), which consists
of critic networks Qθ1 , Qθ2 , target critic networks Q�θ1

, Q�θ2
,

a actor network πφ , and a target actor network π �φ with
parameters θ1, θ2, θ �1, θ �2, φ and φ� respectively, can be used
for decision-making. To be specific, similar to the attention
mechanism [26], we use TD3 to generate a pair of optimal
coefficients, i.e., (α, β) with α + β = 1, to combine these
two reconstruction probabilities in depth, thus realizing the
accurate and efficient abnormal trajectory detection. To be
specific, for each STC, the state s, action a and reward r
of the abnormal trajectory detection using TD3 are defined as
follows:
• State: To maximize the detection accuracy, we let the false

negative rate (FNR) (5) and false positive rate (FPR) (6)
consist of the state s, i.e., s = (F N R, F P R), where FPR
and FRN are calculated by

F N R = F N

T P + F N
, (5)

F P R = F P

T N + F P
. (6)

• Action: Obviously, the pair of coefficients (α, β) compose
of the action a.

• Reward: In anomaly detection, we aim to achieve the
maximum detection accuracy. That suggests the detection
accuracy should be chosen as the reward r to measure the
choice of coefficients, i.e.,

r = Accuracy

= T P + T N

T P + F P + T N + F N
, (7)

where FP, FN, TP and TN represent false positive, false
negative, true positive, true negative, respectively.

According to the literature [27], the TD3 is trained in
episodes until it reaches the convergence. In each episode,
an action a ∼ πφ(s) + 
 is selected with exploration noise

 ∼ N (0, σ ) and reward r is calculated using Eq. (7) and the
new state s� is observed. Then, the transition tuple (s, a, r, s�)
is stored in the replay buffer B . Next, a mini-batch of N
transitions (s, a, r, s�) is randomly sampled from B to update
critics and the actor. For critics, the update is implemented by

θi ← arg min
θi

1

N

�
(y − Qθi (s, a))2, (8)

where y ← r + γ min Qθ �i (s
�, ã)i=1,2, ã ← πφ�(s�) + 


and 
 ∼ cli p(N (0, σ̃ ),−c, c). For the actor, the update is
conducted every d episodes using the deterministic policy
gradient, i.e.,

∇φ J (φ) = 1

N

�
∇a Qθ1(s, a)|a=πφ(s)∇φπφ(s). (9)

And the target networks are updated by

θ �i ← τθi + (1− τ )θ �i , (10)

φ�i ← τφi + (1− τ )φ�i , (11)

where τ ∈ (0, 1).

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 12,2024 at 08:01:31 UTC from IEEE Xplore.  Restrictions apply. 



2388 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2023

2) TL-Based Detection Model Transfer: Given that the
abnormal trajectory detection model should be trained for
each region of each sea area, the difference between the
AIS datasets in different sea areas may result in completely
different model training times. To solve this problem, we trans-
fer the trained anomaly detection model between different
regions of each sea area using transfer learning, or between
different sea areas. That is, we transfer the parameters of
the trained anomaly detection model to another model to be
trained. In addition, in order to improve the efficiency of model
transfer, we designed two dataset transformation methods for
the above two different cases. Specifically, for the first case,
the dataset transformation T1 should satisfy Eq. (12), i.e.,

min
T1

||AI SR
S − AI SR

T T1||22 + λ||T1||22, (12)

where AI SR
S and AI SR

T denote the source region and target
region of a sea area in the transfer learning respectively, and
λ is the regularization parameter. Then, we compute T1 by

T1 = ((AI SR
T )T · (AI SR

T )+λI)−1 · (AI SR
T )T · (AI SR

S ). (13)

For the second case, the data transformation T2 should satisfy
Eq. (14), i.e.,

min
T2

||AI S A
S − AI S A

T T2||22 + λ||T2||22, (14)

where AI S A
S and AI S A

T denote the source sea area and the
target sea area in the transfer learning, respectively. Similarly,
we calculate T2 by

T2 = ((AI S A
T )T · (AI S A

T )+λI)−1 · (AI S A
T )T · (AI S A

S ). (15)

In addition, for the model transfer between different regions
and different sea areas, the dataset transformation needs to be
realized by using the Eq. (15) and the Eq. (13) sequentially.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We verify the performance of the proposed TLTAD scheme
in Python on a computer of 32G running memory, 2.7GHZ
Intel Core i7 processor and 64-bit win7 system. This experi-
ment uses the real-world AIS dataset of the Wuhan-Shanghai
section of the Yangtze River (May 2019-August 2019) [4].
This dataset is a manually labeled dataset and contains
800 abnormal AIS data. We roughly divide these abnormal
AIS data into three types: abnormal position, abnormal speed
and abnormal course.
• Position Abnormality: If some trajectory points of a ship

deviate significantly from other points, the AIS data is
considered abnormal data.

• Speed Abnormality: According to the latitude and longi-
tude of the AIS data, it is easy to obtain the distance Ri

between the i -th and (i + 1)-th ship position point, and
then divide Ri by the time interval to get the average ship
speed V . If V > 2vi , then the i -th AIS data is considered
abnormal.

• Course Abnormality: According to the latitude and longi-
tude of the AIS data, the bearing is defined as the relative

position of the ship’s positions in the i -th and (i + 1)-th
AIS data. If the bearing is between the course ci and the
course ci+1, the course ci is considered normal.

In addition, we divide the AIS data of a ship over a period
of time into multiple AIS data segments with the length
of Data_Si ze. According to the sequence of the AIS data,
the training dataset and test dataset of the detection model
are chosen from multiple pieces of data. For any AIS data
segment, if all AIS data are normal data, the data segment
is considered normal and marked as 1; if the data segment
contains one or more artificially marked abnormal AIS data,
it is considered abnormal and marked 0.

Based on the artificially labeled AIS dataset, we compare
the proposed TLTAD with the following detection models:
abnormal AIS data screening (AAISS) model [4], VAE model,
LSTM anomaly detection model [28], isolated forest ( iForest),
Support Vector Machine (SVM) and Decision Tree (DT).
Among them, LSTM, DT and SVM are three commonly
used supervised classification algorithms, and isolated forest
is an unsupervised anomaly detection method suitable for
continuous data, which is widely used in anomaly detection.
We select false negative rate (FNR) (5), false positive rate
(FPR) (6), accuracy rate (7), recall rate (16), precision (17),
and F1-score (18) are used as comparison indexes given by

Recall = T P

T P + F N
, (16)

Precision = T P

T P + F P
, (17)

F1− score = 2× Precision × Recall

Precision + Recall
. (18)

To verify the model convergence of the proposed TLTAD
scheme, we give the model training time based on the fol-
lowing three different model transfer situations, namely the
transfer between different regions in the same sea area, the
transfer between different sea areas, and the transfer between
different regions and different sea areas.

B. Experiment Results

1) Anomaly Detection Accuracy: Figure 4 uses FPR and
FNR as indicators to show the change of abnormal trajectory
detection accuracy as Data_Si ze increases in the three cases
of abnormal position, abnormal speed and abnormal heading.
As shown in Fig. 4, we found that as Data_Si ze increases,
the FPR and FNR of the proposed TLTAD experienced fluctu-
ations and eventually stabilized. Obviously, for each value of
Data_Si ze, in any type of exception, the FPR is at most 4%,
and the FNR is 5%. The experimental results shown in Fig. 4
show that the detection accuracy is affected by Data_Si ze.
This is because the characteristics of the ship’s acceleration,
deceleration, left and right turns, and straight sail cannot be
accurately described with a small Data_Si ze. In addition, the
correlation between adjacent AIS messages is complicated.
As a result, abnormal AIS data might be misjudged by the
detection model, thus increasing FPR.

The comparison of the trajectory anomaly detection accu-
racy between the proposed TLTAD and the baseline strategy
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Fig. 4. Trajectory anomaly detection accuracy in (a) FPR and (b) FNR for the position abnormality, (c) FPR and (d) FNR for the speed abnormality, and
(e) FPR and (f) FNR for the course abnormality with the variation of Data_Size.

Fig. 5. The convergence of the proposed TLTAD using the model transfer (a) between different regions of an sea area, (b) between different sea areas, and
(c) between different regions of different sea areas.

TABLE I

TRAJECTORY ANOMALY DETECTION ACCURACY COMPARISON

BETWEEN THE PROPOSED TLTAD AND BASELINES

is shown in Table I. By observing Table I, we can get that
the recall rates of VAE, DT, SVM, and iForest are relatively
low. This is because the trajectory is time series data, the

abnormal trajectory and its neighboring trajectories will have
obvious differences in the motion characteristics, but if only
the information of the current point is used and the motion
characteristics of the ship before and after the trajectory
section are ignored, this will inevitably limit the model’s
performance so that the recall rate of the model is low. In addi-
tion, the LSTM anomaly detection model combined with the
DBSCAN clustering algorithm and the VAE based on the BP
neural network are relatively close in accuracy, recall and F1
value. Obviously, the TLTAD outperform all baseline methods
in every comparison indicator. This is because TLTAD not
only finds the potential connection between each dimension
of the trajectory feature, but also finds the spatial connection
between the normal trajectories.

2) Model Convergence: The convergence of TLTAD is
shown in Fig. 5. For simplicity, we use TLTAD_TLi to
represent the proposed trajectory anomaly detection strategy,
in which the i type of transfer learning and those without
transfer learning are represented by TAD. Observed from
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Fig. 5, we find that the convergence speed of each TLTAD_TLi
is faster than that of TAD, and TLTAD_TLi will get as many
rewards as TAD when the strategy converges. Note that the
detection accuracy is used as a reward for the DRL-based
anomaly detection strategy. Therefore, the results given in
Fig. 5 show that the application of transfer learning can not
only reduce the model training time, but also maintain high
anomaly detection accuracy.

VI. CONCLUSION

The abnormal ship trajectories may cause shipwrecks,
resulting in huge economic losses and casualties. In this
paper, we propose a transfer learning based trajectory anomaly
detection strategy for IoT-MTS, named TLTAD. In TLTAD,
a variational autoencoder is used to discover the potential
connections between each dimension of the ship’s trajectory,
while a graph variational autoencoder is utilized to explore the
spatial similarity between the trajectories. On this basis, the
deep reinforcement learning algorithm is designed to construct
the abnormal trajectory detection model. Then, the transfer
learning is applied to reduce model training time, and an
efficient dataset transformation mechanism is developed to
improve the model transfer. Experimental results show that
the proposed TLTAD can provide accurate abnormal trajectory
detection for IoT-MTS and significantly reduce model training
time.

Although the proposed strategy can effectively improve the
accuracy of abnormal trajectory detection, the deep learning
algorithm TD3 used in the strategy may not be able to
effectively combine the reconstruction probability generated
by VAE and GVAE like the attention mechanism. That is, the
weight assigned to the reconstruction probability generated
by the VAE may be too large, so that the spatial similarity
between the trajectories may be ignored. Therefore, our future
research direction includes trajectory anomaly detection based
on the multi-head attention mechanism.
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