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With the development of 5G and Internet of Things technologies, the application process of smart transportation in smart

cities continues to advance. Sensors are a key source of information for smart transportation, and their data commonly

includes complicated traic scene information. Urban traic scheduling and eiciency can be signiicantly increased by

deploying data from smart sensors to forecast traic lows. Despite the fact that some related works have focused on the

prediction task of traic lows, they have not completely mined the traic spatiotemporal information present in smart sensor

data. We ofer a novel graph spatio-temporal attention algorithm (GSAA) for traic prediction in this paper. To completely

exploit the geographical and temporal correlations among complicated roadways for traic forecast, the algorithm combines

a spatiotemporal attention mechanism with a graph neural network.To take full advantage of how much efect various

hyperparameters provide, deep reinforcement learning is used to obtain the optimal hyperparameters while the predictive

model is trained. Experimental results on real-world public datasets show that the algorithm proposed in this paper achieves

performance improvements of about 5.47% and 13.10% over the MAE (mean absolute error) than the best baseline strategies

for short-term and long-term traic forecasting, respectively.

CCS Concepts: · Computing methodologies→ Planning under uncertainty.

Additional Key Words and Phrases: Traic Prediction, Graph Neural Networks, Attention Mechanism

1 INTRODUCTION

With the acceleration of digital and intelligent development of the whole society, especially the rise of cloud

computing [1], big data[2], artiicial intelligence [3] and other technologies, intelligent transportation system

(ITS) [4] has been greatly developed. The ield of smart transportation requires high network capacity, precise

positioning and low delay of data transmission. Therefore, a large number of smart sensors are deployed. Sensors

are the foundation and core of the development of the Internet of Things, intelligent transportation and smart

city construction, and are also key components of the data collected by the intelligent transportation [5]. The

sensor network made up of detectors can be an eicient way for the intelligent transportation system to gather

information. It detects vehicles approaching each intersection, and the collected data is used to simplify, enhance

signal control, increase traic eiciency, and efectively address other problems like patency, safety, and security

that plague urban traic [6]. Figure 1 depicts the intelligent transportation system’s data extraction sensor

application.
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Smart Devices 

with Sensors

(1) (2) (3) (4)

Fig. 1. Sensors in intelligent transportation (Such as the four examples of smart devices with sensors in the picture below:

(1)trafic lights at intersections with video camera functions can collect information such as vehicle models, (2) and trafic

light sensors used for pedestrian crossings can detect whether there are pedestrians, motorcycle, etc. (3) The sensors on the

side billboards monitor the trafic flow on the road, (4) and the speed measuring boxes deployed on specific sections of the

road can collect the average speed of passing vehicles.)

Traic forecasting is an important challenge in the ield of intelligent transportation system and mobile robotic

systems [7]. By predicting and evaluating dynamic traic conditions, transportation manager can improve traic

eiciency, ease traic congestion, increase road capacity, reduce traic accidents, reduce energy consumption

and reduce environmental pollution. However, current methods such as those based on mathematical statistics

[8ś12] are unable to fully exploit the spatiotemporal value of data. Methods based on deep learning [13ś19]

have inherent limitations in spatial feature modeling. Methods based on graph neural networks can efectively

model spatiotemporal relationships and are currently the mainstream approach [20ś30]. However, there are

still shortcomings. Most of these methods are unable to quickly adapt to changes in road structures and do not

consider the impact of road hierarchy on prediction results. The speciic situation is as follows.

• Currently, the main methods for traic prediction utilize transductive machine learning techniques, focusing

on identifying the temporal periodicity and spatial distribution characteristics of traic patterns, and have

achieved satisfactory predictive results. However, they all overlook the fact that road networks may undergo

dynamic changes, such as the addition or removal of a road, which can alter the structure of the road

network. If transductive graph learning [31], such as GCN, is used for traic prediction and a new node is

added, the prediction network must be retrained to retrieve its embedded representation. This indicates

that GCN method is limited to learning the embedded representation of nodes on a speciic network and

cannot generalise to unknown nodes or learn node representation across a graph. Therefore, inductive

task processing method, such as GraphSAGE, SVM and Random Forest, can be adopted, and the embedded

representation of newly added nodes in the network can be determined by viewing their adjacency.

• In addition, the traic conditions are subject to dynamic changes, which are related to the grade and

characteristics of the routes. In other words, the hierarchical relationship between roads will also afect the

interaction between roads. For example, a car traveling on a main road may not enter an on-ramp for a
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long period of time. At this point the interaction on the ramp and the main road will be smaller. In real-life

road traic scenarios, not all nearby roads for a particular road have the same impact on the subsequent

traic conditions, and some are even irrelevant, such as some abandoned roads that cannot provide future

traic low for that road. Therefore, it is unrealistic to treat all roads equally.

To address the above issues, we propose a novel graph spatiotemporal attention traic prediction algorithm

based on the architecture as shown in Figure 1. The main contributions of this paper are summarized as follows:

• We design a novel inductive graph spatio-temporal attention algorithm (GSAA), which combines the

spatio-temporal attention mechanism with an inductive graph neural network to explore the geographical

and temporal correlations between complex roads for dynamic traic low prediction.

• In order to improve the accuracy of traic low prediction, we use deep reinforcement learning to determine

the best hyperparameters for prediction model training. Speciically, in order to learn the depth and breadth

of the search tree in the aggregation process, the deep reinforcement learning algorithm DQN is used to

search the optimal location of the road network nodes and their neighbors.

• We conducted the experiment on real data sets. The experimental results show that the proposed algorithm

GSAA achieves better results than the baseline strategy in short-term and long-term traic forecasting.

The rest of this paper is organized as follows. Section 2 introduces the related works. The system model and

problem statement are given in Section 3. The implementation details of the proposed algorithm is elaborated in

Section 4. Experimental methods and analysis are given in Section 5. Section 6 concludes this paper.

2 RELATED WORKS

Traic low forecasting [32] is an important part of intelligent transportation system and plays an important role

in urban traic control. Traic prediction has received extensive attention in the ield of intelligent transportation,

and a lot of realted research work has been presented. The distinctions among all related works are summarized

in the Table 1.

2.1 Mathematical and Statistical Methods

The traditional analysis is mainly based on the mathematical statistics of the traic state at the beginning, such

as the historical average model (HA) [8] that used the average value of historical traic data as the prediction

result, and the Bayesian prediction model, which not only used model information and data information, but also

fully used prior information had advantages compared to regression models. Later, models that deal with simple

time series appeared, such as vector autoregression (VAR) [9], support vector regression (SVR) [10], Kalman ilter

model [11] , etc. They required the time series to be stationary. Later, the autoregressive integral moving average

model (ARIMA) [12] was proposed to solve non-stationary time series, but still cannot handle time series with

long-term dependencies.

2.2 Machine Learning Methods

The machine learning-based methods for traic low prediction can be divided into the following three categories.

Deep Learning methods. In recent years, the advantages of deep learning in feature capture have attracted

the attention of researchers. Many deep learning methods have been applied to traic low prediction, such as

deep belief networks (DBN)[13, 33] and stacked autoencoder neural networks (SAEs) [15]. The recurrent neural

network is a widely used model for processing time series. The long short-term time memory network (LSTM)

and the gated recurrent unit (GRU) [16] are typical RNN networks, and they and their variants have good results

in time series processing. All of the above methods only consider the temporal dependencies in the sequence,

and researchers gradually realized the importance of spatial correlation, and by introducing convolutional neural

networks (CNNs) to extract spatial information and combine it with LSTMs [17, 18], improve the prediction
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Table 1. The distinctions among all related works.

CATEGORY METHOD TEMPORALSPATIAL DISTINCTION

Mathematical

&

Statistical

Methods

HA [8] - - Simple to calculate, but with a large

margin of error

VAR [9], SVR

[10], Kalman

ilter [11]

✓ - Considers the temporal nature of the data,

but requires stationary time series

ARIMA [12] ✓ - Considered non-stationary data

Deep

Learning

methods

DBN [13, 33] ,

SAE [15], GRU

[16]

✓ - Full consideration of timing, big data

training for better performance

Literature [19] ✓ - Utilizing multiple factors such as weather,

date, wind speed, and temperature to

make low predictions

CNN + LSTM

[17, 18]

✓ ✓ Spatial structure is considered, but CNNs

cannot adapt to non-Euclidean data

Graph

Represen-

tation

methods

TS-STNN[20] ✓ ✓ Modeling Spatial Features Using Tree

Structures

T-GCN [21] ✓ ✓ Modeling spatio-temporal features using

graph representation learning and RNNs

AST-GCN [22] ✓ ✓ Additional consideration was given to

external factors such as points of interest,

weather, etc.

DCRNN [23] ✓ ✓ Capturing spatial features using

bi-directional random wandering

STGNN [24] and

Literature

[25ś30]

✓ ✓ An attention mechanism is introduced to

model long-term temporal dependencies

Deep Rein-

forcement

Learning

Literature

[34, 35],

- - Using Reinforcement Learning to

Optimize Traic Scheduling

Literature [36] ✓ ✓ Using Reinforcement Learning to

Generate Dynamical Maps and thus Model

Spatio-Temporal Features

accuracy. But CNNs are designed for Euclidean spaces, such as images and grids, which cannot extract the spatial

dependencies of traic low well in non-Euclidean spaces. Lv et al. [20] argue that deep learning spatiotemporal

models based on graph convolution theory cannot efectively explore spatial hierarchy and directional information.

Therefore, they propose constructing a spatial tree matrix with hierarchical and directional features to extract

spatial information.
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Pushpenduet al. [19] considered multiple factors such as weather, date, average wind speed, and temperature

to demonstrate the importance of additional information in traic prediction.

Graph Representation methods. Graph representation learning has been widely used in many areas [37, 38].

An emerging graph convolutional neural network (GCN) [39] was dedicated to processing network structures [40],

which can better model the spatial correlation of road segments in traic networks [41]. DCRNN [23] captured

spatial structure through bidirectional random walks, and modeled time series through encoder-decoder structure.

TGCN [21] was a spatiotemporal prediction network model that uses GCN to extract spatial information and GRU

to capture temporal information in the sequence. When predicting future traic low, AST-GCN [22] not only

considers traic low information, but also points of interest (POI) and weather conditions around the road. Song

et al. [25] constructed a local spatiotemporal graph that concatenates individual spatial graphs of adjacent time

steps into one graph and captures three spatiotemporal dependencies for spatiotemporal prediction tasks. Guo et

al. [26] proposed a new attention-based spatiotemporal graph convolutional network model to solve the traic

low prediction problem. They used three independent components to simulate the characteristics of the three

time lengths of the traic low respectively to comprehensively predict the traic low. Kim et al. [27] modeled

temporal and spatial dependencies separately, using an attention mechanism to improve prediction accuracy.

Wang et al. [24] introduced the Transformer framework to improve the modeling ability of long-term temporal

dependencies of the model. Xu et al. [28] proposed a spatiotemporal transformer structure to capture real-time

traic conditions and directionality of traic low by dynamically modeling directed spatial dependencies with

a self-attention mechanism. Wang et al. [29] simultaneously employ temporal convolutional networks and

transformers to model the temporal features of long sequences. They also introduce curriculum learning to

optimize the target sequence and avoid getting trapped in local minima. Guo et al. [30] designed a self-attention

mechanism capable of exploiting local context, enabling the prediction model to capture the temporal dynamics

of traic data, while employing a global receptive ield for long-term prediction.

Deep Reinforcement Learning. Walraven et al. [34] employed reinforcement learning in the ield of smart

transportation to improve road traic low and prevent traic jams while also taking into account future traic

low using various model prediction techniques. For the high-speed moving mobile network [42], Zhou et al. [43]

employed federated learning to address the knowledge sharing in this distributed scenario, and used reinforcement

learning to optimize the aggregation eiciency of the model. By using a hierarchical multi-agent system to split

the traic network region, Abdoos et al. [35] applied reinforcement learning to determine the most efective

method for implementing joint traic light scheduling. Peng et al. [36] suggested a dynamic traic low prediction

model that employs reinforcement learning to produce dynamic graphs in order to address potential data faults

in traic prediction.

In summary, the existing methods have not fully considered the impact of road grade and road structure

changes on traic low, resulting in insuicient exploration of spatiotemporal characteristics. Building upon the

aforementioned works, we take into account the dynamic spatiotemporal inluence of road nodes on the traic

network.

3 SYSTEM MODEL

Historical traic information consists of road geographical connectivity and road characteristics. The goal of

traic low prediction is to use the previous road traic information to predict the future traic. In this paper,

we use traic speed as a measure of traic low. In addition to traic speed, other indicators can also be used to

evaluate traic conditions, such as traic low, traic density and traic performance index (TPI) data. To better

formalize the description of the problem, the necessary deinitions are provided below.

Deinition 1 (Road network �). The topology of the road network is represented by an undirected, unweighted

graph called � (� , �,�).

ACM Trans. Sensor Netw.
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We regard each road or sensor on the road as a node.� represents the set of all road nodes, where� ={�1,�2,...,�� }.

The total number of nodes is denoted by � = |� |. The � is the set of edges connecting these nodes. A real,

symmetric adjacency matrix � ∈ R�×� can be used to represent these connections, with each element �[�, �]
representing the connectivity between nodes � and � . This connectedness often depicts the geographic connectivity

between roads or sensors. When them are connected geographically, �[�, �] = 1; otherwise, it is 0.

Deinition 2 (Feature matrix � ). We consider the traic speed on the road as the feature of each node in the

network, denoted as � ∈ R�×� , where� signiies the various moments and � denotes the number of nodes. Any

other trait, or even a combination of features, might be it.

Each node’s traic status is represented by � � , and the scalar � �
� relects the � − �ℎ node’s traic condition at

time � . The traic condition in this instance obviously relates to the pace.

Formal Deinition : The formal deinition of the problem statement is given below. For the task of road traic

spatiotemporal prediction, which can now be thought of as learning a function map. The network� of roads and

the historical traic data from the feature matrix � serve as the input. The result is the traic scenario � times in

the future, correspondingly. The function map can be expressed as Equation 1:

[��+1, . . . , ��+� ] = � (� ; (��−� , . . . , ��−1, �� ))), (1)

which � represents the length of the historical traic data series used, and � represents the length of the time

series to be forecasted.

In order to enhance the readability of the article, we have compiled a summary of the abbreviations used in the

text and provided explanations for their meanings in the Table 2, and a explanations for symbols in the Table 3.

4 GSAA ALGORITHM DESIGN AND IMPLEMENTATION

Traic sensors can collect traic low data and vehicle locations to help cities optimize traic low and reduce

congestion and traic accidents. Smart cities can adjust traic signals in real time based on traic low data and

energy consumption data to achieve more eicient energy usage and traic management. In this paper, we design

a spatiotemporal low prediction model that can fully exploit the spatiotemporal information contained in traic

sensor data. We now give the brief idea of how the proposed GSAA algorithm predicts the traic low in urban

road networks, as shown in Figure 2.

The GSAA algorithm consists of three components, namely Spatial Dependency Modeling implemented

in the GraphSA-Att module, Temporal Dependency Modeling where the GRU and T-Attention modules are

used to establish short-term and long-term temporal dependencies, and Deep Reinforcement Learning based

Hyperparameter Selection used to improve the prediction accuracy. In general, the algorithm is initially fed with

� historical time series and road network topology. The road network’s nodes are compared to its neighboring

nodes using the similarity function, and the model samples the nodes with the highest similarity in order to

aggregate features at GraphSA-Att layer. Instead of using standard aggregation techniques in the aggregation

phase, the model converts the similarity matrix between nodes and their neighbors into an attention matrix. The

aggregated result will be used as the hidden state of the node at the next moment. In this manner, the spatial

feature information of the road network at each instant is gathered. Secondly, in order to capture short-term

temporal dependencies through the transfer of hidden states across units, the sequence information comprising

spatial characteristics acquired in the prior phase is fed into the gated recurrent unit (GRU). Following that, the

output of the gated recurrent unit is routed into the Temporal Attention layer (T-Attention) to record long-term

temporal dependencies. We identify global contextual interactions inside the historical time series and capture

long-term dependencies by relying on its self-attentive mechanism. Finally, a fully connected layer is used to

produce the prediction results.

ACM Trans. Sensor Netw.
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Table 2. Meaning of abbreviations

ABBREVIATION EXPLANATION

ARIMA AutoRegressive Integral Moving Average model

AST-GCN Attribute-augmented SpatioTemporal Graph Convolutional Network

DBN Deep Belief Network

DCRNN Difusion Convolutional Recurrent Neural Network

DQN Deep Q-Network

GAT Graph ATtention network

GCN Graph Convolutional neural Network

GRU Gated Recurrent Unit

GSAA Graph Spatiotemporal Attention Algorithm

HA Historical Average

ITS Intelligent Transportation System

LSTM Long Short-Term time Memory network

POI Points Of Interest

SAEs Stacked AutoEncoder neural networks

SVR Support Vector Regression

T-GCN Temporal Graph Convolutional Network

TPI Traic Performance Index

VAR Vector AutoRegression

Table 3. Meaning of Symbols

SYMBOLS EXPLANATION

· Dot product

⊙ Hadamard product

� (�) The eigenvectors of x

4.1 Spatial Dependency Modeling

A common inductive graph learning model that has been demonstrated to produce efective results in graph

embedding learning is the graph sampling aggregation network (GrapgSAGE). The original GraphSAGE [44], as

shown in Algorithm 1.

Note that GraphSAGE makes a random selection of � neighbor nodes for each node � ∈ � by

����������������ℎ����� function. If a node has more neighbors than � , then � nodes are picked at random.

All of the neighboring nodes will be sampled irst if the number of neighbors is less than � , and then a second

random sample will be taken to guarantee that � neighbors are sampled. Then, ��������� functions like GCN,

ACM Trans. Sensor Netw.
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TimestepsTimesteps

GraphSA-Att GraphSA-Att GraphSA-Att

GRU GRU GRU

Temporal-Attention

DictDict

Build Graph

Adjacency List

Fully Connected Layer

X1 X2 Xn

GraphSA-Att GraphSA-Att GraphSA-Att

GRU GRU GRU

Temporal-Attention

Dict

Build Graph

Adjacency List

Fully Connected Layer

X1 X2 Xn

DictDict DictDict DictDict

 ⊕
Position Encoding

 ⊕
Position Encoding

 ⊕
Position Encoding

 ⊕
Position Encoding

 ⊕
Position Encoding

 ⊕
Position Encoding

GraphSA-Att GraphSA-Att GraphSA-Att

GRU GRU GRU

Temporal-Attention

Dict

Build Graph

Adjacency List

Fully Connected Layer

X1 X2 Xn

Dict Dict Dict

 ⊕
Position Encoding

 ⊕
Position Encoding

 ⊕
Position Encoding

TimestepsTimestepsXn+1 Xn+2 Xn+T

Fig. 2. The Framework of GSAA.

Algorithm 1 GraphSAGE

Require: � : The set of all nodes; � : Number of selected neighbor nodes per layer; � (�):The neighbors of node
� ;� � :weight matrices; � :the depth to sample;

Ensure: ℎ�� :The feature representation of node � at layer k,with layer 0 being ��

1: ℎ0� ← �� ,∀� ∈ � ;
2: for �=1 . . .� do

3: for � ∈ � do

4: � (�) ← ����������������ℎ����� (�, �) // For each node � , randomly sample � neighboring nodes.

5: ℎ�
� (� ) ← ��������� (ℎ�−1� ,∀� ∈ � (�)) // Aggregate the neighboring nodes of the k-1 layer.

6: ℎ�� ← � (� � ·������ (ℎ�−1� , ℎ�
� (� ) )) // Obtain the features of the central node � at layer k.

7: end for

8: ℎ�� ← ℎ��/


ℎ��




2

// Normalization.

9: end for

MEAN, MAX and LSTM, etc. combine the nearby node characteristics into ℎ�
� (� ) . After that, the representation

of � at the k-1�ℎ layer, denoted by ℎ�−1� , and its neighbors’ are concatenated to obtain the k�ℎ layer representation

of the node � , denoted as ℎ�� . The parameters � and � are both hyperparameters, and are referring to the depth

or number of layers sampled as well as the number of surrounding nodes sampled at each layer. The authors

recommend [44] that 2 layers be sampled and �1 ∗ �2 ≤ 500, where �1 and �2 are the number of neighbor nodes

per layer that were sampled.

No doubt that we can’t pick neighbors at random. Instead, we want to pick neighboring roads with comparable

traic low, thus these roads are in the similar condition. Thereby, we redeine the sampling algorithm in Section

4.1.1, and propose a spatial attention mechanism based on the geographic adjacency of roads in Section 4.1.2. At
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last, to obtain the spatial dependencies in the traic low at the current moment, we use the attention aggregation

function elaborated in Section 4.1.3.

4.1.1 Sampling Algorithm Based on Similarity . The link between roads is contained in the traic network � ,

and two neighboring nodes signify that the two roads are close by geographically. Generally speaking, their

characteristics will be relatively similar. Consider the scenario where the traic on this road will, in a certain

direction, shift to the adjacent road in a few seconds. Thus, two roads adjacent to each other will have comparable

traic circumstances.

However, the traic on this road may move in any direction at any time, because each road has several forks.

In fact, the traic on this road may come from various roads, including paths and thoroughfares. In most cases,

due to the low road traic low, the impact on traic prediction is not particularly signiicant. In addition, the

traic on the main road tends to maintain this condition for a long period of time, and will not easily turn to the

secondary road. In order to obtain more accurate information when sampling, we choose neighboring nodes

with high traic similarity.

GraphSA Att with attention mechanism is divided into two parts, namely sampling and aggregation. We will

introduce in depth the implementation of the sampling and aggregation module using the attention mechanism.

Algorithm 2 is our proposed sampling algorithm based on similarity.

Every node in the road network is considered the center node in turn. We then extract each node’s neighbor

list, donate as ����ℎ����� , and use the ����� function to determine how comparable the center node � and

neighboring nodes are. Here, the dot product is used as ����� function in Equation (2):

����� (�,�) = �� · ��� . (2)

Algorithm 2 Sampling Algorithm based Similarity

Require: � : The set of all nodes; �: Number of neighbors were chosen; �����: The function to calculate

similarity of two nodes; ���� : Sorting nodes by similarity; � :the depth to sample;

Ensure: �� : The node chosen as node � ’s neighbor inally;

1: for �=1 . . .� do

2: for � ∈ � do

3: ��
� ← ����ℎ����� [. . . ] // All neighbors of node � at � depth.

4: if ���(��
� ) > � then

5: for � ∈ �� do

6: ����� ← ����� (�,�) // Calculate the similarity between node � and u.

7: end for

8: ���� (��
� , �����) // Sort the nodes based on the similarity.

9: ��
� ← ������ (��

� , �) // Sample � nodes from the neighbors.

10: else

11: ��
� ← ��

�

12: end if

13: end for

14: �� ← ������ (��
� )

15: end for

The next step is to order the neighbor nodes based on this similarity value, and then sample the top � nodes

to gather information. Any type of quick and efective sorting algorithm can be used as the ���� function. All

of them are sampled to determine the node’s neighbors if the number of neighbor nodes is fewer than � . The

ACM Trans. Sensor Netw.
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sample depth here is likewise � layer, same like in graphsage. The neighboring nodes ��
� engaged in each layer

are combined to form �� . For the purpose of choosing � and � in this experiment, deep reinforcement learning is

used. This will be discussed in Deep Reinforcement Learning based Hyperparameter Selection.

4.1.2 Spatial Atention Mechanism . The connection strength between two nodes, or the similarity ratio between

two roads or sensors, is represented by each value of the attention coeicient matrix,�� , which we generate. It

guarantees that those neighboring nodes to be aggregated to node � have an attention factor sum of 1. In this

method, it is possible to properly model the road’s spatial structural features into the traic forecast model. Our

model can recognize dynamic changes in the traic information low to better represent the spatial dependencies

in the traic network because we compute the similarity of the traic information at each instant. To assess the

similarity between two routes, we utilized Equation (2), which is the inner product of two vectors. Note that for

other distance metrics, Euclidean distance is not applicable to high-dimensional data, Manhattan distance is not

very intuitive, and may not provide the shortest path, and Chebyshev distance is not universal, and it is diicult

to simplify the calculation. Most of them are not suitable for the similarity measurement of traic data, or can

not better establish the dependence of traic roads.

Equation (3) is used to determine the attention coeicient between two nodes, where�� [�, �] stands for the
attention coeicient between nodes � and � .�� is not a true symmetric matrix, as should be noted. Even when

two nodes have the same score similarity, their surrounding nodes difer, and as a result, the inal attention

coeicients also difer

�� [�,�] =
��� (����� (��, ��))

∑�
�=1 ��� (����� (��, �� ))

. (3)

4.1.3 Atention Aggregation Function . We select the attention based approach to aggregate the characteristics.

Equation (4) is used to aggregate the information from neighboring nodes to the central node using the attention-

based aggregation approach. And we need to aggregate information from the core node’s k-hop neighbors �

times.

ℎ� (�) =�� · �, (4)

where ℎ� (�) is a synthesis of the neighbor characteristics of the � nodes in this layer,�� is the attention matrix,

� is the input traic data feature matrix and the symbol · means dot product. ℎ�� , the inal hidden feature of node

� at layer k, is then obtained by combining the characteristics of node � at layer k-1 and ℎ� (�) using Equation (5):

ℎ�� = � (� � ·������ (ℎ�−1� , ℎ�� (� ) )), (5)

where� � is the parameter matrix gained from training,������ (·) is the splicing operation on the two vectors,

and � is the nonlinear activation function.

Here, we use Figure 3 as an example to explain the similarity of the nodes with k=2 and c=3.

First, the three one-hop neighbors of the center node � are chosen from its neighbor nodes in the irst layer. The

next step is to determine the second-order neighbors or two-hop neighbors of the central node � for each node in

the irst-order neighbors. This is how sampling is performed in Figure 3a. Then, we aggregate the information of

the second-hop neighbor nodes on the irst-order neighbor nodes using the attention coeicient matrix created

during sampling, and then aggregate the irst-order neighbor node information containing the second-order

neighbor information to the central node � . As shown in the Figure 3b. Through the twice aggregation, we are

able to incorporate the neighbor node information for up to 2 hops. Similar to the previous example, if the sample

depth is � layers, we need to aggregate � times during aggregation, with the exception that sampling is done

from the center node outward and aggregation is done from the peripheral nodes inward. Finally, we get the

node’s subsequent concealed state as shown in Figure 3c and use it later in the computation.

ACM Trans. Sensor Netw.
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(a) (b) (c)

Fig. 3. GraphSA-At Progatation.

In summary, we use the modiied GraphSage algorithm, GraphSA-Att, to learn spatial features in traic data.

As shown in the Figure 3, for the central node � , we sample � neighbours from its neighbor nodes, then aggregate

the features of the sampled nodes, and inally concat it and the previous layer features of node � as the node � ’s

next hidden state.

4.2 Temporal Dependency Modeling

In traic forecasting, it is crucial to capture time-dependent relationships just as much as geographical dependency.

To identify short-term and long-term dependencies, we employ a cyclic gating unit (GRU) and an attention

layer, respectively. Diferent from separately inputting the output of the GraphSA-Att module into GRU and

Temporal-Attention Layer and then adding their results, this paper irst inputs the output of the spatial module

into GRU. The output of each time step of GRU is then sequentially fed into the Temporal-Attention Layer, where

each input of the Temporal-Attention Layer represents all the spatiotemporal features before the current time

step. This approach is more conducive to capturing long-term spatiotemporal dependencies.

4.2.1 Short-term Dependencies. GRU is a classical RNN algorithm. Both GRU and LSTM are variants of RNN.

Their principles are almost the same, but GRU has fewer parameters and can maintain the same efect as LSTM.

Therefore, we chose GRU to capture short-term dependencies.

At time � , the speciic operation of GRU can be expressed as follows:

�� = � (�� · [�� , ℎ�−1] + ��), (6)

�� = � (�� · [�� , ℎ�−1] + �� ), (7)

�� = ���ℎ(�� · [�� , (�� ⊙ ℎ�−1)] + �� ), (8)

ℎ� = �� ⊙ ℎ�−1 + (1 − �� ) ⊙ �� . (9)

Among them, ⊙ is the Hadamard product, which means that the matrix is multiplied element-wise; �� means

that the spatially dependent traic data is already included;�� ,�� ,�� ,�� ,�� and �� are three diferent sets of

linear variation parameters that the model needs to be trained.

�� is an update gate, which can be obtained using Equation (6), to control how many states are substituted into

the current time at the previous time; �� is the reset gate, which can be obtained using Equation (7), to control

the forgetting degree of the hidden state of the previous time; �� is a candidate for the hidden layer state, which

can be obtained using Equation (8), and the multiplication of �� and ℎ�−1 indicates whether past information is
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helpful for predicting the future. When �� approaches zero, the model discards the hidden information in the

past, leaving only the current input information. When �� approaches 1, the past information is considered to be

useful, and it is added to the current information.

In Equation (9), the update gate is used to integrate the previous state with the current candidate state to

produce the hidden state ℎ� at the present time.

4.2.2 Long-term Dependencies. Longer-term reliance must also be taken into account when predicting traic,

while GRU captures short-term dependence. So, to capture long-term dependence, we suggest utilizing a multi-

head attention method.

The multi-head attention mechanism is used to identify long-term dependencies. It was developed as an

inspiration for the temporal attention mechanism in Transform [45]. Transformer encoder is composed of

multi-head attention module, residual and normalization module, and feedforward neural network module. The

attention module uses scaled dot product attention, which is calculated as shown in Equation (10):

���������(�,� , � ) = �� � ���� (���

√
��
)� , (10)

where �� refers to the dimension of the � vector, � represents the query vector, � represents the key vector, and

� represents the value vector. � , � and � are all obtained from the input sequence vector by Equation (11). If �

is the input sequence vector, then:

� =��� + ��,
� =��� + �� ,
� =��� + ��,

(11)

where ��, ��,�� , �� ,��, �� are three diferent sets of linear variation parameters that the model needs to be

trained.
The above attention layer can be called single head attention layer, while multi-head attention refers to using

diferent� �
�, �

�
�,�

�
�
, ��

�
,� �

� , �
�
� to calculate the output of single head attention layer several times and then splicing

them all by Equation (12):

��������� (�,� , � ) = ������ (����1, . . . ,����� )�� ;

�ℎ��� ����� = ���������(�,� , � ) .
(12)

Among them,�� is the linear change matrix to be trained by the model. Its function is to adjust the vector’s

dimension after multi-head attention operation to the dimension at the time of input.

The so-called residual is to add the initial vector after multi-layer transmission through the neural network. The

function is to efectively prevent the gradient from disappearing when the network is deep. Layer normalization

(LN) is similar to batch normalization (BN), which is the operation of normalizing data. The so-called feedforward

neural network in transformer is the structure of multilayer perceptron(MLP). The only thing worth mentioning

is that in this structure, the dimensions of input vector and output vector are the same, and the dimensions of the

middle hidden layer can be adjusted at will.

Because the transformer cannot know the relevant position information in the sequence like GRU, the data

needs to be position embedded to �̂ before being input into the temporal attention layer which is shown as (13):

�̂ = ����� + ����, (13)
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where ����� refers the representation after GRUs and ���� is the position embedding which is deined by

Equation (14) as follows:




���� (���, 2�) = ���
(

���

1000
2�

������

)

���� (���, 2� + 1) = ���
(

���

1000
2�

������

)

,

(14)

where ������ represents the dimension of the input vector in this model at this time. ��� represents the position

of the input sample in the sequence, starting from 0. 2� and 2� +1 must be regarded as two structures. 2� represents

the even digit in the vector, and 2� + 1 is the odd digit.

After capturing the spatial and temporal characteristics, we use a multilayer feedforward neural network to

predict the traic situation in the future. At the same time, the prediction layer can also help us determine how

long to predict the traic situation in the future. It can be shown as:

(��+1, . . . , ��+� ′ ) = � (��−ℎ, . . . , �� ),
where �� is the output result of the temporal attention layer at the previous � time, ��+1 is the prediction result at

� + 1 time.

4.3 Deep Reinforcement Learning based Hyperparameter Selection

Reinforcement learning (RL) is one of the paradigms and methods of machine learning, which is used to describe

and solve the problem that agents learn strategies to maximize rewards or achieve speciic goals in the process of

interacting with the environment. In traic forecasting, the agent receives the feedback of the model by acting

on various model parameters and feeding them back to the environment or model. Finally, the parameters of the

model training are selected as the actions that have the best impact on the prediction. In this paper, we use the

deep reinforcement learning algorithm Nature DQN [46] to select parameters, that is, to select the number of

sampling layers of neighbor nodes which marked as � and the number of neighbors sampled in each layer which

marked as � .

We consider the inference capability of the GSAA model as the state, which is an abstract concept. Speciically,

we describe the current model’s inference capability by combining diferent evaluation metrics into a feature

vector � (�). After each state performs a diferent action, it will receive a reward, denoted as R. We deine the

reward as the negative value of the evaluation metric MAE.

Nature DQN uses the state action value function to evaluate the strategy. Its input is a state action pair. The

state action value function indicates the expected value of the cumulative reward that can be obtained by selecting

an action in a state. In order to explore the cumulative reward value of more action spaces in the current state

as much as possible, the state action value function approximation technique is used, making the action value

function � (�, �;�) close to the optimal one �∗ (�, �), i.e.,
� (� (�), �,�) = �∗ (� (�), �), (15)

where � (�) represents the vector of the state, which means the inferring ability of the model at the current

round;; � represents the action performed by the model referring to two hyperparameters: � namely the number

of sampling layers and � the number of samples;� represents the parameters of neural network training.

The � (� (�), �,�) is used to calculate the estimated value of each state-action pair. In Nature DQN [46], in

order to converge the Q network, a target Q’ network with the same structure as the Q network is introduced to

compute the true value of each state-action pair. The parameters of the Q network are periodically copied to the

target Q’ network. Therefore, the calculation of the target Q value can be obtained as formula 16:
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� � =

{
� � , ��� � is true,

� � + �����′� ′ (� (� �+1), �′;� ′), ��� � is false.
(16)

Among them, � is the discount factor, � ′ is the target Q network with network parameters� ′, and �′ is the
action taken by the model in a given state � �+1, ��� � indicates whether the termination condition has been met.

To improve the accuracy of the Q network, we need to minimize the diference between the estimated Q value

and the target Q value. The calculation for this diference � is as formula 17.

� =

1

�

�︁

�=1

(� � −� (� (� � ), � � ,�))2 (17)

where� represents the number of samples involved in the training. By using the method mentioned above,

we can obtain the optimal hyperparameters for the model.

5 EXPERIMENTS

The experiments were conducted on a server running Ubuntu 20.04 LTS. The server was equipped with an

NVIDIA GeForce RTX 3090 GPU and 96GB of RAM. The training was performed using the Pytorch 2.0 deep

learning framework. The batch size for model training was set to 4, and the neural network had 64 hidden units.

The training was carried out for 200 epochs by using the Adam optimizer. During the training process, the

learning rate and training set size are set to 0.001 and 0.8, respectively. The number of layers in the temporal

attention layer is set to 1.

5.1 Dataset Description

We conduct experiments on two real-world datasets. A brief description of the two datasets (aviable at

https://github.com/lehaifeng/T-GCN) is given below:

• Shenzhen: This dataset is the taxi record data from January 1, 2015 to January 31, 2015 in Luohu District,

Shenzhen. This dataset has two parts, an adjacency matrix, which records the geographic connectivity of

156 roads, and a feature matrix, which records the traic speed of each road, recorded every 15 minutes.

• Los-loop: This dataset comes from real-time loop detection points on freeways in Los Angeles, USA. It

recorded 207 sensor data from March 1, 2012 to March 7, 2012. Traic speed data is recorded every 5

minutes. Its adjacency matrix represents the distance between sensors, and the feature matrix contains

some missing values, which are illed by linear interpolation.

5.2 Evaluation Metrics

We used four indicators to evaluate the framework. The smaller the value, the better the performance.

(1) Mean absolute error (MAE) is deined as the average of the absolute errors in Equation (18).

��� =

1

�

�︁

�=1

���� − �̂�
�� . (18)

(2) Root mean squared error (RMSE) is deined as the rooted average squared diference between the predicted

values and the ground truth in Equation (19).

���� =

√√√
1

�

�︁

�=1

(
�� − �̂�

)2
. (19)
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(3) Mean absolute percentage error (MAPE) is deined as Equation (20):

���� =

100%

�

�︁

�=1

����
�� − �̂�
��

���� . (20)

(4) Coeicient of Determination (R2) is deiend as a metric to evaluate the quality of it in Equation (21).

�2 = 1 −

∑�
�=1

(
�̂� − ��

)2

∑�
�=1

(
�� − �̄

)2 . (21)

In the above equations, � denotes the number of samples, and �� and �̂� denote the ground truth, the prediction

of the � − �ℎ sample; � and �̂ represent the set of �� and �̂� respectively; �̄ is the average of � .

5.3 Baselines

We compare our GSAA model with (1) historical average (HA), (2) autoregressive integral moving average model

(ARIMA) [12], (3) support vector regression (SVR) [10], (4) difusion convolutional recurrent neural network

(DCRNN) [23], (5) temporal graph convolution model (TGCN) [21], (6)Spatial Temporal Graph Neural Network

(STGNN) [24]. The following is a brief description of their principles:

• HA: The historical average uses the weighted average of previous periods as a forecast for future periods.

• ARIMA: Autoregressive ensemble moving average model with Kalman ilter, which can be used for non-

stationary time series, it its time series data as a structure for future forecasts.

• SVR: Support vector regression regresses time series using support vector machines.

• DCRNN: Difusion convolutional recurrent neural networks model traic low as a difusion process. It

captures spatial dependencies using bidirectional random walks on the graph and temporal dependencies

using an encoder-decoder architecture. But it still relies on the road network to disseminate information,

which limits the lexibility of the model.

• T-GCN: Temporal GCN combines graph convolutional networks and recurrent gating units for spatiotem-

poral low prediction.

• STGNN: Spatial temporal graph neural network, which uses a transformed GCN to learn a latent variable

to model spatial relationships and a Transforemer to capture long-term temporal dependencies.

Among them, the hyperparameters are the same as mentioned in the paper or in the code.

5.4 Model Parameters Setings

During the experiment, we use 80% of the dataset as the training set and the remaining 20% as the test set to

verify the efectiveness of the model. Also, since graph sampling is done for nodes, we convert the adjacency

matrix into a dictionary where the keys are the ordinal number of each node and the values are the ordinal

numder of the center node’s neighbors. During data preprocessing, we take the data of the previous 12 moments

as historical data, and predict the traic speed of the next 3 steps, 6 steps, 9 steps and 12 steps respectively.

For our GSAA model, the Adam optimizer [47] is used for training, we set the learning rate, batch size and

training set scale to 0.001, 4 and 0.8 respectively during training. We set the number of layers of the temproal

attention layer to 1 and other parameters determined by experimental testing.

Choice of the number of neighbors we select 5, 10, 15, 20, and 25 to ind the best value, because the maximum

number of neighbors of a node in the dataset is less than 30. We set other parameters unchanged, when the

number of sampled neighbors changes, we train the same number of epochs, and the obtained MAE and RMSE

metrics are shown in the igure 4a. The resulting MAPE and R2 metrics are shown in the igure 4b. It can be

seen that when the number of sampled neighbors is 20, MAE, RMSE and MAPE all reach the minimum, and R2
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reaches the maximum. When the number of neighbors is less than 20 or more than 20, the performance will be

lost, so we choose to sample the number of neighbor nodes as 20.
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Fig. 4. MAE,RMSE,MAPE and R2 metrics on diferent sampled neighbors ater trained on the same epoches.

Furthermore, we employ deep reinforcement learning to update the parameters for re-validation in order to

completely eliminate the contingency of manually picking parameters. We utilized a deep reinforcement learning

model based on the DQN learning approach to simulate the performance of the model training results under

various parameter states in order to determine the optimal number of sampling layers � and the number of

samples per layer � . Figure 5 presents the outcome. In Figure 5, � axis denotes the number of sampling layers,

while � axis represents the number c of neighbor nodes sampled at each layer . Since it has been suggested in the

article reference[44] that the number of layers should not exceed two layers, we also take into account 3-hop

neighbors for the experiment to be as successful as possible. The darker the color, the smaller the MAE value of

the model evaluation index, acquired when the agent applies the � and � sampling approach.
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Fig. 5. Experimental results of DQN for diferent parameters (the darker the color, the beter the efect)

As shown in Figure 5, when the number of sampling layers is ixed, the error of the model has been decreasing

with an increase in sampling neighbor nodes, reaching a minimum value between 20 and 25. Similarly, when the

number of sampling neighbors is relatively ixed, the error of the model has also been decreasing when the more
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Fig. 6. Heatmap of experimental results for specific parameter combinations.

sample layers are chosen. However, in a similar vein, when the number of sampling neighbors and the number

of sampling layers are at their highest, the model does not function at its best. We also give the corresponding

heatmap as shown in Figure 6, where � 5, . . . , � 25 represents the number of neighbors sampled, �1, �2, �3, and

the number of layers sampled, and the value indicate the MAE values under training the same number of epochs.

Thereby, we determine the parameters of the experiment that the number of hidden units is 64, the number of

neighbor nodes is 20, the number of sampling layers is 2, and the number of attention heads is 4.

5.5 Experimental Results

The results of the experiment are analyzed in the following.

We compare the performance of our proposed model with six baseline methods on the shenzhen and losloop

datasets. Table 4 shows the prediction results for four time steps on the shenzhen dataset. The prediction results

of the four time steps on the losloop dataset are shown in Table 5.

Table 4. Result on dataset Shenzhen

Shenzhen

METHOD
15MIN 30MIN 45MIN 60MIN

MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2

HA 2.7815 4.2951 0.2577 0.8307 2.7815 4.2951 0.2602 0.8307 2.7815 4.2951 0.2613 0.8307 2.7815 4.2951 0.2644 0.8307
ARIMA 4.9824 7.2406 0.2801 * 4.6765 6.7899 0.2583 * 4.6734 6.7852 0.2597 * 4.6655 6.7708 0.2558 *
SVR 2.6233 4.1455 0.2527 0.8423 2.6875 4.1628 0.2527 0.841 2.7359 4.1885 0.2526 0.8391 2.7751 4.2156 0.2528 0.837

DCRNN 3.17 4.5033 0.2528 0.8391 3.23 4.5623 0.2573 0.8332 3.27 4.6006 0.2535 0.8275 3.31 4.6412 0.2593 0.8219
GCN 4.2367 5.6596 0.2563 0.6654 4.2647 5.6918 0.2571 0.6616 4.2844 5.7142 0.2507 0.6589 4.3034 5.7361 0.2544 0.6564
GRU 2.5955 3.9994 0.2457 0.8329 2.6906 4.0942 0.2483 0.8249 2.7743 4.1534 0.2503 0.8198 2.7712 4.0747 0.2508 0.8266
T-GCN 2.7117 3.9265 0.2488 0.8541 2.741 3.9663 0.2533 0.8456 2.7612 3.9859 0.2528 0.8441 2.7889 4.0048 0.2519 0.8422
STGNN 3.0645 4.2381 0.2444 0.8358 2.9854 4.2789 0.2466 0.8297 3.1681 4.3734 0.2499 0.8252 3.2046 4.4132 0.2522 0.8222
GSAA 2.6406 3.9324 0.2439 0.8672 2.6872 3.9589 0.2464 0.8587 2.7526 3.9789 0.2517 0.8451 2.7139 4.0101 0.2498 0.8443

GSAA w/o S-ATT 3.6016 4.7029 0.2477 0.8359 2.9025 4.8811 0.2549 0.8521 2.9406 4.8138 0.2552 0.8184 3.7157 4.5842 0.2523 0.7595
GSAA w/o T-ATT 3.0437 4.6361 0.2478 0.8238 3.1745 4.4415 0.2572 0.8331 3.3132 4.5811 0.2557 0.8426 3.1878 4.8478 0.2507 0.7629

The * sign represents a negative value, which is not considered.

It can be seen from the two tables that our proposed GSAA achieves the best performance on both datasets.

HA is based on the average value of historical traic speed information as the predicted value, so we select 12

historical moments to predict the future 15min, 30min, 45min and 60min respectively, and get the same result. So

we did not compare its results with other model results. Traditional methods based on mathematical statistics,

such as ARIMA and SVR, can also achieve good results when dealing with linear and relatively stable time series.

However, it often does not work well for nonlinear and non-stationary time series. Compared with traditional
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Table 5. Result on dataset Los-loop

Los-loop

METHOD
15MIN 30MIN 45MIN 60MIN

MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2 MAE RMSE MAPE R2

HA 4.0145 7.4427 0.0821 0.7121 4.0145 7.4427 0.0821 0.7121 4.0145 7.4427 0.0821 0.7121 4.0145 7.4427 0.0821 0.7121
ARIMA 7.6832 10.0439 0.0783 * 7.6891 9.345 0.0923 * 7.6924 10.0508 0.0944 * 7.6952 10.0538 0.0943 *
SVR 3.7285 6.0084 0.0762 0.8123 3.7248 6.9588 0.0844 0.7492 4.1288 7.7504 0.0897 0.6899 4.5036 8.4388 0.1025 0.6336

DCRNN 4.06 5.7432 0.079 0.8277 4.53 6.3972 0.0824 0.7854 4.67 7.0238 0.0986 0.7352 4.92 7.3384 0.1105 0.7132
GCN 5.3525 7.7922 0.0808 0.6843 5.6118 8.3353 0.093 0.6402 5.9534 8.8036 0.0994 0.5999 6.2892 9.2657 0.1148 0.5583
GRU 3.0602 5.2182 0.0673 0.8576 3.6505 6.2802 0.0789 0.7957 4.0915 7.0343 0.0842 0.7446 4.5186 7.6621 0.1041 0.698
T-GCN 3.1802 5.1264 0.0786 0.8634 3.7466 6.0598 0.0941 0.8098 4.1158 6.7065 0.1006 0.7679 4.6021 7.2677 0.1084 0.7283
STGNN 3.2513 5.2673 0.0783 0.8587 3.6873 6.2012 0.1017 0.8016 3.5440 6.9109 0.1173 0.7538 4.7782 7.6234 0.1198 0.7123
GSAA 2.9583 5.1211 0.0649 0.8636 3.4506 6.1899 0.0754 0.8116 3.5224 6.7065 0.0841 0.7538 4.4646 7.5474 0.0918 0.7279

GSAA w/o S-ATT 3.9117 5.2315 0.0742 0.8203 3.6545 7.0359 0.0871 0.8104 3.7925 7.2205 0.0926 0.7057 4.8689 7.8299 0.1071 0.6808
GSAA w/o T-ATT 3.8312 5.5847 0.0777 0.8145 3.7903 6.9417 0.0824 0.8022 4.3556 7.4861 0.0974 0.7211 5.0479 8.4837 0.1079 0.6715

The * sign represents a negative value, which is not considered.

methods, deep learning-based methods have achieved good results in dealing with nonlinear and non-stationary

data, such as GCN and GRU. There are also methods that consider both temporal and spatial dependencies, such

as TGCN, DCRNN, STGNN including our GSAA, these models achieve better results than simple deep learning

methods such as GRU, especially in modeling long-term spatial and temporal dependencies.

Speciically, compared to the DCRNN and STGNN methods, the GSAA method in this paper achieves better

spatial features by deeply mining road hierarchy and features. Together with the fact that the GSAA model

utilizes the GRU method to model short-term temporal dependencies, thus demonstrating better performance in

short-term traic low prediction compared to them. Additionally, thanks to the introduction of the attention layer,

the GSAA method can model longer-term spatiotemporal dependencies. Therefore, in longer-term predictions of

30 minutes, 45 minutes, and 60 minutes, the GSAA method outperforms the prediction results of the TGCN model.

Moreover, it can be observed that the STGNN method, which also incorporates attention mechanisms, performs

better than the DCRNN method, which proves that the attention mechanism has a good efect on the capture

of spatiotemporal dependencies. This is also veriied on our GSAA model. We add an attention mechanism to

the aggregation process of graph node information and the capture of long-term temporal relationships. The

accuracy of model predictions is improved, and the error is reduced.

From the ablation experiments, it can be seen that the efect of the model is less degraded in performance in

short-term traic prediction after removing the spatial attention mechanism, because the temporal dependence is

greater than the spatial dependence in short-term traic prediction, so the short-term traic prediction is much

worse after removing the temporal dependence; In the long-term prediction experiments,after removing the

component of spatial dependence, the contextual association information established by relying only on temporal

attention is not enough to predict the long-term traic situation, and the performance of the model decreases

more; Similarly, because the model loses the previous contextual information after removing the establishment of

temporal dependence, the prediction ability of the later period also decreases. From the ablative experiments, it

can be seen that both temporal and spatial attention mechanisms are very important in the prediction of traic

low.

To study the efectiveness of the model in traic prediction, we selected some nodes on the ��� − ����
dataset and plotted its real and predicted traic under diferent horizons. Figure 7a shows the daily and weekly

traic forecasts at a forecast horizon of 3, representing the short-term and long-term traic forecasting tasks,

respectively. It can be seen that with a prediction horizon of 3, the model its almost perfectly and achieves a

good result, no matter the short-term traic prediction for each day or the long-term traic prediction for a week.

As the prediction ield of view increases, when the prediction ield of view is 6, as shown in Figure 7b, there

is a slight jitter in the prediction efect of the model, but the overall prediction efect is still very good. When

the prediction horizon continues to increase to 9, as shown in Figure 7c, there may be jitter in the short-term
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(a) 15-minute prediction by 3 steps.
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(b) 30-minute prediction by 6 steps.
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(c) 45-minute prediction by 9 steps.
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(d) 60-minute prediction by 12 steps.

Fig. 7. The graphs above and below show the comparison for the accumulated forecast results for one day and one week,

respectively, compared to the true values on the Los-loop Dataset.

prediction, but the prediction performance is more stable in the long-term prediction efect, thanks to the spatio-

temporal attention, the processing of information in the traic low. Its performance is more evident when the

prediction horizon become to 12, as shown in Figure 7d, where the spatio-temporal relationships in network

traic are still well captured and well modeled in a long-term prediction task where the traic luctuates a lot. The

temporal dependency of traic low is more pronounced in short-term forecasting, and several generic forecasting

techniques frequently perform well. The spatial-temporal network based on graph attention mechanism is more

suited to handle the complicated spatio-temporal traic connection as the forecasting range expands and the

spatial dependency in traic low also becomes signiicant.
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6 CONCLUSION

In this study, we propose a spatio-temporal traic low prediction algorithm model based on inductive graph

machine learning method in smart cities. The model can be implemented on any sensor device to ofer precise and

real-time resource scheduling for processing, storage, network, and other resources while making full use of data

from intelligent sensors. In this study, we optimized the sampling process of the graph and efectively aggregated

traic features. Additionally, the model efectively captures the spatiotemporal characteristics of traic low data

through spatial sampling, gated recurrent units, and temporal attention structures. The experimental results on

two real world datasets show that our model is more efective and superior than other baseline methods. However,

the current model relies too heavily on the selection of hyperparameters. Future considerations will focus on the

interaction of traic information in dynamic spatiotemporal settings, enabling the model to adaptively model the

semantic relationships on the road.
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