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Abstract—Artificial Intelligence of Things (AIoT), as a fusion
of artificial intelligence (AI) and Internet of Things (IoT), has
become a new trend to realize the intelligentization of indus-
try 4.0 and the data privacy and security is the key to its
successful implementation. To enhance data privacy protection,
the federated learning has been introduced in AIoT, which
allows participants to jointly train AI models without sharing
private data. However, in federated learning, malicious partici-
pants might provide malicious models by launching the poisoning
attack, which will jeopardize the convergence and accuracy of
the global model. To solve this problem, we propose a malicious
model detection mechanism based on the isolation forest (ifor-
est), named D2MIF, for the federated learning-empowered AIoT.
In D2MIF, an iforest is constructed to compute the malicious
score for each model uploaded by the corresponding participant,
and then, the models will be filtered if their malicious scores
are higher than the threshold, which is dynamically adjusted
using reinforcement learning (RL). The validation experiment
is conducted on two public data sets Mnist and Fashion_Mnist.
The experimental results show that the proposed D2MIF can
effectively detect malicious models and significantly improve the
global model accuracy in federated learning-empowered AIoT.

Index Terms—Artificial Intelligence of Things (AIoT), feder-
ated learning, isolation forest (iforest), poisoning attack, security.

I. INTRODUCTION

W ITH the advent of the Industry 4.0, the Industrial
Internet of Things (IIoT) will usher in a new

development opportunity, leading to a variety of industrial
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Fig. 1. AIoT structure.

equipments linked to each other through the IIoT and massive
industrial application data generated in the IIoT [1]. In order to
make full use of these data to support dynamic, real-time, and
accurate decision making for various IIoT applications and
services, the artificial intelligence (AI) technology is intro-
duced to the IIoT, forming a new architecture, namely, AI of
Things (AIoT) [2].

As a new trend, AIoT combines AI and IIoT to pro-
vide intelligent communications between industrial devices
and efficient industrial data processing [3]. Fig. 1 shows the
structure of AIoT. In AIoT, a variety of data, such as commu-
nication data, medical data, industrial data, etc., are collected
through environment-device interactions by intelligent termi-
nals. With the help of the AI technology, the deep relationship
between data and data is discovered and analyzed to support
various intelligent applications.

However, the traditional machine learning (ML) methods
are subject to data privacy leakage during the data processing
for AIoT [4]–[6]. To overcome this challenge, the federated
learning [7], [8] that enables the data exchange between the
server and the participants without the need of original data has
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become the promising solution in AIoT. Although the feder-
ated learning can protect privacy better than the traditional ML,
the server cannot verify the security and availability of local
models of the participants [9]–[11]. For example, malicious
participants might use poisoned data sets for model training
and upload malicious local models to affect the accuracy of
the global model. Therefore, in federated learning-empowered
AIoT, it is necessary for the server to detect and filter
malicious local models before model aggregation. To cope
with aforementioned challenges, a malicious model detection
mechanism based on isolation forest (iforest) [12], named
D2MIF, is proposed for the federated learning-empowered
AIoT. The main contributions of this article are summarized as
follows.

1) To effectively detect malicious models, the iforest algo-
rithm is integrated with the federated learning frame-
work. To be specific, we consider the model uploaded
by each participant as a leaf node of an isolation tree
(itree) of the iforest. Considering the leaf nodes that
represent malicious models are closer to the root, the
distance between the leaf node and the root is used to
calculate the anomaly score of each model. By giving a
proper threshold, malicious models can be detected. For
example, if the model’s malicious score is higher than
the threshold, then the model is malicious.

2) To improve the accuracy of malicious model detec-
tion, we employ the deep RL (DRL) method, i.e., the
twin delayed deep deterministic policy gradients (TD3)
algorithm [13], to dynamically adjust the detection
threshold.

3) To validate the proposed mechanism D2MIF, we con-
duct the validation experiment on two public data sets:
a) Mnist and b) Fashion_Mnist. The experimental results
show that the proposed D2MIF can effectively detect
malicious models and significantly improve the global
model accuracy in federated learning-empowered AIoT.

II. RELATED WORK

The detection of the malicious model has achieved cer-
tain research results in the context of federated learning.
Blanchard et al. [14] proposed an aggregation method to
enhance security in federated learning. The top m mod-
els with the farthest Euclidean distance from the average
model are removed from the process of model aggrega-
tion. Cao et al. [15] proposed a detection mechanism that
maps the model to vertices and edges on a graph through
Euclidean distance, and finds the largest optimal clique on
the graph to select the updated model and filter the mali-
cious model. Zhao et al. [16] proposed a detection mechanism
which the server generates a set of audit data by using gen-
erative malicious networks to detect whether the participant
uploads a malicious model by auditing the accuracy of the
participant’s uploaded model. Fung et al. [17] proposed a
mitigating sybils attack method named FoolsGold using the
cosine similarity and pardon mechanism to distinguish mali-
cious participants from normal participants. Li et al. [18]
proposed an autoencoder-based malicious detection method

Fig. 2. Proposed system structure.

and introduced a credit score for each participant to advance
the model aggregation. Zhao et al. [19] proposed a mechanism
to assign the detection task to participants in collaborative
learning with stable evaluation performance, and to detect
malicious models through cross-validation between partic-
ipants. Tan et al. [20] proposed a verify-before-aggregate
(VBA) procedure using DRL to detect malicious updates
from normal updates. Kang et al. [21] introduced a reputa-
tion mechanism for each participant to filter out malicious
model updates for federated learning, and used a consortium
blockchain to management reputation mechanism in security.
Tolpegin et al. [22] proposed a method to identify malicious
updates by extracting the unique characteristics of malicious
participants uploading parameter updates by dimensionality
reduction and principal component analysis (PCA).

III. SYSTEM MODEL

A. System Model

In this article, we consider a client–server model as shown in
Fig. 2. Participants including some malicious ones in the fed-
erated learning system download the initialized neural network
model from the aggregation server. Each participant uses the
local data set to train the local model. Once the local training is
completed, participants upload the local models to the aggrega-
tion server and then the malicious model detection mechanism
is activated. Once the malicious model detection is completed,
the aggregation server utilizes the federated average algorithm
(FedAvg) [23] to aggregate all normal models. We assume
the aggregation server is honest; therefore, it cannot access
local data of any participant. The aggregation server can only
receive local models uploaded by participants and perform
model aggregation. In addition, no participant can access the
others’ local data.
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B. Attack Model

Malicious participants use the poisoning attack to train and
generate malicious models. According to the attack purpose of
the malicious participant, the poisoning attack can be divided
into the targeted poisoning attack and the untargeted poisoning
attack [24], [25].

1) Targeted Poisoning Attack: The targeted poisoning
attack aims to change a small amount of prediction
behavior of the model according to the intention of
the attacker, while maintaining high accuracy in global
prediction, such as backdoor attacks [26].

2) Untargeted Poisoning Attack: An untargeted poisoning
attack is designed to reduce the overall accuracy of
the global model and make the global model unable to
converge normally, such as flip label attacks [22].

According to the attack methods of malicious participants,
the poisoning attack can be divided into data poisoning attacks
and model poisoning attacks [24].

1) Data Poisoning Attack: Malicious participants modify
the local data set by using label flipping and other meth-
ods, and then use the poisoned data for local model
training. Incorrect model updates are generated and
uploaded to the server, which will ultimately affect the
accuracy of the global model.

2) Model Poisoning Attack: An untargeted model poisoning
attack can be Byzantine, and multiple malicious parties
do not need to modify the local data set, and directly
generate random local models through some predefined
rules [24]. Malicious participants upload these random
models to the server, causing the server to fail to
converge when aggregating global models.

In this article, we consider the data poisoning attack.
Specifically, malicious participants impose label flip operations
on the local data set to perform data poisoning. Then, the local
model trained using the poisoned data set will deteriorate the
quality of the aggregated model. Let the sample-label pair of
the normal data set be

{(x1, y1), (x2, y2), (x3, y3), . . . , (xN, yN)}, (1)

where xi, i = 1, . . . , N is the sample, and yi, i = 1, . . . , N is
the label corresponding to the sample. The sample-label pair
of the data set after the label flip operation is

{(x1, y1), (x2, y2), (x3, y3), . . . , (xN, yN)}, (2)

where xi, i = 1, . . . , N is the sample, and yi, i = 1, . . . , N is
the label corresponding to the sample after label flipping. The
set of all labels of the normal local data set Y and the set
of all the labels of the malicious data set Y are, respectively,
expressed as

Y = {y1, y2, y3, . . . , yN}, (3)

Y = {y1, y2, y3, . . . , yN}, (4)

where Y = Y but yi �= yi, i = 1, . . . , N.
Since the aggregation server is inaccessible to the partic-

ipants’ local data sets, the authenticity of participants’ local
data sets cannot be verified. That allows malicious partici-
pants to use the label flipped data sets for model training and

upload the malicious model to the server to launch the data
poisoning attack, which causes the global model to fail to
converge normally.

In our attack model, malicious participants use the above-
mentioned flip label operation to poison the local data set
and train the poisoned local model. Therefore, we define the
capabilities of malicious participants as follows.

1) The malicious participants are familiar with all the rules
in federated learning.

2) The malicious participant can download the initialized
model from the server.

3) The malicious participant can perform label flipping
operations on any local data set.

4) The malicious participants have enough computing
power to train the local model.

IV. IMPLEMENTATION OF THE D2MIF

In order to protect the data privacy of each participant,
Konečný et al. [7] proposed a new distributed ML paradigm-
federated learning. Federated learning requires multiple par-
ticipants to collaborate to train an ML model. Participants do
not need to upload local data sets to the server, and use pri-
vate data sets to complete the model training locally. During
each round of federated training, the participants download
the initial model from the server for local training, and upload
the trained model to the server after completing the training,
and the server aggregates the received models. When a new
round starts, the participants download the aggregated model
from the server to continue training. Through multiple rounds
of model interaction between the participants and the server
until the global model reaches convergence.

Unlike normal datapoint, outlier has special characteristics.
For example, the outliers are always fewer in number and are
different from normal datapoints [12], which make outliers
easy to be detected. In this article, we introduce the Isolation
forest (IForest) that is an outlier detection algorithm [12], [27].
Specifically, the IForest randomly picks a value in attribute and
divides the data point set into two subsets, which are presented
in two leaf nodes. Then, it continues to divide with a certain
attribute until there is only one datapoint in each leaf node.
Due to the large number and high density of normal datapoints,
the normal datapoints are divided many times before the divi-
sion stops, but the outlier will soon be divided into a subset
on a leaf node. Therefore, outliers are always closer to the
root, while normal datapoints are farther from the root. That
suggests the IForest algorithm can construct multiple Itrees
through multiple sampling, and use the average depth as the
final output depth. By calculating an anomaly score for each
datapoint in leaf node, the first batch of datapoints with high
abnormal scores is outliers, which are malicious models in our
scheme.

Reinforcement learning (RL) is an ML process that maps
the action selection through feedback from the external envi-
ronment [28], [29]. The agent interacts with the external
environment through RL, and learns how to make decisions to
maximize the future cumulative rewards. RL can be modeled
by a Markov decision process (MDP). Similar to MDP, the
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Algorithm 1 Malicious Model Detection Process
1: Accepting the uploaded local model set;
2: Pre-aggregating local model in set and Calculating the

pre− accuracy;
3: Comparing pre− accuracy and accuracy of initial model

(init − accuracy);
4: if pre− accuracy > init − accuracy then
5: Aggregation models in local model set;
6: else
7: Calculating malicious score m_score(mi) for each

model mi in local model set by Isolation Forest;
8: if m_score(mi) > threshold then
9: Model mi is malicious;

10: Rejecting model mi;
11: Marking malicious model’s participant as a sensitive

participant once;
12: if participant’s marking times ≥ 3 then
13: Removing this participant;
14: else
15: Retaining this participant in the following feder-

ated learning;
16: end if
17: else
18: This model is normal model;
19: Aggregation normal models;
20: end if
21: end if

RL process is defined as a four-tuple <A, S, R, STM>, where
A represents the set of actions that the agent can perform, S
represents the state of the external environment that the agent
can perceive, R represents the reward of the environment for
the agent to take the current action, and STM is the state tran-
sition matrix of the agent. In RL, policy is defined to guide the
agent on how to make the next action in the current state. The
defined value function calculates the expectation of the future
cumulative return that the agent can obtain after performing
the action, and evaluates the performance of the current action
by the agent.

To solve the problem caused by malicious participants in
the federated learning-empowered AIoT system, we propose a
detection method named D2MIF, aiming to detect the mali-
cious models and eliminate the corresponding participants
from the federated learning System. Since malicious partic-
ipants perform the flip label operation on local data sets to
generate poisoned data sets, each local model trained on the
poisoned data set is an outlier compared with normal mod-
els. When all participants complete local model training and
upload local models, the aggregation server will employ the
D2MIF to detect outliers in the model set.

The detection process is shown in Algorithm 1. The detec-
tion mechanism will preaggregate all the currently received
local models to calculate a pre − accuracy. When the pre −
accuracy is greater than the accuracy of initialization model
(init − accuracy), the server does not execute the malicious
model detection; if the pre − accuracy is lower than the
init − accuracy, the server will execute it. When performing

malicious model detection, the server will build itrees and
an iforest to calculate a malicious score for the local model
uploaded by each participant. Then, we set a threshold for
filtering malicious models, and use RL to dynamically adjust
the threshold. A model with a malicious score less than the
threshold is a normal model. Conversely, when a malicious
score is greater than the threshold, the model is a malicious
model. The server will perform formal model aggregation on
normal models. Participants uploading malicious models will
be marked as sensitive participants, and these malicious mod-
els will not be used for formal model aggregation. Sensitive
participants will not be removed from the federated learn-
ing system for the time being, and can continue with the
following federated learning tasks. In this way, it is ensured
that some normal participants will not be judged as malicious
participants due to poor models generated by one or two mis-
takes in training. When a participant is marked as a sensitive
participant three times, the participant will be removed from
the federated learning system. All removed participants will
not be able to participate in the following federated training
process.

In order to ensure the consistency between the local model
of the participants and the initialization model in the server, we
define a convolutional neural network (CNN) for all network
models in the federated learning system. Specifically, each
CNN model consists of two convolutional layers, two pool-
ing layers, one flatten layer, and three fully connected layers.
Among them, the convolutional layer 1 contains three 3 × 3
convolution kernels, and the activation function is ReLU; the
convolutional layer 2 contains six 3 × 3 convolution kernels,
and the activation function is ReLU; the fully connected layer
1 contains 256 units, the activation function is ReLU; the fully
connected layer 2 contains 128 units, the activation function
is ReLU; and the fully connected layer 3, which is the output
layer, contains 10 units.

At the beginning of the Tth round of the federated train-
ing, all participants download the initialization model mg

from the server and use stochastic gradient descent (SGD)
to optimize the local model ml with the local data sets
Dlocal = {(x1, y1), (x2, y2), . . . , (xi, yi)} for model training as
follows:

ml ← mg − η · ∂ Loss
(
f
(
xi, mg

)
, yi

)

∂xi
, (5)

where Loss(·) is the loss function, f (·) is the simulation func-
tion of the local neural network, and η is the learning rate
of local model training. Before starting the local training, the
malicious participants poisoned the local data set by flipping
the labels, and used the poisoned data set for training the
malicious model.

Once all participants have completed local training, the
server randomly selects N participants, which may include
malicious participants. Server preaggregate all the currently
received local models and calculate a pre− accuracy. Due to
the presence of malicious participants, the pre−accuracy will
be lower than the init − accuracy. The server will implement
the malicious model detection mechanism. The collection of
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models received by the server can be expressed as SETm

SETm =
{

m0
l , m1

l , . . . , mi+1
l_m, mi+1

l_m, . . . , mN−1
l

}
, (6)

where mi
l and mi

l_m are, respectively, denoted as the normal
local model and malicious local model, i = 0, . . . , N − 1.

Because the parameters of model are usually matrices of
higher latitude, it is not conducive to our construction of an
iforest anomaly detection model. Where we need to flatten
all model parameters into 1-D vectors. The reason for flatten-
ing the model parameters into a 1-D vector can be attributed
to the following two points. First, we represent the value at
each position in the model parameter as a data feature of the
model. After the model is flattened into a 1-D vector, the char-
acteristics of the model can be expressed more intuitively.
Moreover, after flattening the model into a 1-D vector, it is
more convenient to apply the IForest algorithm.

After all the model are processed, there are N parameters
in SETm, respectively. The malicious model detection frame
based on the iforest consists of three stages [12] as follow.

Stage 1: Using the SETm to build the itree and the iforest,
respectively.

Stage 2: The segment uses itree to predict the malicious
score of each mi.

Stage 3: Constructing a threshold adjustment model based
on DRL, and selecting the malicious model
according to threshold.

Specifically, in stage 1, we represent every model mi ∈
SETm, i = 0, . . . , N − 1 as a leaf node in the binary tree.
The height of each model mi in the binary tree is represented
as H(mi), and the average height in the forest is Havg(mi). The
limit height of each tree is Hlim = ceiling(log2l), where l is
the number of models from when constructing each tree and
ceiling(·) function is all values that the limit height of each
tree Hlim can obtain do not exceed log2l. In this stage, the ifor-
est is constructed by recursively dividing the SETm until each
model parameter is isolation or reaches a preset tree height.
Due to the length of the article refer to the original paper [12]
for the algorithm of iforest and itree generation.

In stage 2, the server calculates a malicious score
m_score(mi) for each model node through the iforest. The
malicious score decreases as the average height of the model
node in the tree increases, and the closer the data node to the
root node, the greater the malicious score

m_score
(
mi) = 2−

Havg(mi)
c(N) , (7)

where c(N) is the normalization term

c(N) = 2H(N − 1)− (2(N − 1)/N), (8)

where H(·) is the number of harmonics estimated by ln(N)+γ ,
where γ is the Euler constant and ln(·) is the natural loga-
rithm. It presents the average length of unsuccessful searches
in a binary search tree with N model node. For each model mi,
traverse each itree from the root node to the external node, and
calculate the average height Havg(mi). Then, the server calcu-
lates the malicious score m_score(mi) reflecting the abnormal
degree of the model according to Havg(mi).

In stage 3, we use the RL algorithm TD3 [13] to dynami-
cally adjust the threshold used to filter malicious models. Since
the TD3 solves the problem of overestimation of the action Q
value in the critic network, and introduces a delay update and
noise mechanism in the actor network to make the algorithm
update more stable, we use TD3 for the threshold adjustment
in our solution. Let the server act as an agent used to intel-
ligently dynamically select the threshold. Then, the state: s,
actions: a, and reward: r in the RL are defined as follows.

1) s: We define the state in which the server agent
located as the malicious score of the participants
uploads models calculated in stage 2. When the server
calculates all the malicious score for the received
model, the state s of the server at this time is s =
[m_score(m0), m_score(m1), . . . , m_score(mN−1)].

2) a: We define the action a of the server agent in the RL
process as adjusting the size of the threshold θ used
to filter malicious models. Specifically, after the server
observes the current environment, it will increase or
decrease the size of the threshold used to filter malicious
models according to the current state s and the goal of
the accumulated maximum reward.

3) r: We define the reward r of environment feedback to
the server agent as the prediction accuracy of the global
model after model aggregation.

In our proposed threshold adjustment algorithm based on
RL, six networks need to be initialized: 1) actor network:
P(s;μ); 2) target actor network: Ptar(s;μ′); 3) critic network
1: Q1(a, s;ω1); 4) target critic network 1: Qtar

1 (a, s;ω1
′);

5) critic network 2: Q2(a, s;ω2); and 6) target critic network
2: Qtar

2 (a, s;ω2
′). Among them, the value before the semi-

colon represents the input of the neural network, and the value
after the semicolon represents the parameters of the neural
network. The actor network P(s;μ) is responsible for updating
the parameters of the strategy network, and selects the action
a to be performed according to the current state s of the agent,
and calculates the reward r obtained by performing the current
action and the next state s′. The target actor network Ptar(s;μ′)
is responsible for calculating the optimal action a′ in the s′
based on the experience pool, and its parameters are regu-
larly copied and updated from the actor network. The critic
network 1 Q1(a, s;ω1) is responsible for the iterative update of
the value network parameter, and the calculation is responsible
for calculating the current Q value. The target critic network 1
Qtar

1 (a, s;ω1
′) is responsible for calculating the target Q value

and its parameters are regularly copied and updated from the
critic network 1. The functions of critic network 2 Q2(a, s;ω2)

and target critic network 2 Qtar
2 (a, s;ω2

′) are basically the
same as the former is a strategy adopted to suppress overesti-
mation. When updating the target value ytar, a smaller target
critic network value is selected for update.

The server agent observes the malicious scores of all models
in the current model set SETm to determine the current state s
and makes a threshold selection action a according to the pol-
icy P(s;μ). That is, the models with malicious scores higher
than the current threshold will be detected as malicious ones
and get removed from the model set SETm. Then, the server
observes the reward r, which is the accuracy of the current
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global model and the next state s′, which is the malicious score
of the model still exists in the current collection. This pro-
cess can be expressed as a four-tuple transition <s, a, r, s′>.
Then, the server agent calculates the value Q1(a, s;ω1) and
Q2(a, s;ω2) of the current action performed in the current
state. The server stores each explored four-tuple transition to
the experience buffer for training.

Critic Network Update: The server randomly samples n
transitions <s, a, r, s′> from the experience buffer to update
the critic network. The target value ytar is calculated according
to the following formula:

ytar = r + γ min
(
Qtar

i

(
Ptar(s′;μ′), s′;ωi

′))
i=1,2, (9)

where γ is a discount factor and min(·) represents the
smaller value of Qtar

i (Ptar(s′;μ′), s′;ωi
′) when i takes 1 or 2,

respectively. The loss function is defined as follows:

Loss(ωi) = 1

n

∑

n

(
ytar − Qi(a, s;ωi)

)2
, (10)

where
∑

n (·) means to sum ytar − Qi(a, s;ωi
′) items.

The critic network parameter ωi is updated according to the
following:

ωi ← ωi − α · ∂Loss(ωi)

∂ωi
, (11)

where α is the learning rate, and [(∂Loss(ωi))/(∂ωi)] repre-
sents to find the derivative of Loss(·) with respect to ωi.

Actor Network and Target Network Update: The objective
function to be optimized for the actor network is J(μ)

J(μ) = 1

n

∑

n

Q1(a, s;ω1)|a=P(s|μ)P(s;μ). (12)

Use the value function of critic to update the actor network
every d period of time, where β is the learning rate

μ← μ+ β · ∂J(μ)

∂μ
. (13)

The updates of the target critic network and target actor
network are as follows, where τ is the hyperparameter
τ ∈ (0, 1)

ωi
′ ← τωi + (1− τ)ωi

′ (14)

μi
′ ← τμi + (1− τ)μi

′. (15)

If the actor network and the critic network cannot con-
verge, then the server cannot aggregate models or remove
the malicious participants, but conducts actor network and
critic network model training. Once both actor network and
critic network converge, the server will set a threshold that
maximizes the accuracy of the global model based on the
malicious score of the model uploaded by the current par-
ticipants, and detect the malicious model based on the current
threshold.

Recall that a model with a malicious score less than the
threshold is a normal model, while a model with a mali-
cious score greater than the threshold is a malicious one.
To further improve the malicious model detection accuracy,
we design the following mechanism. Let participants who
upload malicious models be marked as sensitive participants.

Fig. 3. Loss of malicious participants local training.

Fig. 4. Accuracy of malicious participants local training.

Fig. 5. Global accuracy under the different attack times.

All malicious models will not be used for model aggregation
and sensitive participants will not be removed from the feder-
ated learning system. If a participant is marked as a sensitive
participant three times, then this participant is considered as
a malicious participant and will be removed from the federal
learning system. All removed participants will not be able to
participate in the following federated training process.
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Fig. 6. (a) Accuracy, (b) Recall, and (c) F1 of global model under the different numbers of malicious participants.

V. PERFORMANCE EVALUATION

A. Experimental Setup

In this section, we first conduct a simulation experiment on
the influence of the label flip-based poisoning attack on the
federated learning system, and then we evaluate the proposed
malicious model detection mechanism in the handwritten
digit recognition task. All experiments are conducted using
Tensorflow 2.3.1 and scikit-Learn 0.23.2 [30] on a Windows
10 Server working environment, which is Inter Core i5-7500
CPU, 8RAM.

In this experiment, we use the recognized data sets
Mnist [31] and Fashion_Mnist [32]. The Mnist data sets are
widely used handwritten digit recognition data sets, usually
used for the performance evaluation of image classification
algorithms in the computer vision field. There are ten number
categories in this data set, from number 0 to number 9. The
Mnist data set includes 70 000 grayscale images with a reso-
lution of 28 × 28, a training set for training the model with
60 000 images, and a test set for evaluating the model with
10 000 images.

Fashion_Mnist is an extended version of Mnist. The
Fashion_Mnist clothing data set contains 70 000 grayscale
images, including a training set of 60 000 examples and a test
set of 10 000 examples. Each example is a 28× 28 grayscale
image, including different types, such as T-shirt, dress, ankle
boot, etc.

B. Experiment Results

We randomly divide the two data sets into 50 subdata sets,
respectively, and sent them to each participant. The malicious
participant performs label flipping on the local subdata sets
before training the model. The poisoning attack is performed
by flipping the label of the training data set, but the test data
set is not flipped. We simulated the training results of mali-
cious participants on two data sets, respectively. As shown in
Figs. 3 and 4, as the number of training rounds increases, the
loss of the malicious participant model will gradually decrease,
and the model will converge. However, when testing on a local
test data set, as the number of rounds increases, the model pre-
dicts that the loss of correct sample label pairs will gradually
increase, and the prediction accuracy is almost close to 0.

Fig. 7. Visual differences between normal and malicious model in Mnist.

Fig. 8. Visual differences between normal and malicious model in
Fashion_Mnist.

The server randomly selects participants and receives
the local models uploaded by them, including 10% of
the malicious participants. Malicious participants thirst for
maximization of the success of the poisoning attack, they
will expand the model parameters after training. We set
the magnification of the malicious model to 5, 10, 15, and
20, respectively, to verify the influence of malicious mod-
els of different magnifications on the accuracy of the global
model prediction. We verified on the Mnist data set. As
shown in Fig. 5, as the magnification of the malicious model
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Fig. 9. Result of detection malicious model on the Mnist.

Fig. 10. Result of detection malicious model on the Fashion_Mnist.

increases, the accuracy when the global model converges will
decrease.

Since the model set contains a malicious model, the aggre-
gated global model will be affected in accuracy, recall, and
F1. In order to verify the impact of the number of malicious
participants on the accuracy of the global model convergence,
we set the number of malicious participants to 10%, 20%,
and 30% of the total number of participants during sampling
and aggregation. As shown in Fig. 6(a)–(c), when there are
10% malicious participants in the federated learning system,
the accuracy, recall, and F1 will converge to a lower when the
global model reaches convergence. As the number of malicious
participants increases to 20% and 30%, the accuracy, recall,
and F1 of the global model decreases during convergence

accuracy = TP+ TN

TP+ TN+ FN+ FP
, (16)

recall = TP

TP+ FN
, (17)

F1 = 2TP

2TP+ FN+ FP
, (18)

where TP is the number of predicting positive samples as pos-
itive labels; TN is the number of predicting negative samples
as negative labels; FN is the number of predicting positive

Fig. 11. False alarm rate and the missing detection rate.

samples as negative labels; and FP is the number of predicting
negative samples as positive labels in the data set.

We will verify our malicious model detection mechanism.
The intuition of our mechanism is that the model trained using
the flipped label data set must be an outlier to the normally
trained model. As shown in Figs. 7 and 8, the model uploaded
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Fig. 12. (a) Accuracy, (b) Recall, and (c) F1 of global model with different approaches.

by 30 participants was randomly selected from the Mnist data
set and Fashion_Mnist data set, respectively, to visually verify
our conjecture on the premise of maintaining its original data
characteristics. For the high numerical density of the normal
model, the malicious value is an outlier that can be easily
isolated.

We will conduct simulation for the malicious model detec-
tion scheme via iforests on Mnist data sets and Fashion_Mnist
data sets. There are two vital parameters in iforests: 1) the
number of itrees and 2) the number of samples to construct
each itree. In our method, we set the former to 100, while the
latter corresponds to the number of models in the model set
received by the server, which is 10.

At the beginning of the federated aggregation, we selected
25 participants and received the model uploaded by them. We
calculate the malicious score for each model by establishing
an iforest. The threshold adjustment algorithm based on RL
selects the threshold for detecting the malicious model. As
shown in Figs. 9 and 10, the proposed method can effec-
tively detect the malicious model in the model set, where
the malicious score of malicious models is all greater than
the threshold based on the RL, which is consistent with our
hypothesis.

We conducted experiments on the false alarm rate and the
missing detection rate of our proposed D2MIF on the Mnist
data set. The false alarm rate RF and the missing detection
rate RM are expressed as the following formula:

RF = NFalse

NNormal participants
, (19)

RM = NMiss

NMalicious participants
, (20)

where NFalse is the number of normal participants detected
as malicious participants; NMiss is the number of malicious
participants not detected; NNormal participants is the number of
all normal participants; and NMalicious participants is the number
of all malicious participants. As shown in Fig. 11, we set 10%
of malicious participants in the federated learning system. As
the number of iterations increases, the false alarm rate of our
proposed D2MIF for malicious participants is about 7%, and
the missing detection rate is about 3%.

As shown in Fig. 12(a)–(c), we set 10% of malicious
participants in the federated learning system to evaluate the
average accuracy, average recall, and average F1 of the global
model of our D2MIF and the baseline approach FedAvg on
the Mnist data set and Fashion_Mnist data set, respectively.
When the global model converges, due to the existence of
poisoning models generated by the poisoning data set train-
ing uploaded by malicious participants, which will seriously
affect the performance of the global model. The accuracy of
FedAvg can only reach 54.1% and 34.7%, while D2MIF can
reach 81.1% and 72.9%; the recall of FedAvg can only reach
55.9% and 36.5%, while D2MIF can reach 80.9% and 74.6%;
and F1 of FedAvg can only reach 55.1% and 32.0%, while
D2MIF can reach 80.8% and 72.9%. Because of the existence
of false alarm and missing detection, the accuracy, recall, and
F1 of the global model cannot completely converge to the
situation where there is no attack.

VI. CONCLUSION

In this article, we proposed a malicious model detec-
tion mechanism based on the iforest, named D2MIF, for the
federated learning-empowered AIoT. In D2MIF, the model
uploaded by each participant is regarded as the leaf node of
the itree, and the corresponding malicious score is calculated
for each node. Then, we use the RL algorithm to set a dynam-
ically adjusted threshold for filtering malicious models. If the
malicious score of a model is greater than the threshold, then
this model is a malicious one and the corresponding partici-
pant will be eliminated from the federated learning process.
The experiments show that the proposed D2MIF can effec-
tively detect malicious models and significantly improve the
global model accuracy in federated learning-empowered AIoT.
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