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Abstract—Permissioned blockchain frameworks typically em-
ploy efficient Byzantine fault-tolerant consensus protocols, mak-
ing them appealing for the deployment of fast transaction
applications among a large number of mutually distrustful
participants. However, existing permissioned blockchain frame-
works typically use sequential serial workflows to invoke the
consensus protocol and execute transactions for the application,
resulting in significantly lower performance for these applica-
tions when deployed in traditional systems. Therefore, a new
permissioned blockchain framework is needed to improve trans-
action processing efficiency and enhance system performance
for practical blockchain technology applications. We propose
IHFBF (Improved Hyperledger Fabric Blockchain Framework),
an improved permissioned blockchain framework that employs a
predictive transaction sorting method by selecting a node within
the consensus nodes to act as a sorter. This enables parallel
execution of the consensus protocol and transactions, resulting
in improved overall system performance. However, if the sorter
is a malicious node, it can severely impact system performance.
To address this, IHFBF uses a view-change method based on
a deny-list approach, which effectively guides all participants
and replaces or denies malicious participants. Compared to
other three fast permissioned blockchain frameworks, IHFBF’s
parallel workflow framework reduces latency and exhibits better
throughput in the presence of malicious participants, resulting
in efficient system performance.

Index Terms—Permissioned chain, Byzantine fault-tolerant
consensus, blockchain, parallel workflow, IHFBF

I. INTRODUCTION

Since the publication of a paper titled ”Bitcoin: A Peer-

to-Peer Electronic Cash System” by an author named Satoshi

Nakamoto in 2008 [1], blockchain technology mentioned in

the paper has undergone rapid development. Blockchain can

be divided into permissionless blockchain and permissioned

blockchain. Permissionless blockchain allows anyone to join

the network, participate in the consensus process, and verify

transactions. Typical examples include Bitcoin and Ethereum.

Permissioned blockchain refers to allowing authorized nodes

to join the network and view information based on permis-

sions. The immutability and decentralization characteristics

of permissioned blockchain have attracted the industry and

*Corresponding author

academia to develop various permissioned blockchain frame-

works for transaction applications, with well-known examples

including Hyperledger Fabric.

However, even when deployed in data center networks, ex-

isting permissioned blockchains have significant performance

gaps compared to traditional transaction systems. The rela-

tively low performance of traditional permissioned blockchains

may be due to their own serial workflow processes. Accord-

ing to different workflows, permissioned blockchains can be

divided into two categories. The first category is the execute-

consensus-verify workflow proposed by Hyperledger Fabric

(HLF) (as shown in Figure 1). Nodes first concurrently execute

transactions received from clients, then use the Byzantine

fault-tolerant consensus protocol to agree on the order of

transaction execution results, and finally, after reaching con-

sensus among the nodes, verify the transaction results, and

submit valid transactions while rejecting invalid ones. Fabric

is suitable for building trustless blockchain applications for

various enterprises. However, if a large number of transactions

are submitted simultaneously in the network, these transactions

may fail due to conflicts in reading and writing, resulting in

significantly increased system latency.

Execute Consenses Validate Commit

Fig. 1. Sequential workflow for permission chain HLF

The second type of permissioned blockchain framework

(such as Quorum) uses a consensus-execute workflow [2]. In

this workflow, nodes first use the BFT consensus protocol

to sort transaction content, and then execute transactions

separately in this order. However, to ensure that separately

executed transactions obtain consistent outputs, it is necessary

to rewrite all transactions using deterministic single-threaded
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programming languages, which may reduce system efficiency.

To improve the performance of permissioned chains, trans-

action sorting and distribution can be moved to the routing

layer. Specifically, we can designate a node as a dedicated

sorter, which assigns a sequence number to all transactions

and routes all transactions to all nodes through a routing-aware

multicast. If the sorter is functioning normally, all nodes can

receive all transactions in the same order, which eliminates

the consensus process, and nodes can independently execute

and submit transactions, greatly improving block generation

efficiency and reducing latency.

In this paper, we propose an improved high-performance

permissioned blockchain framework. The parallel workflow

diagram of this new framework is shown in Figure 2: the

consensus nodes first sort transactions in order, then call

the Byzantine fault-tolerant consensus protocol to achieve

consensus on the transaction order. In parallel, ordinary nodes

predictively execute transactions from the sorter. Then the

nodes securely submit the execution results if they are consis-

tent with the consensus result, and re-execute the transaction

if they are inconsistent.

Leader

1.Sequence

2.Consensus 3.Predictive
Execution

4.Commit

Fig. 2. New Parallel Workflow.

Correctly executing transactions in the presence of mali-

cious nodes is a key issue in the parallel workflow. Although

BFT consensus protocols can be used to detect malicious

nodes and recover performance, there may still be some

cunning malicious nodes that guide other nodes to execute

incorrect transactions by broadcasting carefully crafted trans-

actions, which can result in reduced system performance. To

address this challenge, the new parallel workflow employs

a deny-list-based view-change protocol to guide participants

in the permissioned blockchain. If the Leader node behaves

maliciously, the system uses random view switching to replace

the Leader and adds the malicious node to the blacklist.

Our main contribution is the design of a high-throughput,

low-latency blockchain framework with a parallel workflow

(IHFBF), which introduces a sequence sorting node to achieve

efficient transaction sorting. With this method, Peer nodes

can directly perform predictive transaction execution without

waiting for consensus results, achieving efficient parallel work-

flow. To address the potential existence of a malicious Leader

node, we introduce a mechanism for randomly selecting a new

Leader node for view switching using a random function. We

also introduce a node blacklist system to prevent malicious

nodes from launching attacks by broadcasting incorrect trans-

actions.

The remaining sections of this paper are as follows: Section

II discusses related work; Section III outlines the parallel

workflow; Section IV presents the protocols of IHFBF; Section

V shows correctness and performance analysis of IHFBF;

Section VI conducts experimental analysis, and Section VII

concludes.

II. RELATED WORK

Permissioned blockchains [3]are typically maintained by

mutually untrusted organizations, so running BFT protocols

on many consensus nodes to tolerate many malicious nodes

is essential. The consensus algorithm plays a critical role in

the blockchain and directly affects its performance. During

consensus processing, nodes need to verify pending transac-

tions and sort them into new blocks, which requires verifying

application-specific data encapsulated in transactions. To ad-

dress this, Wanxin Li [4] proposed P-CFT, a zero-knowledge

and crash-fault-tolerant consensus algorithm for permissioned

blockchains. The algorithm can directly provide data privacy

protection to the consensus layer while still providing crash

fault-tolerance guarantees.

Yin et al. [5]proposed a leader-based Byzantine fault-

tolerant replication partially synchronous model protocol, Hot-

Stuff, which allows the correct leader to push the protocol

to achieve consensus at the speed of actual network delays.

Rashid et al. [6] proposed a multi-layer secure network model

for IoT networks based on blockchain technology, which uses

genetic algorithms and particle swarm optimization algorithms

to divide the network into K unknown clusters, and then

selects cluster leaders to form a public chain to synchronize

information. However, as the network scale increases, the

delay of the public chain will also increase. Chai et al. [7]also

proposed a lightweight proof of knowledge (PoK) consensus

mechanism. The consensus models the knowledge sharing

process as a game between the leader group and the ordinary

group in the transaction market. Although it reduces the

computational cost, the communication cost does not decrease.

The concept of parallel execution has been widely used

in existing systems, and now some people are introducing

parallel thinking into blockchain systems. To improve trans-

action speed and scalability in blockchain systems, SS et

al. proposed a parallel-based, rather than individually mining
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Bitcoin to speed up the proof of work process, which improved

the scalability of the proof of work by 24% compared to

the current system. Xu et al. [8] proposed a time-space

scheduling algorithm to optimize transaction parallelism and

redundancy with a multi-transaction processing unit. The

transaction processing unit achieves transaction optimization

by asynchronously parallel execution and scheduling in the

spatial dimension and fine-grained data and instructions in the

time dimension. Saraph et al. [9] proposed parallel execution

of transactions within each block of the Ethereum blockchain,

and using this method, gas costs can be reduced by 2 times.

III. OVERVIEW

A. System Model

The blockchain nodes [10]–[12] in the system model are

divided into two types: Normal Nodes (NN) and Consensus

Nodes (CN). Normal nodes perform transaction execution,

and consensus nodes are responsible for BFT consensus on

submitted transactions. Nodes are grouped into organizations,

each of which runs several consensus nodes and normal nodes.

A server can have both consensus nodes and normal nodes at

the same time.The system model is given in Figure 3.

Leader 
node

Consensuse 
nodes

Normal nodes

Txn

Clients
Blockchain

Commit

back

Multicast

Nodes

Fig. 3. New Parallel Workflow.

The blockchain used in this paper adopts BFT consensus,

so there are at most f = (|N−1|)
3 malicious nodes among

the consensus nodes. Similar to the typical HFL permissioned

blockchain [11], nodes within the same organization trust each

other, and nodes across different organizations do not trust

each other. Clients may also be malicious and may collude

with malicious nodes. We can refer to them as adversaries

(denoted as A).

B. Workflow Overview

The consensus process of IHFBF is divided into five phases.

Figure 4 shows the workflow of the five phases:

The first phase is the submission phase, where the client

submits signed transactions to the leader of the consensus

nodes via a TLS-enabled connection. If the client sends a

Client Leader node Consensus node Normal node Blockchain

Phase1 client 
submit transactions 

Phase2  sequence 
and muliticast to 

consensus node and 
normal node

Phase3 consensus Phase4
Predictive 
execution

Phase5
commit block

Re-executeSelect leader

Fig. 4. Detailed workflow of IHFBF.

transaction with an incorrect format, the leader will disconnect

to avoid a DoS attack from the client.

The second phase is the multicast phase, where we select the

leader node as the sorting node in BFT consensus. The sorting

node sorts the received transactions in order and broadcasts the

sorting results to all consensus nodes and normal nodes.

The third phase is the consensus phase, where consensus

nodes run the BFT protocol and, in the absence of malicious

nodes, agree on the same order as the received transaction

sequence and the transaction hash sequence broadcast by the

leader.

The fourth phase is the predictive execution phase, which is

concurrent with the third phase. Normal nodes speculatively

execute the transactions sent by clients based on the sequence

number sorted by the sorting node. If the node produces incon-

sistent results for the transaction, the transaction is aborted to

ensure consistency of the state. Because the execution delay in

the fourth phase is usually smaller than the consensus protocol

delay in the third phase, the system’s performance can be

greatly improved. If there are malicious nodes in the nodes, the

transaction order predicted by the predictive execution phase

may be different from the order agreed upon in the consensus

phase. In the fifth phase, if inconsistency is detected between

the two, normal nodes will execute transactions according to

the order agreed upon in the consensus phase, ensuring system

security.

The fifth phase is the submission phase, where normal nodes

of IHFBF submit transactions only after receiving matching

committed transactions in the third phase and persistently

executed results in the fourth phase. This ensures safe and

reasonable liveness and reasonable high performance even in

the presence of non-deterministic transactions.

The new workflow of IHFBF achieves security when there

are non-deterministic transactions in the consensus workflow

and zero interruption rate while meeting workload require-

ments, which is critical for improving performance in the

consensus execution workflow. The parallelization of the con-

sensus and execution phases greatly reduces the accumulated

delay compared to the traditional serial workflow.
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IV. PROTOCOL DESCRIPTION

IHFBF uses a series of views with consecutive view num-

bers, where each view has a consensus node (nL) as the leader.

Each view in IHFBF has its own state, which is maintained

by IHFBF clients and node caches.

A. Transaction Submission

In the IHFBF blockchain system, the first phase is for

the client to submit transactions to the leader node( nL

)of the current view. The client (CL)sends a transaction

t(txn, p, n, v, pk)σs, where txn represents the transaction, p is

the transaction payload, n is the organization or node related to

the transaction, v is the view number, pk represents the client’s

public key, and σs represents the transaction signed with the

client’s private key. The relevant nodes of the transaction refer

to all normal nodes in the transaction-related organization in

HLF, which should execute the transaction.

The second phase of IHFBF is multicast, where the leader

node nL multicasts the received transactions to all IHFBF

nodes.nL assigns a sequence number s to each transaction

in order and broadcasts the marked transaction T ((Txn,

p, n, v, pk), s) to all nodes (consensus nodes and normal

nodes). When a node ni receives the transaction T, it verifies

whether the transaction already exists. If a transaction with the

same sequence number has already been received, T will be

discarded.

B. Consensus

The third phase, the consensus phase, is to determine the

order of transactions. The leader node( nL )sends transactions

to the consensus nodes. When a consensus node receives

a certain number of valid transactions or a specified time

limit has elapsed, nL hashes the transaction payload using

SHA-256 and begins BFT consensus by sending the message

M(nL, vn, id,H)σs to all consensus nodes. Here, vn repre-

sents the current view number, id represents the block ID,

and H represents the list of transaction hashes. After receiving

the M message, the consensus node CN checks the hash

values of the transactions inH. If there is any inconsistency,

the consensus node requests the leader to retransmit the

missing transactions. After receiving all the transactions in

the M message, the consensus node CN begins the consensus

protocol on the hash values of the transactions. Each consensus

node combines the transactions into a block and delivers the

block to the normal nodes according to H.

C. Transaction Execution and Submission

In the fourth phase of IHFBF, after the leader node nL

sorts the transactions, normal nodes speculatively execute the

transactions. In the multicast phase, because the leader node

in the consensus nodes has already numbered the transactions,

normal nodes can directly execute the transactions in the order

they received without waiting for the consensus result. Execut-

ing and consensus synchronously can improve the performance

of the blockchain architecture. The execution result of the

transaction will be submitted in the fifth phase. If the order

of transaction hashes executed is different from the order of

transaction hashes in the consensus phase, the system will re-

consensus and execute.

In the fifth phase, normal nodes submit valid blocks to the

blockchain ledger. After receiving the consensus results from

more than 2f+1 consensus nodes, normal nodes compare the

hash value of their own executed transaction results with the

consensus results. If they are consistent, the execution results

of the transactions are uploaded to the blockchain ledger. If

an adversary A pretends to be a leader node and publishes

different transaction sequence numbers, it may cause trans-

action retransmission and speculative execution failures in the

consensus phase, which will reduce the system’s performance.

Based on the above description of the protocol process, the

system workflow can be obtained, as shown in Algorithm 1:

Algorithm 1 System Workflow

Input: Initialize transaction hash list H to be empty. Consen-

sus and normal nodes receive transactions T from clients.

Output: Normal node (NN ) submits a successful block or

re-executes the ordering.

1: if T is a new T and ni is leader node then
2: s← sequence(T ), add H ← H ∪ (s, hash(T ))
3: end if
4: while T (txn, p, n, v, pk) is enough for a block or a

timeout elapsed do
5: Consensus nodes start agreement of M(nL, vn, id,H)

σs

6: if normal nodes receive a block containing 2f + 1
valid signatures from different consensus nodes and its

executed transactions are consistent with the transaction

then
7: commit(T )

8: else
9: Normal nodes re-execute all transactions

10: end if
11: end while

D. Leader Node

Malicious leader nodes can adopt various methods to re-

duce the performance of IHFBF, such as sending inconsistent

transactions to nodes, deleting client transactions, or sending

different sequence numbers. To address these issues, IHFBF

uses a view change protocol similar to PBFT.

IHFBF’s view change protocol is similar to PBFT, but

there are differences. The rotation of leader nodes in IHFBF

is unpredictable, unlike in PBFT where leader nodes rotate

cyclically among consensus nodes.

Consensus nodes trigger IHFBF view changes in three

situations. First, to ensure high performance of the blockchain

architecture, consensus nodes trigger view changes when a

significant drop in throughput is detected in phase 3. Second,

if a client cannot receive transactions after a timeout, con-

sensus nodes will initiate a view change. Third, the correct

leader node will proactively invoke a view change to detect
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suspicious and inappropriate behavior, while malicious leader

nodes will act arbitrarily.
When an adversary pretends to be a leader node, broad-

casts carefully crafted transactions, and causes conflicts in

the sequence numbers of other nodes. These conflicts may

cause transaction retransmissions in phase 3 and speculative

execution failures in phase 4, reducing the performance of

IHFBF.

E. Deny-List Protocol
For the problem of malicious leader nodes in the blockchain

system, it can be detected and replaced by the BFT consensus

protocol [13]–[15]. For the problem of malicious clients, we

use the deny-list protocol [16]–[18] to solve it.
The specific steps of the deny-list protocol are as follows:

First, if a node ni receives two different transaction sequence

numbers, it considers the transaction received in the multicast

phase to be malicious and can add the client(CL) that sent the

transaction to the suspect list S. Second, during the process of

switching different views in the consensus phase, if ni detects

a conflict in f+1 views of different leaders, it determines that

the client(CL)in the suspect list S is malicious. Finally, ni’

carries CL when switching views. If f + 1 consensus nodes

detect transaction conflicts at this time, it is determined that

the client(CL)is malicious and (CL) is added to the deny list

D.
The deny-list protocol can effectively prevent malicious

clients from disrupting the consensus process and ensure the

security and performance of the blockchain system.

V. IHFBF PERFORMANCE ANALYSIS

A. Effectiveness of the Deny-List Protocol in IHFBF
The deny-list protocol in IHFBF has a low false-positive

rate, effectively detecting malicious clients. For the false-

positive rate, IHFBF can add malicious clients to the deny

list, making them detected in f +1 suspected views. To evade

the deny list, an adversaryA is best to only cause conflicts

with a specific leader in a view, but due to IHFBF’s proactive

view changes and random leader rotation mechanism, this will

inevitably lead to conflicts with different leaders in subsequent

views. Therefore, adversary A is better off using a different

client(CL) to reduce the probability of being suspected. Since

in IHFBF adversary A cannot arbitrarily increase its collusive

client list in the permitted blockchain, IHFBF usually has a

low false-positive rate.

B. High Performance of IHFBF
The high performance of IHFBF is reflected in two aspects.

First, for views with malicious leaders, consensus nodes can

call view changes by detecting re-execution rates or throughput

drops to replace leaders, ensuring the continuity of parallel

workflow. Second, due to IHFBF’s low false-positive rate,

the malicious client used by the malicious node A will

continuously cause conflicts in the sequence number space of

normal nodes and be added to the deny list of IHFBF. Since A
cannot arbitrarily increase its collusive client list, IHFBF can

effectively ensure the high performance of the network model.

VI. EXPERIMENTAL ANALYSIS

All experiments were conducted in an environment consist-

ing of a cluster of three laptops, each equipped with an Intel

Core i5 1.60GHz processor, 32 GB of memory, a 64-bit Win11

operating system, and VMware Workstation 20pro, as well as

an Ubuntu system with 16 GB of memory and two processors.

To verify the performance of the IHFBF framework, it was

compared with three other blockchain frameworks: Hyper-

ledger Fabric (HLF) [17], StreamChain [18], and FastFabric

[19].
We evaluated the blockchain frameworks using the Small-

Bank [20] workload. The performance metrics were through-

put and latency.

A. Workflow Performance
Figure 5 shows the workflow performance of IHFBF, Fast-

Fabric, and StreamChain without malicious nodes. It can be

seen that the IHFBF framework performs significantly better

than the other frameworks in terms of both throughput and

latency. The experimental results demonstrate that IHFBF has

high performance and scalability, making it suitable for various

applications in the blockchain domain.

Fig. 5. Throughput and Latency without Malicious Nodes

StreamChain processes transactions in a streaming manner

by sequentially processing each transaction in a pipeline form,

thereby achieving relatively low transaction latency. Compared

with other blockchain platforms that process transactions in

parallel, StreamChain sacrifices some throughput but signifi-

cantly improves latency performance. Its peak throughput is

around 5k transactions.IHFBF performs better than FastFabric

in terms of both throughput and latency. The throughput of

IHFBF is higher than FastFabric because in IHFBF, ordinary

nodes execute relevant transactions according to their num-

bers (Phase 4). Therefore, IHFBF does not need to perform

heavy MVCC contention checks like the consensus execution

workflow in FastFabric. So the peak throughput of IHFBF

can exceed 30k transactions. The relatively lower latency of

IHFBF is mainly due to the parallelization of the execution

and consensus phases in IHFBF.
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Figure 6 shows the workflow performance of IHFBF, Hyper-

ledger Fabric, and FastFabric in the presence of 30% malicious

nodes. From the figure, it can be seen that in the presence of a

large number of malicious nodes in the system, our proposed

IHFBF framework outperforms the other frameworks in terms

of both throughput and latency metrics.

Fig. 6. Work Performance in the Presence of 30% Malicious Nodes

To evaluate the scalability of IHFBF, we tested the latency

with different numbers of organizations. Each organization had

one consensus node and one normal node. As shown in Figure

7, as the number of organizations increased, the latency of

IHFBF on four BFTs rapidly decreased and slowly increased.

We can analyze that when the number of organizations is

small, the time of executing transactions affects the perfor-

mance of the workflow. When the number of organizations

gradually exceeds 25, the number of transactions executed by

each organization decreases, and the time for consensus among

organizations becomes the main factor that affects the delay

of the workflow.

Fig. 7. Scalability of the System Framework

Table 1 shows the performance of IHFBF in the presence

of malicious nodes. Er represents that the framework does

TABLE I
OBSERVED THROUGHPUT OF BLOCKCHAIN FRAMEWORKS IN DIFFERENT

SCENARIOS

Blockchain framework F1:All nodes normal F2:Malicious leader node

StreamChain 2.55 Er

HLF 8.25 8.25

FastFabric 26.21 Er

IHFBF 40.33 40.33

not support the experimental conditions, F1: all nodes are

running normally, F2: there exist malicious leader nodes. For

each experiment, the worst-case performance of IHFBF and

the relevant frameworks is recorded when the system is in

a stable state after being attacked by malicious nodes. All

blockchain frameworks run four BFT consensus nodes and

ten normal nodes. The effective throughput of each system

(i.e., the number of valid client transactions submitted per

second, kTxns/s) is recorded after the system is stabilized

following the attack of malicious nodes. As can be seen from

the table, IHFBF has good throughput both in the absence and

presence of malicious nodes, outperforming other blockchain

frameworks.

VII. CONCLUSION

To solve the problem of efficient and timely data storage, we

propose a high-performance permissioned blockchain frame-

work IHFBF, which is a new type of led parallel workflow

that uses network ordering to realize the parallelization of

transaction execution and consensus execution. By comparing

and evaluating with other excellent permissioned blockchains,

the study shows that IHFBF has low latency and high through-

put, and also performs well with the participation of malicious

nodes.
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