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Abstract—The deep integration of the Internet of Things
(IoT) and the medical industry has given birth to the Internet
of Medical Things (IoMT). In IoMT, physicians treat a pa-
tient’s disease by analyzing patient data collected through
mobile devices with the assistance of an artificial intelli-
gence (AI)-empowered systems. However, the traditional AI
technologies may lead to the leakage of patient privacy data
due to its own design flaws. As a privacy-preserving feder-
ated learning (FL) can generate a global disease diagnosis
model through multiparty collaboration. However, FL is still
unable to resist inference attacks. In this article, to address
such problems, we propose a privacy-enhanced disease di-
agnosis mechanism using FL for IoMT. Specifically, we first
reconstruct medical data through a variational autoencoder
and add differential privacy noise to it to resist inference
attacks. These data are then used to train local disease di-
agnosis models, thereby preserving patients’ privacy. Fur-
thermore, to encourage participation in FL, we propose an
incentive mechanism to provide corresponding rewards to
participants. Experiments are conducted on the arrhythmia
database Massachusetts Institute of Technology and Beth
Israel Hospital (MIT-BIH). The experimental results show
that the proposed mechanism reduces the probability of
reconstructing patient medical data while ensuring high-
precision heart disease diagnosis.

Manuscript received 1 April 2022; revised 18 August 2022; accepted
24 September 2022. Date of publication 30 September 2022; date of
current version 20 June 2023. This work was supported in part by the
Korea Institute of Planning and Evaluation for Technology in Food, Agri-
culture, Forestry and Fisheries (IPET) through Digital Breeding Transfor-
mation Technology Development Program, funded by Ministry of Agricul-
ture, Food and Rural Affairs (MAFRA) under Grant 322063-03-1-SB010,
and in part by the Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Ed-
ucation under Grant 2020R1A6A1A03038540. Paper no. TII-22-1395.
(Corresponding author: Hui Lin; Md. Jalil Piran.)

Xiaoding Wang, Hui Lin, and Wenxin Liu are with the College of
Computer and Cyber Security, Fujian Normal University, Engineer-
ing Research Center of Cyber Security and Education Informatiza-
tion, Fujian Province University, Fuzhou, Fujian 350117, China (e-mail:
wangdin1982@fjnu.edu.cn; linhui@fjnu.edu.cn; sixwenxin@163.com).

Jia Hu is with the University of Exeter, EX4 4PY Exeter, U.K. (e-mail:
j.hu@exeter.ac.uk).

Hyeonjoon Moon and Md. Jalil Piran are with the Department of
Computer Software and Engineering, Sejong University, Seoul 05006,
South Korea (e-mail: hmoon@sejong.ac.kr; piran@sejong.ac.kr).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2022.3210597.

Digital Object Identifier 10.1109/TII.2022.3210597

Index Terms—Disease diagnosis, federated learning (FL),
Internet of Medical Things (IoMT), privacy protection.

I. INTRODUCTION

NOWADAYS, technologies such as cloud computing, big
data, the Internet of Things (IoT), and artificial intelligence

(AI) have gradually penetrated the medical industry. With the
help of these technologies, mobile medical care has gradually
emerged, and it has begun to reconstruct the medical and health
industry chain and service model. At the same time, various
mobile smart terminals have been developed to provide people
with standardized, information-based and professional health
management, which has become a new trend in the medical and
health industry [1]. With the gradual development of the IoT
technology, mobile medical technology provides people with a
new service model and medical experience, i.e., users monitor
their own health status through smart terminals at home.

According to statistics in 2017, 60% of global healthcare
organizations have implemented IoT solutions in their processes,
while another 27% of organizations expect to adopt this tech-
nology in the short term. This is because IoMT technology can
effectively save medical costs while meeting the ever-increasing
demand for remote patient monitoring [2]. More importantly, the
treatment of major diseases, i.e., heart attacks that cause more
than 375 000 death in the US every year, will be significantly
improved in IoMT [3]. For instance, connecting wearable med-
ical devices through the IoMT can provide doctors and patients
with data needed to better manage heart disease after diagnosis,
and ultimately reduce heart disease-related mortality.

Medical wearable devices with AI can increase the speed
and accuracy of heart disease diagnosis exponentially through
remote monitoring [4], which gives birth to a promising AI-
empowered patient monitoring architecture for IoMT. An in-
stance AI-empowered patient monitoring model is represented
in Fig. 1. Researchers train machine learning (ML) models and
study the results of previous patient scans and data on whether
the patient will continue to have a heart attack in the future to
identify signs of heart disease, thereby increasing the diagnostic
accuracy rate to 90%. Since AI systems require large amounts
of data, collecting data from unreliable sources may adversely
affect the effectiveness of AI solutions. However, what if these
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Fig. 1. AI-empowered patient monitoring architecture for IoMT.

data sources refuse to provide their data because of concerns
about data leakage?

According to a report in “HIPAA Magazine,” in 2020, the rate
of medical data leakage has increased by 25% compared to 2019.
Therefore, for hospitals, clinics and other medical institutions
using the IoMT system, data security threats are still the biggest
challenges [5]. To avoid this situation, the government and medi-
cal organizations have established regulations that every hospital
must comply with the “Healthcare Information Portability and
Accountability Act” and the “Economic and Clinical Health In-
formation Technology Act”. Although these regulations reduce
the risk of patients’ privacy leakage to a certain extent, due to
its own shortcomings in traditional ML, patients’ privacy data
will still be leaked.

As one of the important technologies in the privacy computing
system, federated learning (FL) [6], [7] is a mechanism that uses
a central server to train a shared global model, while keeping all
sensitive data in the local institution to which the data belongs,
and it holds great promise for connecting decentralized medical
data sources and privacy protection for IoMT. EHRs have be-
come an important source of real-world medical data, used for
important biomedical research, including ML research. FL is a
viable way to connect healthcare provider EHR data, allowing
healthcare providers to share experiences, not data, with guaran-
teed privacy. In these scenarios, the performance of ML models
will be significantly improved by iteratively improving learning
on large and diverse medical datasets. Several tasks have been
studied in the FL setting in the medical domain, such as patient
similarity learning across institutions, patient representation
learning, spilt neural network, and predictive modeling [8].

FL also enables predictive modeling based on disparate
sources, which can provide clinicians with more insights into
the risks and benefits of treating patients early. For example,
one case is using FL to predict patient resistance to certain
treatments and drugs, and their survival rates for certain dis-
eases, and another tested a privacy-preserving framework based
on FL for predicting in-hospital deaths of patients admitted
to the intensive care unit [9]. However, FL is subject to in-
ference attacks [10], i.e., the data used for model training is
reconstructed without any prior knowledge, which means that
the privacy of FL participants may be leaked. If we design
an incentive mechanism to provide corresponding rewards to
the participants of FL, this can solve the problem of users
no longer providing training data due to privacy leakage to a
certain extent.

TABLE I
TABLE OF ACRONYMS

To address above problems, we propose a privacy-enhanced
disease diagnosis mechanism using FL for IoMT. The main
contributions of this article are summarized as follows.

1) To provide privacy protection in FL, we first reconstruct
the patient data through a variational autoencoder (VAE),
and add Laplace noise to the reconstructed data to achieve
differential privacy protection for the patient data. On this
basis, a disease diagnosis model is trained through FL.
The global model trained on privacy-enhanced data can
effectively resist inference attacks from adversaries.

2) To encourage the participation of FL, an incentive mech-
anism is designed to comprehensively evaluates the di-
agnosis models according to the quality, similarity, and
richness of the training data, based on which participants
are then given the corresponding rewards.

3) Simulation experiments and theoretical analysis are used
to verify the performance of the proposed mechanism.
The experimental results show that although our mech-
anism reduces the probability of patient medical data
being reconstructed, due to the need to reconstruct and
add noise to the data, the number of FL rounds will
increase under the premise of ensuring the diagnostic
accuracy, thereby increasing the calculation overhead as
we expected. Furthermore, the proposed mechanism is
able to achieve a tradeoff between privacy protection and
accuracy of heart disease diagnosis, i.e., we manage to
trade 6% of diagnosis accuracy for privacy protection on
the MIT-BIH dataset.

The list of acronyms used in this article is given in Table I.
The rest of this article is organized as follows. Related work
is given in Section II. Section III introduces the system model
and threat model. Section IV details the implementation of this
mechanism. The performance evaluation is given in Section V.
Finally, Section VI concludes the article.

II. RELATED WORK

FL, as a distributed ML method with privacy protection
capability, is widely used in various fields. However, existing
FL techniques are vulnerable to some secure threats, such asAuthorized licensed use limited to: Fujian Normal University. Downloaded on June 12,2024 at 07:44:26 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: FL-EMPOWERED DISEASE DIAGNOSIS MECHANISM IN THE IOMT: FROM THE PRIVACY-PRESERVATION PERSPECTIVE 7907

poisoning attacks, backdoor attacks, and inference attacks [11],
[12]. In response to these security threats, extensive research
work have been conducted.

To resist poisoning attacks, Zhao et al. [13] used the generative
adversarial networks (GANs) to generate an anomaly model
detection mechanism for audit datasets to achieve poisoning
attack mitigation. For backdoor attacks, Wu et al. [14] proposed
a joint pruning method to remove redundant neurons in the
network and mitigate backdoor attacks by integrating extreme
weights of the model.

To alleviate the privacy leakage problem against inference
attacks in FL, many privacy-preserved strategies have been
proposed. Alamri et al. [16] designed a scheme to protect the
privacy of medical data by using blockchain and smart contracts.
This solution uploads the patient’s encrypted private medical
data to a cloud server, uses the recorded hash value as a data
index, and stores it in a smart contract for patient access control.

Hamza et al. [17] developed a chaos-based privacy protection
encryption system in IoMT to ensure the security of the medical
key frames extracted from the endoscopy procedure. Alraja
et al. [18] proposed a scheme to protect the privacy of user
data in an IoMT. This scheme specifies the type and accuracy
of data that can be shared, and compared the privacy risks and
benefits from data sharing, so as to control data sharing and
protect privacy. Can et al. [19] applied FL to the heart activity
data collected by the smart bracelet, and deployed the scheme
in the wearable biomedical monitoring system to monitor the
stress levels in different events, thereby protecting the privacy
of the data. Liu et al. [20] used the sparsity characteristics of the
feature map in the network model to represent the raw local data
of the participants to realize the privacy protection of the raw
data.

Furthermore, various incentive mechanisms were proposed to
mitigate the impact of the aforementioned security threats on FL
models. Qu et al. [21] proposed an incentive mechanism based on
the amount of data and sample size in the blockchain-based FL
system. The FL equipment and miners can respectively obtain
rewards that are linearly proportional to the amount of data
provided and the amount of mining. Zhang et al. [22] proposed
a method to evaluate the reputation of participants through the
quality of the model. Specifically, the quality of the model was
mainly evaluated by cross-entropy, the calculation execution
time of the participants, and the amount of training data.

Although scholars have put forward a lot of excellent works
to relieve the security threats suffered by FL, the existing models
did not combine the design of incentive mechanism with the pro-
tection of data privacy of FL participants. In addition, the rich-
ness of participant data was not considered when the incentive
mechanism is designed. Therefore, this article jointly considers
privacy protection, incentive mechanism, and data richness to
improve the enthusiasm of patients to contribute medical data,
thereby improving the accuracy of disease diagnosis models.

III. SYSTEM MODEL AND SECURITY MODEL

A. System Model

In this article, we aim to realize the privacy-preserving disease
diagnosis for IoMT using FL. To achieve this goal, we consider
the following entities: patients, medical centers, doctors, evalu-
ation server, hospital, and adversary.

Fig. 2. Proposed system model.

1) Patient: A person who has a disease and wants to go to
the hospital for a diagnosis.

2) Medical center: An institution used to share diagnostic
information among different hospitals or doctors.

3) Doctor: An expert who makes a medical diagnosis of a
patient through the patient’s information.

4) Evaluation server: A device that evaluates and rewards
diagnostic models uploaded by different hospitals.

5) Hospital: An institution that trains local disease diagnosis
models from doctors’ diagnostic information and patient
information.

6) Adversary: Someone who launches an inference attack to
reconstruct a patient’s private data.

The system model is shown in Fig. 2. An important reference
index for doctors to diagnose heart disease is the patient’s
ECG. Whereas the ECG signal is time series data, the LSTM
network can well analyze time series related data and learn the
relationship between them. Therefore, analyzing a patient’s ECG
through LSTM can help doctors diagnose the patient’s symp-
toms [23], [24]. In order to protect patient privacy, the hospital
reconstructs the patient’s ECG through a VAE [15], which is
used to train an LSTM-based heart disease diagnosis model.
Each hospital uploads different diagnostic models to the medical
center, and the medical center aggregates through FL [25] to
generate a global diagnostic model. During this process, the eval-
uation server will request the medical center for diagnostic mod-
els of different hospitals and evaluate them. Based on this, the
medical center pays different hospitals for contributing diagnos-
tic models.

B. Security Model

In the process of FL, there is a possibility that the privacy data
of participants may be leaked. In this article, the leaked data
are ECG data of different cardiac patients, and related work
shows that adversaries can infer and reconstruct training data
from gradients or models without any prior knowledge about the
training data [10]. Furthermore, we assume that the adversary
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TABLE II
NOTATIONS AND EXPLANATIONS

Algorithm 1: Privacy-Enhanced Disease Diagnosis Mech-
anism Using FL.

1: Execute the privacy-enhanced disease diagnosis model
generation by Algorithm 2

2: Execute the incentive mechanism by Algorithm 3

is capable of white-box inference [26], i.e., the adversary can
access the local model uploaded by any participant.

The FL model considered in this article is LSTM, and the
training dataset is a time series medical dataset, which is different
from the traditional convolutional neural network model. For the
inference attack, the ECG data used to train the LSTM model first
needs to be reconstructed by VAE, and the differential privacy
noise is further added. On this basis, FL can effectively protect
the privacy of patients.

IV. IMPLEMENTATION DETAILS OF THE PROPOSED

MECHANISM

A number of studies have shown that the training process
of FL involves the risk of dataset being recovered from the
model causing the privacy leakage. In response to this problem,
the privacy protection of patient data are achieved through
VAE-based data reconstruction followed by Laplacian noise
injection. Meanwhile, an incentive mechanism is designed based
on the dataset quantity, richness, and similarity to encourage par-
ticipation. The privacy-enhanced disease diagnosis mechanism
using FL is summarized in Algorithm 1. The main notations
and explanations used in the proposed mechanism are listed in
Table II.

A. Privacy-Enhanced Disease Diagnosis Model
Generation

1) Privacy-Enhancement on Patients’ Data: For a partic-
ipant pi in FL, the original dataset can be represented by
Di = {(x1, y1), . . . , (xj , yj)}. To achieve privacy protection,
we consider the VAE a mapping function V AE(·) from the
original dataset to the reconstructed dataset as follows:

D̂i ← V AE (Di) , (1)

where D̂i represents the reconstructed dataset with D̂i =
{(x̂1, ŷ2), . . . , (x̂j , ŷj)}.

This is because the VAE consists of an encoder Enc and
a decoder Dec. When we train the VAE, the training sam-
ple xj is encoded as a set of low-dimensional vectors by the
encoder Enc, part of which is fitted to the mean μj of the
low-dimensional latent variable, denoted by zj , distribution
of the sample xj , and the other part is fitted to the variance
σ2
j of zj , while the decoder Dec restores the sampling result

from the distribution (μj , σ
2
j) to a high-dimensional generated

sample x̂j . And our goal is to minimize the objective function
L on the generated sample x̂j , training samples xj and latent
variable zj , i.e., L = RE(xj , x̂j) +KL(P (zj |xj)||N(0, I)),
where P (·|·) is the distribution of the latent variable exclusive to
the sample,RE(·, ·) represents the reconstruction error,N(0, I)
represents standard normal distribution, and KL(·) represents
the Kullback–Leibler divergence.

To further improve the privacy protection, we use the Laplace
mechanism to achieve differential privacy protection for the
reconstructed datasets because the Laplace mechanism provides
a strict (ε, 0) differential privacy, while the Gaussian mecha-
nism provides a relaxed (ε, δ) differential privacy. Specifically,
we add the noise satisfying the Laplacian distribution to the
reconstructed dataset to achieve differential privacy protection
as follows:

D′i = D̂i + noise, (2)

s.t.noise ∼ Laplace

(
0,

Δf

ε

)
, (3)

where the ε denotes privacy budget, the Δf denotes sensitiv-
ity. Then, the reconstructed dataset after applying differential
privacy protection is denoted by D′i = {(x′1, y′2), . . . , (x′j , y′j)}.

Note that adding Laplacian noise when training the local
model is to achieve differential privacy protection for the re-
constructed dataset and further prevent the original dataset from
being maliciously reconstructed by adversaries.

2) Privacy-Enhanced FL: Participant pi download global
model M t of the tth round FL from the model aggregation
server, and use the gradient descent algorithm to train the t+ 1th
round new local model M t+1

i with the reconstructed data D′i as
follows:

M t+1
i = M t − η ×∇L(M t;D′i,batch), (4)

where L(·; ·) represents the local loss function (i.e., the LSTM
in our case), D′i,batch denotes batches of data sampled from D′i,
and η is the learning rate of local model training.

When all participants complete local training, the server select
N participants and aggregate their trained local models using
the Fedavg algorithm to generate the new global model M t+1

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 12,2024 at 07:44:26 UTC from IEEE Xplore.  Restrictions apply. 
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Algorithm 2: Privacy-Enhanced Disease Diagnosis Model
Generation.

Input: K hospitals indexed by k, E is the number of local
epochs, and η is the learning rate

Output: global diagnosis model M
1: Reconstruct patients’ data D̂i from the original data

Di by (1)
2: Obtain differential privacy protected data D′i from D̂i

by (2)
3: ServerinMedicalCenterexecutes:
4: initialize M 0

5: for each round t = 1, 2, . . . do
6: for each hospital k in parallel do
7: M t+1

k ← HospitalUpdate(k,M t)

8: M t+1 ← 1
n

∑n
i M

t+1
i

9: end for
10: end for
11: HospitalUpdate(k,M)://Run on Hospital k
12: for each local epoch j from 1 to E do
13: for each batch b ∈ D′i do
14: M ←M − η ×∇L(M ; b)
15: end for
16: end for

as follows:

M t+1 =
1
n

n∑
i

M t+1
i . (5)

When the aggregation server completes the model aggregation,
the participants redownload the global model and perform a new
round of federated training until the end condition is reached.
In each round of FL, the aggregation server sends the required
data (including test data, local model, global model, etc.) to the
trusted model evaluation server.

We summarize the generation of the privacy-enhanced global
disease diagnosis model in Algorithm 2.

Since the VAE learns the distribution of the low-dimensional
latent variable space of the training samples, the data recon-
structed by the VAE has the same feature distribution as the
training data. This means that training the model with the recon-
structed data can reduce the risk of the participants’ real data
being reconstructed. In addition, we add appropriate Gaussian
noise to the patient’s data to provide differential privacy protec-
tion. As FL progresses, this noise-induced error decreases with
iterations of FL rounds. Since privacy and accuracy cannot be
improved at the same time, this means that we need to find a
balance between the two, i.e, to enhance privacy as much as
possible while reducing the impact of reconstructed data on the
reliability of the global model. At the same time, we design
a data-based three-incentive mechanism for evaluating tuple
features.

B. Incentives

To encourage FL participants to actively contribute to the local
model, we propose a data feature-based incentive mechanism
to motivate more participants to contribute to the local model.

Our motivation for proposing this incentive mechanism is that
FL exploits the data features of different actors to improve the
generalization ability of the global model, which is the key
to generating the global model. In addition, we introduce a
trusted third-party evaluation server to evaluate the local training
situation of different participants and calculate the correspond-
ing rewards. In the FL task, the evaluation server computes
the corresponding evaluation based on the evaluation dataset
provided by the model aggregation server and the evaluation data
provided by the participants. Therefore, the reward is calculated
based on the evaluation results, independent of the number of
participants.

In the incentive mechanism, the reward for the participant pi
consists of two parts, namely basic reward Rewardi,basic and
extra reward Rewardi,extra. The basic reward is accumulated
after each round of successful submission of the local model by
the participants, so the final basic reward can be calculated as
follows:

Rewardi,basic = success_num×Rewarditer
basic, (6)

where success_num represents the number of times the par-
ticipant has successfully uploaded the model, and Rewarditer

basic
represents the basic reward for each round of FL.

For the extra reward calculation, we consider the local dataset
held by the participant pi, denoted by Cl

i , has the form as Cl
i =

{c1
i , c

2
i , . . . , c

x
i }, where cxi represents a certain type of dataset

in the participant pi dataset, and x represents the total number
of categories in the dataset. And the test dataset held by the
aggregation server, denoted by Cs, has the similar form as Cs =
{c1

s, c
2
s, . . . , c

X
s }, where cXs represents a certain type of dataset

in the test dataset in the aggregation server, X represents the
total number of categories in the dataset. On this basis, we use
Csame to represent how revelent the participant dataset to the
aggregation server test dataset, i.e., Csame = Cl

i ∩ Cs.
When the amount of data in the training model is insufficient,

the trained model is easy to over-fit. When other datasets are used
for testing, the prediction accuracy will be at a low level. So when
a model is less accurate in prediction, the number of datasets
that train this model might be small. For the participant pi, in
a certain round of FL, the average prediction accuracy of the
uploaded local model, denoted by Avgacciter

i , can be calculated
byAvgacciter

i = 1
Xsame

∑Xsame
j acciter

j , where acciter
j represents the

prediction accuracy of the same type of dataset, and Xsame

represents the number of elements in the set Csame.
When the FL ends, we calculate the evaluation accuracy of the

local model Quantityi provided by participant pi as follows:

Quantityi =
1

success_num

success_num∑
iter

Avgacciter
i , (7)

where success_num represents the number of times that the
participant successfully uploaded the local model during the FL
process. Then, we define the normalized relevant number of
categories of dataset of pi to train the local model byRichnessi.
Thereby, we have

Richnessi =
Xsame

X
. (8)
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Algorithm 3: Incentive Mechanism.

Input: test data, local model M t
i , global model M t

Output: total reward Rewardi,total for each participant pi
1: Calculate the basic reward Rewardi,basic by (6)
2: Calculate the extra reward Rewardi,extra based on

Quantityi, Similarityi, Richnessi and
Rewardbasic by (7)–(10)

3: Calculate the total reward by for each participant pi by
Rewardi,total = Rewardi,basic +Rewardi,extra

We also define the feature difference of the same type of data
between the local training dataset and the evaluation dataset as
Similarityi, i.e,

Similarityi =
1

Xsame

Xsame∑
j

(
AF

(
cji

)
−AF

(
cjs
))2

, (9)

where AF (·) represents the average feature value of a certain
type of dataset. As a result, the extra reward for the participant
pi can be computed by

Rewardi,extra=Rewardi,basic ×
(
Quantityi+Richnessi

ρ+ Similarityi

)
.

(10)
Obviously, the total reward for the participant pi, denoted
by Rewardi,total, equals to the sum of the basic reward
Rewardi,basic and the extra reward Rewardi,extra. We summa-
rize the incentive mechanism in Algorithm 3.

C. Security Analysis

Different from ciphertext-only attack, known-plaintext attack,
chosen-plaintext attack, and chosen-ciphertext attack, which
recover the key from the plain-ciphertext pairs to crack the
ciphertexts, this article focuses on inference attacks launched
by adversaries. These attacks attempt to recover the patient’s
private information from the disease diagnosis model. To pro-
tect patients’ privacy, this article proposes a privacy-enhanced
disease diagnosis mechanism based on FL against inference
attacks. Since the patient’s data are reconstructed by a VAE, and
Laplace noise is added to the reconstructed data, differential
privacy protection can be added to the data. Using these data
to train a local disease diagnosis model, and on this basis,
train a global disease diagnosis model through FL. According
to the post-processing property of differential privacy, we can
provide differential privacy protection for the generated global
model. Since the local model is trained on the reconstructed
and noisy data, even if the adversary restores the patient data
from the local model through inference attacks, according to
the nature of the VAE and the principle of differential pri-
vacy, these data might have similar distributions with respect
to certain characteristics as the patient’s original data while the
data themselves are different. In addition, the ultimate goal of
ciphertext-only attack, known-plaintext attack, chosen-plaintext
attack, and chosen-ciphertext attack is to crack the ciphertext to
obtain the plaintext. In contrast, since our proposed mechanism
is able to provide differential privacy protection, according to the
above analysis, it can be deduced that it is difficult for attackers
to obtain the real data of patients, thereby protecting their privacy
as above four attacks.

V. EXPERIMENT

A. Experiment Setup

This section comprehensively evaluates the proposed mecha-
nism through the scientific computing libraries Tensorflow in
python. The experimental environment is configured on the
computer of Intel(R) Core(TM) i5-10300H CPU @ 2.50 GHz,
and the version of Tensorflow used is 2.3.1.

In this experiment, we use the MIT-BIH database, which is the
generally available set of standard test material for evaluation
of arrhythmia detectors, which contains 48 half-hour excerpts
of two-channel Holter recordings from 47 subjects studied in
the BIH Arrhythmia Laboratory between 1975 and 1979 [27].
This dataset has been used for that purpose as well as for
basic research into cardiac dynamics at more than 500 sites
worldwide. The dataset contains ECGs of the following five
types of heartbeats:

1) Normal (N);
2) Supraventricular ectopic beat (S);
3) Ventricular ectopic beat (V);
4) Fusion beat (F);
5) Unknown beat (Q).

To evaluate the proposed mechanism, we consider a three-
party FL system.

We adopt the same method as that used in [28] to process the
dataset. First, the ECG signal is decomposed into six levels of
db4 wavelet basis functions for noise reduction. Then, features
are directly extracted from the morphology of ECG signal in the
time domain, mainly located characteristic points, i.e., the peak
of P wave, QRS complex, and the peak of T wave, recorded as P,
Q, R, S, T, and the intervals and statistics features are used. Next,
the beat annotations contained in the database are used as initial
evidence for the segmentation stage, treating them as R peaks.
According to the mean RR interval, 499 samples from the left
side of the QRS mid-point, 500 samples after QRS mid-point,
and the QRS mid-point itself were chosen as a segment, thereby
at least two cardiac cycles are included. At last, the raw data are
standardized and mapped to [0− 1] by a linear transformation.

In our mechanism, each participant’s private dataset is a part
of the MITBIH dataset. The global model refers to the model
generated by the aggregation server through aggregating local
models in each round of FL. And the local model is LSTM. The
input shape of this model is (1,187), and it contains an LSTM
layer and a dense layer. The shape of the kernel in the LSTM
cell is (187, 200), the shape of the recurrent_kernel is (50, 200),
the activation function is Tanh, and the shape of the kernel in the
dense is (50, 5), and the activation function is Softmax. Among
them, the recurrent kernel is the set of each gate parameter in the
LSTM cell. We also define the prediction accuracy of the global
model and the local model in FL as the global accuracy and the
local accuracy, respectively.

B. Experiment Result

First, we test the VAE model in the reconstructed training
data and the results are shown in Fig. 3. As the number of
training rounds increases, the VAE model learns more fully the
latent variable space of the training data, and the training loss of
the model gradually decreases until it converges. The numerical
results show that the VAE model can be trained normally even
with the addition of random samples.
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Fig. 3. Training loss of VAE.

Fig. 4. Participants’ local training.

Fig. 5. Influence of the privacy budget ε on the global model.

We then evaluated three participants for local training on the
reconstructed data. As shown in Fig. 4, as the number of local
training rounds of the participants increases, the model gradually
learns the distribution characteristics of the training data, so the
model can predict the training samples as the corresponding
correct labels, so the loss will gradually decrease until the
algorithm converges. In addition, as the loss of the training model
gradually decreases, the prediction accuracy of the local model
will gradually improve. For different participants, the prediction
accuracy of local model training convergence can reach about
90%.

Next, we conduct experiments on the global prediction ac-
curacy, when the differential privacy budget ε is 1.0, 0.8, and
0.6 in the FL system. Fig. 5 shows the simulation results. As
shown in the figure, as the privacy budget gradually increases,

Fig. 6. Global model accuracy comparison between different mecha-
nisms.

Fig. 7. Probability of successful data reconstruction.

the prediction accuracy of the global model after 10 rounds
of FL also gradually decreases. When ε is 1.0, the prediction
accuracy of the global model is 90.9%; when ε is 0.8, the
prediction accuracy of the global model is 84.7%; when ε is
0.6, the prediction accuracy of the global model is 78.3%. This
is because with the gradual increase of the differential privacy
budget ε, the Gaussian noise added before local training also
increases gradually, and more noise will affect the prediction
accuracy of the FL global model.

We compare the proposed mechanism with that of Zhou
et al. [28] in terms of prediction accuracy and the results are
shown in Fig. 6. As shown in the figure, the prediction accuracy
of the mechanism proposed by Zhou et al. in the MITBIH dataset
is around 97%, while our mechanism is around 91%. Since pri-
vacy and prediction accuracy cannot have both, we trade a small
fraction of model prediction accuracy for privacy protection of
real data. Probability of reconstruction success (PoRS) is used
to evaluate the privacy-preserving ability of our mechanism.
We compare the proposed mechanism with Zhou’s mechanism
with DP [28]. We let the differential privacy mechanism be
implemented by adding (μ = 0, b = 1) Gaussian noise to the
training dataset. We simulated PoRS on the ECGs of S-, V-,
and F-types in the MIT-BIH dataset, and the results are shown
in Fig. 7. The differential privacy protection of our mechanism
is accomplished in the data generated by the VAE, which can
reduce the probability that the real dataset of the participants is
reconstructed compared with the real data. The numerical results
show that this scheme can reduce the reconstruction success rate
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Fig. 8. Incentives evaluation.

of the original training dataset by about 50% compared with
Zhou’s with DP.

The incentive mechanism is evaluated and the experimental
results are shown in Fig. 8, with the value of the basic reward
obtained by the participants is set to 100. In Fig. 8(a), the data
richness Ric and similarity Sim are fixed at 0.5 and 0.07,
respectively, and the total reward obtained by the participants
will become higher and higher with the increase of the data
quality Qua. In Fig. 8(b), the data quality Qua and similarity
Sim are fixed at 0.5 and 0.07, respectively, and the total reward
obtained by the participants will become higher and higher with
the increase of the data richness Ric. In Fig. 8(c), the data
quality Qua and the richness Ric are fixed at 0.5 and 0.5,
respectively. The more similar the feature distribution between
the data, the smaller the value of the similarity Sim, so the total
reward obtained by the participants will increase with the data
similarity. In addition, we find that the change of the total reward
of the participants is negatively correlated with the reward factor
ρ. Numerical results show that the incentive mechanism can
comprehensively evaluate and incentivize local training and
local models according to the triple characteristics of the training
data.

VI. CONCLUSION

In IoMT, patients’ data collected by mobile smart terminals
are systematically analyzed through AI technology to assist doc-
tors for patients’ diseases diagnosis. Since traditional AI tech-
nology may cause the privacy leakage of patients, FL emerges
as a privacy-protected and multiparty collaborative ML model.
However, FL is subject to inference attacks. To solve above
problems, we proposed a privacy-enhanced disease diagnosis
mechanism using FL for IoMT. Specifically, we reconstructed
patient data through VAE, add differential privacy noise, and
train a disease diagnosis model through FL on this basis. In
addition, we designed an incentive mechanism to encourage
patients to provide medical data. We conduct experiments on
the MIT-BIH arrhythmia database, and the experimental results
show that the proposed mechanism guarantees high accuracy
for heart disease diagnosis and low success rate for adversarial
inference attacks. The accuracy of the global disease diagnosis
model depends to a certain extent on the process of local model
aggregation in FL. Our future research direction will be how
to improve the accuracy of the global model through adaptive
aggregation weight adjustment in FL.
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