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Abstract—Due to the privacy breach risks and data aggrega-
tion of traditional centralized machine learning (ML) approaches,
applications, data and computing power are being pushed from
centralized data centers to network edge nodes. Federated
Learning (FL) is an emerging privacy-preserving distributed ML
paradigm suitable for edge network applications, which is able
to address the above two issues of traditional ML. However,
the current FL methods cannot flexibly deal with the challenges
of model personalization and communication overhead in the
network applications. Inspired by the mixture of global and local
models, we proposed a Communication-Efficient Personalized
Federated Meta-Learning algorithm to obtain a novel person-
alized model by introducing the personalization parameter. We
can improve model accuracy and accelerate its convergence by
adjusting the size of the personalized parameter. Further, the
local model to be uploaded is transformed into the latent space
through autoencoder, thereby reducing the amount of communi-
cation data, and further reducing communication overhead. And
local and task-global differential privacy are applied to provide
privacy protection for model generation. Simulation experiments
demonstrate that our method can obtain better personalized
models at a lower communication overhead for edge network
applications, while compared with several other algorithms.

Index Terms—Edge networks, federated meta learning, repre-
sentation learning, autoencoder, differential privacy.

I. INTRODUCTION

W ITH the rapid development of edge networks and
mobile Internet of Things, a large number of intelligent
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terminals have entered people’s lives. As time goes, smart ter-
minals will generate “massive” data. According to the “Data
Age 2025” white paper released by IDC [1], the global data
volume is expected to grow to 175 ZB by 2025, which is more
than ten times the 16.1 ZB data generated in 2016. Therefore,
the generated massive data are distributed in various devices
at the edge or data centers of different organizations. The
nodes located at the edge of the network drive the migration of
applications, data, and computing power from centralized data
centers to these edge nodes. Therefore, data storage and com-
puting resources must be as close as possible to the demand
side, reducing the data to be moved, traffic, and distance trav-
eled, lowering latency and transmission costs. It is critical to
place computing resources and data storage at the edge of the
network for the efficient functioning of edge networks.

The problems of traditional machine learning (ML) tech-
nology in edge network applications, such as data silos,
privacy leakage and data security risks, regulatory require-
ments and engineering obstacles, can be solved by federated
learning (FL) [2]. However, FL encounters several challenges,
which are grouped into following four main aspects [3].
(1) Communication. To establish a common goal and model
structure in the federated network, the model or parameters
have to be transferred between the client and server, which
can create a significant communication overhead. (2) System
heterogeneity. Computing and communication capabilities
vary by network connectivity, hardware, energy, and storage.
(3) Statistical heterogeneity. How devices collect or generate
data vary widely, with samples collected in distinct situations.
And these heterogeneous samples are usually known as non-
IID data [4]. (4) Privacy. During FL training, there is a risk that
model updates may unintentionally leak sensitive information
to third-party or central servers [5].

In addition, the issue with FL is that its optimization
goal is to obtain a global model, which can be regarded
as an “average” model. However, in federated setting with
a high degree of non-IID data, this global model may not
be able to adapt effectively to all samples. Recently, many
works have begun to exploit various personalization tech-
niques [6] to obtain “personalized models” to solve this
problem. However, these methods cannot achieve flexible per-
sonalization and may ignore the communication bottleneck
challenge, which is worth considering in the network applica-
tions. Per-FedAvg algorithm [7], combining Model-Agnostic
Meta Learning (MAML) [8] with FedAvg [9] can quickly
obtain personalized models adapted to the data of devices.
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Although it provides a solution for personalized federated
learning, it does not allow flexibility in obtaining personal-
ized models, and there is some unnecessary communication
overhead over heterogeneous data. Motivated by the idea of
mixture of the local model and global model presented in
new formulation of FL [10], we can solve the aforementioned
issues by introducing a personalization coefficient to the FML
problem in [11]. And the size of the personalization coeffi-
cient is adjusted according to the relevance of the device’s
data, i.e., the higher the relevance, the larger the coefficient,
and vice versa, which can reduce the communication over-
head to meet the needs of devices with limited resources in
edge networks to participate in the learning process. Therefore,
we propose a Communication-Efficient Personalized Federated
Meta-Learning algorithm (CE-PFML) to deal with the above
challenges. Specifically, we introduce personalized parameter
αi for client i to update the global model with the optimal
local model of client i. And the size of αi can represent the
degree of influence of the optimal local model on the global
model.

Further, we introduce representation learning to reduce
communication overhead, which is achieved by extracting effi-
cient and low-latitude local updates for communication, to
address the communication bottleneck challenge in FL set-
ting. Moreover, we introduce differential privacy (DP) for meta
learning [12], [13] (i.e., Task-Global DP and Local DP) to
ensure the privacy of the federated system.

The main contributions of this paper can be summarized as
follows:

• Inspired by the idea of mixing the global model and
the local models, we propose a CE-PFML algorithm,
where the personalization coefficient αi is introduced into
the FML objective, while compared to Per-FedAvg, to
personalize federated model and obtain high quality per-
sonalized model. Simultantly, we can flexibly accelerate
the convergence of the model by adjusting the size of
the personalized parameter αi for client i. As the higher
the degree of data correlation, the closer αi is set to 1,
and the greater the impact on other participants, the bet-
ter meta-model can be obtained in fewer communication
rounds.

• Further, the local model to be uploaded is transformed
into the latent space by introducing autoencoder, thereby
reducing the amount of communication data, and then
reducing communication overhead. And Local and Task-
Global DP is applied to provide privacy protection for
model generation.

• Simulation experiments demonstrate that CE-PFML is
more effective and efficient for edge network applica-
tions, while compared with several other algorithms.

Outline of the Paper: The rest of this paper is organized as
follows. Section II briefly reviews the related work. Section III
introduces Federated Meta-Learning in edge networks. We
present details of proposed method in Section IV. Sections V
and VI presents the theoretical analysis, performance evalua-
tion and our analyzation, respectively. And we summarize this
paper in Section VII. Table I shows related abbreviations of
term and their meanings in this paper.

TABLE I
ABBREVIATIONS OF TERM AND THEIR MEANINGS

II. RELATED WORK

In this section, we overview and discuss the related works
and efforts that apply to personalized solutions and commu-
nication efficiency in FL.

A. Personalized Federated Learning

There are mainly two strategies for personalized federated
learning (PFL) [14], one strategy for PFL is Global Model
Personalization, whose aim is to improve the generalization
performance of global models under data heterogeneity in
order to improve the performance of subsequent personaliza-
tion on local data. Another strategy is Learning Personalized
Models. It aims to create personalized models by modifying
the FL model aggregation process.

1) Global Model Personalization: This strategy can be
divided into Data-based approaches and Model-based
approaches.

• Data-based approaches. In [4], the authors proposed to
improve training on non-IID data by creating a small sub-
set of data that is globally shared among all edge devices.
And experiments show that accuracy can be significantly
increased (∼30%) with a small globally shared data.
In [15], the authors proposed the FedHome algorithm
that Generative Convolutional Autoencoder (GCAE) was
designed to improve the model by generating a locally
augmented class-balanced dataset to achieve accurate
and personalised health detection in FL. In [16], the
authors proposed a federated learning approach for con-
tinuous authentication, which utilizes part of clients’
training set to train a warmup global model to solve
the non-IID problem in FL. In [17], the author proposed
FAVOR, an experience-driven control framework that
intelligently selects clients to participate in FL to off-
set the bias introduced by non-iid data and speed up
convergence. The Deep Reinforcement Learning (DRL)-
based client selection mechanism is designed to improve
maximum accuracy while minimizing the number of
communication rounds. In [18], the author proposed
a Tier-based Federated Learning system (TiFL), which
divides clients into different levels according to their
training performance, and selects clients from the same
level in each training round to mitigate the stragglers
problem caused by the heterogeneity of resources and
data volume. Further, to address the heterogeneity caused
by non-IID data and resources, an adaptive tier selection
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method, which updates the tiering in real time based
on the observed training performance and accuracy over
time, is proposed. Recently, in [19], the authors proposed
FedAUR, an approach for adaptive upgrade of clients
resources in FL. The client selection and resource alloca-
tion problem is formulated as an optimization problem by
designing a method to measure the performance of locally
generated models against the aggregated global model
and a selection scheme based on the importance of client
parameters and their device resources. It aims to discover
and train the maximum number of samples with the high-
est quality in each round to achieve the goal of desired
performance. In [20], the authors proposed a solution to
the client selection problem by using clients’ weights to
select a compatible subset with minimal weight differ-
ences to aggregate the initial global model, while also
dealing with the dynamic evolution of the learning envi-
ronment without sacrificing clients’ privacy. In [21], the
authors proposed on-demand FL architecture that allows
the devices to run a ML model anytime and anywhere
using containerization technology through lightweight
containers, thereby providing the system with the ability
to deploy and select clients in real-time.

• Model-based approaches. In [22], the authors introduced
an approximation term for the local sub-problem to adjust
the impact of local updates taking into account the dis-
similarity between the global FL model and the local
model to obtain personalized model. In a nutshell, train-
ing strongly adaptive models to solve new tasks with
a few samples is the goal of Meta Learning. One of
the most popular meta-learning algorithms recently is
MAML [8], its goal is to train the model’s initial parame-
ters so that the optimal results can be obtained after one or
several gradient updates based on few data in a new task.
Further, in [7], the authors pointed out that the typical FL
algorithm FedAvg is essentially a MAML algorithm. And
MAML is divided into an outer loop and an inner loop.
The inner loop corresponds to the local update of the
participants in FedAvg, and the outer loop corresponds
to It is based on the global update of FedAvg, and the
two kinds of updates are single-step or multi-step gradi-
ent descent based on local data and single-step gradient
update based on global parameters. At a higher level,
the purpose of MAML is to find a suitable parameter
that enables it to get a better result with as few updates
as possible when fine-tuning a new task; and for per-
sonalized FL, we hope that the obtained global model
can also get a good personalized model after fine-tuning
on the local data, so the two algorithms are intrinsically
interoperable [7]. In [23], the authors proposed FedMeta.
Each client is treated as a task and to train a well-
initialized global model rather than a globally optimal
model is the goal. FedMeta uses a shared meta-learner
to replace the shared global model in FL, which can
well adapt different meta-learning systems to FL systems.
At the same time, the framework shares parameterized
algorithms in a more flexible way while protecting client
privacy by not collecting data on the server. Per-FedAvg,

as a personalized variant of the joint averaging algorithm,
is proposed in [24]. It leverages meta-learning algorithms
to find shared global models that can quickly adapt to dif-
ferent clients, performing well on each client in just a few
steps. In [25], the authors developed a generic framework
based on transfer learning (TL) and knowledge distilla-
tion that allows for FL when each client has not only
its own private data but also a uniquely designed model.
Before the FL training, TL is first carried out based on a
public dataset, and then each client fine-tunes this model
on its own private data.

2) Learning Personalized Models: This strategy can be
divided into Architecture-based approaches and Similarity-
based approaches.

• Architecture-based approaches. In [26], the authors
proposed FedPer, a base + personalization layer approach
for federated training. In this setting, personalized lay-
ers are kept private for each client to learn personalized
representations, while the base layers are shared with
the server to learn general features. In [27], the authors
proposed LG-FedAvg, each client learns a compact local
representation, and all clients learn a global model col-
laboratively. The way that the global model only acts on
the compact local representations reduces the amount of
communication.

• Similarity-based approaches. In [10], a formulation dif-
ferent from FedAvg is proposed, it aims to look for a
trade-off between global and local models. Each client
takes into account its own local data features and strives
to learn a mixture of the local models and the global
model, while compared with FedAvg.

B. Model Compression

There are several approaches, i.e., Sparsification,
Quantization, Knowledge Distillation and Low-rank fac-
torization, that focus on improving the communication
efficiency in FL through better representation of the data.

1) Sparsification: Sparsification is a technique that regen-
erates the matrices independently for each client in each round
by using sparse matrices to characterize locally updated mod-
els based on a preset sparse pa. In [28], the authors proposed
a sparse ternary compression (STC) framework based on
non-IID, unbalanced and small-scale batch local data. STC
extends the current uplink and downlink compression meth-
ods of top-K gradient sparsification through sparsification,
ternaryization, error accumulation and optimal Golomb cod-
ing, which can reduce the communication frequency while
reducing the amount of data transmitted in each communi-
cation round. In [29], the authors integrated local computation
and gradient sparseness, and proposed a flexible Top-K local
SGD algorithm with a dynamic batch size (FT-LSGD-DB),
which achieves flexible compression by allowing participants
to perform gradient sparsification with different “K” values.

2) Quantization: Quantization techniques were originally
used for data compression. In the FL setting, the gradient is
calculated locally by quantization, and the gradient is quan-
tized to a low-precision value instead of directly uploading the
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original gradient, which reduces the communication cost and
the number of communication bits each round, but this will
reduce the accuracy and increase the overall energy consump-
tion of calculation. In [30], the authors introduce quantitative
techniques into FL to learn recursive neural network models
provided by edge data producers for time series prediction to
improve the efficiency of data exchange between edge servers
and cloud nodes.

3) Knowledge Distillation: Knowledge distillation can be
used in FL to alleviate communication challenge by training
a smaller, more compact model to mimic the behavior of a
larger, more complex model. In [31], the authors proposed a
data-free knowledge distillation approach to address hetero-
geneous FL. The generator learns the feature of the global
data distilled from the global model aggregated by the server,
and then provides clients for the information to improve the
performance of local learning.

4) Low-Rank Factorization: Methods based on low-rank
factorization techniques use matrix or tensor factorization
to estimate the most informative parameters in deep CNNs.
In [32], the authors proposed a heterogeneous federation
model compression framework, FedHM, which distributes het-
erogeneous low-rank models to clients and then aggregates
them into a full-rank model. FedHM significantly reduces
communication costs by using low-rank models.

C. Discussion

Although these efforts provide personalized solutions for FL
or improve the communication efficiency in FL to some extent.
However, these methods cannot achieve flexible personaliza-
tion and there is some unnecessary communication overhead
over heterogeneous data, which contributes to inefficiencies
in communication. Therefore, we propose a communication-
efficient federated meta-learning algorithm to solve these
issues by a modified formulation of FL. Further, autoencoder
is introduced to reduce communication overhead.

III. FEDERATED META-LEARNING IN EDGE NETWORKS

A. MAML and FedAvg

In this section, we briefly recap MAML and its learn-
ing procedure, the algorithmic logic of MAML [7] and
FedAvg [9]. They are the preliminary knowledge of federated
meta-learning.

The meta-learning method combined with FL is usually
MAML, and its essence is to quickly obtain personalized
models through good initial training and fine-tuning. The fine-
tuning technique is usually based on the partial layers of the
source model pre-trained on the source data to fine-tune to
obtain the target model with stronger generalization ability to
the target data set. MAML consists of two layers of learners
(or models), meta-learner/model and base-learner/model. The
training process of MAML is as follows: (1) First, the same
model with the same random parameter set is distributed to
the meta-learner and the base-learner. In a meta-model update
iteration of meta training, all base-learners independently and
randomly extract tasks sampled from isolated classes in meta-
training and novel tasks to test in meta-testing. (2) Model

fine-tuning, each base-learner applies the samples of the sup-
port set to optimize the base-model through a vanilla gradient
descent, and then determines a descent strategy to minimize
the loss of the optimized model on the query set. (3) The
global gradient is obtained by calculating the average of all
local gradients. The meta-model is updated by the meta-learner
through a global gradient descent, and then as the updated
base-model it is sent to base-learners. Repeat steps (1)-(3) until
the meta-model converges. We can get excellent performance
by deploying the trained meta-model on the samples in the
meta-testing stage. By reviewing the application of MAML
in FL, we find that MAML, like FL, has a two-layer model
architecture, which makes MAML a natural fit for FL.

The similarity of FedAvg and MAML algorithms and archi-
tectures is introduced as follows, which will fully demonstrate
the intrinsic fit of MAML and FL. A batch of tasks for training
are randomly sampled in each round. For each task, an inner-
loop update and aggregating the gradients of each sampled
task via the outer-loop update are performed in MAML algo-
rithm. In each epoch, a randomly sampled clients set among
all clients as participants are used in FL algorithm. Each par-
ticipant runs the optimization process for multiple epochs over
its local datasets for its weight, then the local updates is sent
to the server. Next, the current global model is updated by
aggregating updates. Therefore, MAML and FL are actually
the same algorithm while all clients have the same weight.

B. System Components

The system model of federated meta-learning in edge
networks is illustrated in Figure 1. The basic principles of
this system can be divided into system components and
system workflow. We describe the system elements and their
corresponding roles as follows.

• Clients: are the distributed devices with non-IID and
heterogeneous data sizes at the edge or data centers of dif-
ferent organizations, such as the desktop, laptop, phone,
bank and hospital.

• Participants1: are essentially the selected clients to par-
ticipate in the learning process, they are subscribed to
a certain federated meta-learning application. They are
responsible for fine-tuning the local model over their
own samples and then performing several rounds of
mini-batch SGD to update the local base-model.

• Edge Server: is a type of server (also known as meta-
learner) that is located at the network edge, closer to
the clients. It is responsible for coordinating models or
parameters communication between the clients. It also
perform other tasks, such as model aggregation, and
model distribution.

• Novel Clients: are “unused” clients in the deployment
phase of FML for classification tasks, whose datasets are
never used during meta-model training. Typically, their
datasets are imbalanced and their distribution differs from
that of the participants. This means that they are not eli-
gible to participate in training. So they subscribe to the

1In our paper, participants and base-learners, the edge server and meta-
learner are equivalent, and we use them as needed.
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Fig. 1. The system model of federated meta-learning in edge networks.

FML service, hoping to use the optimal meta-model to
make classification predictions.

C. System Workflow

In this section, we detail the procedure of our proposed
method, shown in Figure 1, as follows.

1) Initialization: After receiving requests of using FML
service from several clients, the system start to per-
form parameters initialization based on preset automated
programs. Several clients are randomly selected as par-
ticipants for training.

2) Download global model: Meta-learner sends the current
meta-model to the base-learners;

3) Fine-tune local model and local training: To obtain the
optimal base-model, each base-learner trains received
model over its own samples for a predetermined duration
with the use of an optimizer, such as SGD;

4) Upload local model update: Once the local training is
finished. All base-learners upload optimal base-model
and personalized parameter to meta-learner;

5) Global aggregation: Meta-learner receives base-models,
and aggregates them with personalized parameters to
generate the meta-model.

We repeat step 1) to step 4) until the program has reached
the preset number of communication rounds. Finally, the final
optimal meta-model will be deployed to the novel clients to
be tested.

D. Threat Models

For any privacy-preserving work, we first consider the threat
mode, i.e., potential adversaries and information to be protected.

1) Potential attackers: For a single task-owner, the attack-
ers are either the receivers of the meta-model (namely,
base-learners) or the receiver of base-model updates

TABLE II
SUMMARY OF NOTATIONS

(the meta-learner). And here we consider an honest but
curious meta-learner, that is, an aggregator that does not
violate contracted algorithms but may try to obtain the
private information of participants from model updates
through inference attacks.

2) Information to be protected: Here we consider to pro-
tect the information in each sample as well as the
information in the overall dataset at the same time.

IV. PROPOSED METHOD: CE-PFML

A. Federated Meta Learning

We introduce the problem description and standard algo-
rithm in Federated Meta Learning (FML, a base algorithm
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of CE-PFML) in this section. And all of the notions are
summarized in Table II.

1) FML Problem Description: We consider a C/S archi-
tecture model. In this model, a central server connects to
N clients, each of which processes its own dataset Di =
{x ji , y ji }Di

j=1 and no entity else can access the dataset except

itself. For each data sample, (x
j
i , y

j
i ) ∈ X × Y follows an

unknown distribution pi , the former represents the data and the
latter represents the label. Assuming that θ (such as weights)
is the model parameter of the deep neural network. For client
i, we assume that Li (θ; x , y) is the loss function of the model
θ ∈ R

d based on the input data x and corresponding label y.
FML attempts to look for a good initialization model, known
as the optimal meta-model, to quickly obtain a model that per-
forms well on different client devices through several gradient
descent steps. More specifically, the learning objective of FML
can be formulated as follows:

min
θ∈Rd

f (θ)
def
=

1

n

n∑

i=1

fi (−α∇fi (θ) + θ). (1)

We typically take fi (θ)
def
= E[Li (θ; x , y)] for a machine learn-

ing problem, where the expected loss function over the data
distribution of the client i is denoted by fi , and α is the step
size.

2) FML Standard Algorithm: Similar to FL, the vanilla
FML algorithm also solves the problem through two iterative
steps, namely the global aggregation and local update, as
follows:

• Local update: At the global round r ∈ [0,R), the partici-
pants (K clients that are randomly and uniformly selected)
first obtain the global model from the server. And in
order to update received model based on its own loss

Fi (θ)
def
= fi (−α∇fi (θ)+θ), each participant i ∈ nr per-

forms τ steps of SGD locally (also known as mini-batch
SGD), formulated as follows:

θ
r ,t+1
i = θ

r ,t
i − β∇̃Fi

(
θ
r ,t
i

)
, for 0 ≤ t ≤ τ − 1 (2)

where θrt denotes client i’s local model in the t-th step
during the r-th round’s local update with θr ,0i = θr , and
the meta learning rate is denoted by β. The stochas-
tic gradient, denoted by ∇̃Fi (θ), used in (2) can be
calculated as

∇̃Fi (θ)
def
=

(
I − α∇̃2fi

(
θ,D ′′

i

))∇̃fi
(−α∇̃fi (θ,Di ) + θ,D ′

i

)
. (3)

where Di ,D
′
i ,D

′′
i are independent batches of distribu-

tion pi , and for a batch of data D of distribution pi ,
∇̃2fi (θ,D) and ∇̃fi (θ,D) are the unbiased estimates of
∇2fi (θ) and ∇fi (θ) respectively, i.e.,

∇̃fi (θ,D)
def
=

1

|D |
∑

(x ,y)∈D
∇Li (θ; x , y) (4)

∇̃2fi (θ,D)
def
=

1

|D |
∑

(x ,y)∈D
∇2Li (θ; x , y). (5)

As illustrated in [11], computation cost of the gradient
∇fi (θ) and the Hessian ∇2fi (θ) at every round is often

high. So we can reduce the computation overhead by
unbiased estimation of the equations (4) and (5).

• Global aggregation: When the local model update is
completed, each participant sends the central server with
the local model θri = θr ,τ−1

i . Then, the global model is
updated by

θr+1 =
1

K

∑

i∈nr

θri . (6)

B. CE-PFML

Inspired by the model mix thinking and the data com-
pression of representation learning [7], [33], we pro-
pose Communication Efficient Personalized Federated Meta
Learning (CE-PFML) to deal with high communication cost
and model personalization. Here the introduction of the per-
sonalized parameter αi makes the final meta-model more
adaptive for the sample of client i, and can make the meta-
model flexible. And the introduction of local representation
learning reduces the amount of communication, which reduces
the communication cost. The objective of CE-PFML is formu-
lated as follows:

min
x∈Rd

f (x , αi=1...n , xi=1...n)
def
=

1

n

n∑

i=1

fi(αixi + (1− αi)x ).

(7)

where αi ∈ (0, 1) is the personalized parameter of partici-
pant i. It is worth noting that when αi = 0, the learning objec-
tive and solution of CE-PFML is equal to the equation (1). For
all i ∈ [1, 2, . . . ,n], xi is the minimized solution of fi , namely
xi is the optimal base (local in FL) model of client i.

Different from the FML solving the problem presented
in equation (1), CE-PFML realizes model personalization
through the idea of mixture of local models and global model,
and then solves equation (7). Specifically, it is realized via
α here. Theoretically, the smaller αi is, the smaller the
influence of xi over the meta-model (denoted as MM) is; oth-
erwise, the larger αi is, the greater the influence is. Therefore,
CE-PFML enables more flexible and effective model person-
alization, while compared to Per-FedAvg. The ultimate goal
of CE-PFML is to find a model (denoted as MM ∗) that can
generalize well on each novel client, formulated as follows:

MM ∗ = x∗ = arg min
x∈Rd

1

n

n∑

i=1

fi (αixi + (1− αi )x ). (8)

That is, the problem of equation (6) is converted into that
of equation (8), following equation (2) to (5). And the final
model deployed on novel client i is MM ∗ (namely x∗). As
the subscriber of FML service, illustrated in Section III-B, the
novel client hope to make classification predictions through
optimal meta-model x∗. But its datasets are imbalanced and
their distribution differs from that of participants. So x∗ should
be adapted to the local data distribution of the novel client by
performing several steps of SGD over its training data based
on x∗, and then make classification predictions on its test data.

The optimal base-model in step (2) of Section III-C satisfies
the following equation,

xi = arg min
x∈Rd

fi (x ) (9)
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Algorithm 1 CE-PFML
Input: α, β
Meta-learner executes:
0: initializes model x0 and sends it to all clients
1: for each round r ∈ (0,R − 1) do: //Outer-Loop update
2: Sr ← (K clients of a random set)
3: for each client i ∈ Sr in parallel do:
4: gi = InnerLoop(x r , i , β);
5: After receiving αi and xi from client i, meta-learner
6: aggregate them by (6) to solve (8).
7: Optimal meta-model x∗ is obtained after the learning process.
8: return x∗

InnerLoop(x r , i , β):
9: for each inner-loop t = 1, 2, . . . , τ do:
10: If marking parameter of distinguish whether (ε, σ)−DP is

True:
11: Update base-model by (2) over its own samples with noise

to solve (9).
12: else:
13: Update base-model by (2) over its own samples to

solve (9).
14: return αi , x

r ,τ to meta-learner

which indicates that the base-learner learn an converged based-
model with the goal of minimizing the loss function over the
local samples.

The pseudo code of CE-PFML is shown in Algorithm 1.
Differential privacy noise is added in Line 10 and line 11,
whose description is illustrated as following section. The
specific process of CE-PFML is illustrated in Section III-C.

C. Global DP and Local DP in Meta-Learning Setting

In addition, to deal with the potential attacker men-
tioned in Section III-B, we introduce differential privacy
(DP) for meta-learning [13], [34], [35], specifically, Global
DP and Local DP. We assume that a training set D =
{s1, . . . , si , . . . , sn}, where si is a sample in the training set.

1) Global DP: For any two datasets D ,D ′ with at most
one distinct element, (ε, δ)−DP is achieved by a ran-
domized mechanism M, only if for all measurable sets
S ⊆ Range(M) we have:

P[M (D) ∈ S ] ≤ eεP
[
M

(
D ′) ∈ S

]
+ δ. (10)

If this holds for D ,D ′ with at most k distinct elements,
(ε, δ) k-group DP is achieved.

2) Local DP: For any two possible training samples s , s ′ ∈
X × Y and measurable sets S ⊆ X × Y , (ε, δ)−local
DP is achieved by a randomized mechanism M only if
the following formulation is satisfied:

P[M (s) ∈ S ] ≤ eεP
[
M

(
s ′
) ∈ S

]
+ δ. (11)

Global DP guarantees the difficulty of inferring whether
a particular sample exists in the training set by observing
M(D). It assumes that a trusted aggregator running M with
direct access to the dataset D, and the final output is privacy-
protected. However, Local DP assumes more strictly that the
aggregator is untrustworthy, and thus needs to apply a random
mechanism separately over each sample s before training.

However, we cannot directly use the Global DP and Local
DP as simply defined above due to the existence of a hierarchy
of agents and statistical queries in meta learning. For each
query, we can modify the procedure to satisfy either Local
DP or Global DP. Therefore, we can get the following four
options that satisfy the standard DP definition.

1) Global DP: The distribution of the global model θr

will not leak information about any particular local
model θr ,τ ;

2) Local DP: Guarantees that the meta-learner can-
not obtain any private information from any local
model θr ,τ .

3) Task-Global DP: The distribution of the local model
θr ,τ will no leak information about any particular
sample sr ,i ;

4) Task-Local DP: Guarantees that the task-owner cannot
obtain any private information from any sample sr ,i .

D. Representation Learning Enhanced CE-PFML

To further improve the communication efficiency of CE-
PFML, autoencoder (AE) [33], as a type of representation
learning technique, is introduced. The autoencoder is com-
posed of an encoder and a decoder. The encoder converts the
input data into a hidden space through a deterministic map-
ping while the function of the decoder is to remap the space
to the output data as close as possible to the input. In our
work, after q rounds of learning process (called Preparation
Phase), the server trains the AE using the models of the
previous participants (called Training Phase). Once the train-
ing is completed, the encoder is sent to the participant, and
then the participant can use the encoder to compress the locally
trained model into a low-dimensional hidden space, upload it
to the server to complete the model compression, and then
server can decode the hidden space to obtain approximate
local model (called Compression Phase). Whereas the AE is
lossy compression, likewise, model compression after differen-
tial privacy noise addition is also lossy. As proved in [36], the
same O(1/R) convergence rate of FedAvg under noise-free
communication can be maintained as long as the variance of
the error in the uplink and downlink decreases by O(1/r2)
and it is zero-mean. This means, when the following for-
mula (18) is satisfied, after the training of AE is completed,
the FL system switches to Compression Phase, otherwise, the
FL system switches to Training Phase. In this way, the pur-
pose of reducing communication overhead is achieved. The
local models, which are inputs to the AE training process, are
with differential privacy noise in this section.

The encoding and decoding process can be described as
follows:

w i ,r
en = fen

(
w i ,r

)
(12)

w
i ,r
de = fde

(
w i ,r
en

)
. (13)

where w i ,r is the local model of the participant i ∈ nr in
the r ∈ [0,R) communication round. fen and fde are the
encoder and decoder, respectively. w

i ,r
en is the model com-

pressed by the participant and sent to the server. w i ,r
de is the
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output model decompressed by the server. For autoencoder
training, global aggregation without autoencoder compression
can be formulated as follows:

wr+1 =
1∑

i∈nr
Di

∑

i∈nr

Diw
i ,r . (14)

and the new global model after using autoencoder is calcu-
lated by:

ŵr+1 =
1∑

i∈nr
Di

∑

i∈nr

Diw
i ,r
de . (15)

To approximate w i ,r
de close to w i ,r , we train an autoencoder

using the L2-norm loss function for all participants i ∈ nr as
follows:

L2

(
w i ,w i

de

)
=

∥∥∥w i − w i
de

∥∥∥
2
=

∥∥∥w i − fde

(
fen

(
w i

))∥∥∥
2
.

(16)

where ei = w i − w i
de represents the AE error of participant

i in Training Phase. Further, we can define the AE error of
participant i for each round r as follows:

ei ,r = w i ,r − w
i ,r
de . (17)

As described above, the convergence of autoencoder training
in FL systems is guaranteed when the following conditions is
satisfied:

E

[
ei
]
= 0,E

∥∥∥ei
∥∥∥
2 ≤ erth ≤ η2r ∼ O

(
1

r2

)
(18)

where ηr is the learning rate and erth ∼ O( 1
r2
) is a pre-fixed

function [37]. To approximate the statistical values, we define:

E

[
ei
]
� 1

q

r∑

l=r−q

ei ,l ,E
∥∥∥ei

∥∥∥
2 � 1

q

r∑

l=r−q

E

∥∥∥ei ,l
∥∥∥
2
. (19)

For simplicity, in each communication round, we set the
number of iterations for AE training to 100, once the
performance of the AE model is within the acceptable error
range of FL, the training process is completed.

V. THEORETICAL ANALYSIS

Privacy Protection: For the outer-loop update, the samples
are the model updates and the aggregator is the meta-learner,
while for the inner-loop update, the samples are the records
owned by base-learner and the aggregator is the base-leaner.
Therefore, Global DP is implemented by the meta-learner,
Local DP and Task-Global DP is implemented by the task-
owner (namely base-learner for the within-task procedure), and
Task-Local DP is implemented by the record-owner. Processing
through Task-Global DP and Task-Local DP also protect the
meta-model of subsequent iterators, which protect future task-
owners as well. Therefore, we can implement Task-Global and
Sample-level privacy through above four basic options.

Convergence Guarantee: We present the main theoretical
results that our method converges to the global optimum at the
rate of O(1/R), which is the same convergence performance
as FedAvg, as follows. To simplify the analysis, we assume
K = N, K clients are selected to participate inn FL and each
participant run SGD for E epochs in this section. We employ

the following assumptions that have also been commonly made
in the literature [36], [38] as follows:

1) L-Smooth: ∀v ,w ,Fi (v) ≤ Fi (w)+(v−w)T∇Fi (w)+
L
2 ||v − w ||2.

2) μ-Strongly Convex: ∀v ,w ,Fi (v) ≥ Fi (w) + (v −
w)T∇Fi (w) + μ

2 ||v − w ||2.
3) Uniformly Bounded Gradient and Variance for

Gradient: E||∇Fi (w , ξ)||2 ≤ G2, and E||∇Fi (w , ξ) −
∇Fi (w)||2 ≤ δ2i , for mini-batch data ξ at partici-
pant i ∈ [K ].

Theorem: Let the above assumptions 1) to 3) hold and
L, μ, δi ,G be defined therein. Choose φ = L

μ , γ =

max{8φ,E}. Set the learning rate ηr = 2
μ(γ+r)

. If the AE
error scales such that:

E

[
ei
]
= 0, erth ≤ η2r =

4

μ2(γ + r)2
∼ O

(
1

r2

)
, ∀i ∈ K .

(20)

Then, the convergence of our method with non-IID datasets
and full clients participation satisfies:

E
[
F
(
ŵR

)− F (w∗)
] ≤ 2LB

μ2(γ + R)
+

γL

2(γ + R)

[∥
∥w0 − w∗∥∥2

]
.

(21)

where B =
∑N

i=1
δ2i
N 2 +6LΓ+8(E−1)G2+E||eth ||2, F (w∗)

is the minimum values of F(w) and Γ is used to quantify the
degree of non-IID [38].

Proof: Using the smoothness of F, we can formalize the
gap as follows:

E
[
F
(
ŵr

)− F (w∗)
] ≤ L

2
E‖ŵr − w∗‖2. (22)

Using the results in [36], similar to [37], to handle the issue
that the uplink errors from different participants are non
independent, we bound the uplink error term as follows:

E
∥∥wr − ŵr

∥∥2 = E‖er‖2 =
1

N 2
E

∥∥∥∥∥
∑

i∈N
ei ,r

∥∥∥∥∥

2

≤ 1

N 2

[
N 2

∥∥∥∥max
i∈N

E

[
ei ,r

]∥∥∥∥
2
]
≤ erth .

The gap is given through [36] as follows:

E

∥∥∥ŵr+1 − w∗
∥∥∥
2 ≤ (1− ηrμ)E‖ŵr − w∗‖2 + erth

+ η2r

[
N∑

i=1

σ2i
N 2

+ 6LΓ + 8(E − 1)G2

]
.

Denote Δr = E||ŵr+1 − w∗||2. If we set erth ≤ η2r , we
always have Δr+1 ≤ (1− ηtμ)Δr + η2rB . Set ηr = β

r+γ for

some γ ≥ 0 and β ≥ 1
μ such that μ0 ≤ min{ 1

μ ,
1
4L} = 1

4L
and ηr ≤ 2ηr+E . Next, it is easy to verify for r = 1 and

prove that Δr ≤ v
γ+r , where v = max{ β2B

βμ−1 , (γ + 1) Δ0}
as follows:

Δr+1 ≤ (1− ημ)Δr + η2rB =

(
1− βμ

r + γ

)
v

r + γ
+

β2B

(r + γ)2

≤ v

r + γ + 1
.

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 12,2024 at 07:27:38 UTC from IEEE Xplore.  Restrictions apply. 



1566 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Using Δr in equation (22) and setting r = R, we can easily
verify the assertion.

Communication Cost: There are R communication rounds
of federated meta learning process. To measure the com-
munication overhead, we define the compression rate of the
autoencoder C =

|w |
|wde | , where |w | and |wde | represent the

communication model size of each round in the uncompressed
and compressed states. We first present the communication
volume of FedAvg and its variants as follows:

VFedAvg = R ∗ |w |. (23)

Combined with the previous analysis, the communication
volume of our method CE-PFML is calculated as follows:

Vours = q |w |+ (R − q)|wde | =
[
R

C
+
(
1− q

C

)]
|w | (24)

In CIFAR10 experiments, we set R = 100, C = 128, it
is easy to obtain Vours � [1 + (1 − q

C )]|w | � 2|w | and
only if q

C is close to zero. Theoretically, the communication
cost of FedAvg and CE-PFML are O(R ∗ |w |) and O(|w |),
respectively. Therefore, CE-PFML effectively reduces com-
munication overhead through autoencoder compression and
improves communication efficiency.

VI. PERFORMANCE EVALUATION

A. Experimental Setup

The performance evaluation of the proposed CE-PFML
algorithm is carried out on the machine of Ubuntu system,
the graphics card is GeForce RTX 3090, and the PyTorch deep
learning library is used. First, we study the performance of the
resulting personalized meta-model; second, we test the com-
munication overhead by tuning personalized parameters and
leveraging local representation techniques.

We evaluate the empirical performance of CE-PFML on
different models, tasks, and real-world federated dataset.
MNIST [39], FEMNIST [40], and CIFAR10 [41] are used for
experiments. The MNIST dataset is a widely used dataset for
handwritten digit recognition, usually used for performance
evaluation of image classification in the field of computer
vision. There are 10 digit categories in this dataset, rang-
ing from digit 0 to digit 9. The MNIST dataset contains
70,000 grayscale images with a resolution of 28 * 28, 60,000
of which are used for model training and the remaining 10,000
images are used for validation. The FEMNIST dataset is
known as Federated-MNIST, and is a member of the bench-
mark dataset LEAF [40], which is dedicated to FL. It consists
of 62,400 handwritten character images, belonging to 3,400
writers. The writers are grouped into non-overlapping subsets,
where 2,800 writers are used for training and the remaining
600 writers are used for testing. Each image in the dataset is
a 28x28 grayscale image of a handwritten character, and the
characters include both digits and upper- and lower-case let-
ters. The CIFAR10 dataset consists of ten 32x32 colour images
of airplane, bird, cat, dog, etc., with 6000 images for each
category. There are 50,000 training images and 10,000 test
images. According to the complexity of the dataset and the
actual performance of the model, we use a MLP model with

TABLE III
COMPARISON OF AVERAGE TEST ACCURACY OF DIFFERENT

ALGORITHMS GIVEN αi WHILE OTHER PARAMETERS

ARE SAME, I.E., α = 0.01, β = 0.01

two fully connected layers and ReLU activation for MNIST,
and a CNN model composed of two 5 × 5 convolutional layers
with ReLU activation, followed by two 2 × 2 pooling layers
and three fully connected layers, for FEMNIST and CIFAR10,
respectively.

B. Numerical Results

In the experiment, FedAvg [9], Per-FedAvg [11] algorithm
is used as the baseline. Considering the limited resources in
the network applications, we set τ = 1. We take K = 100
clients in the network, and R = 1000.

Different αi is set to verify the effectiveness of personal-
ization in CE-PFML. At the same time, we ensure that other
parameters are the same, and the corresponding accuracy of
the algorithm is shown in Table III. The test accuracy of CE-
PFML shows an overall increasing trend as αi increases in
the above three datasets, except when αi = 0.5, while the
performance of FedAvg and Per-FedAvg is almost constant.
We can assert that CE-PFML is can slightly improve the
federated model’s performance by adjusting the size of αi .
Combining with the experiment in Figure 2, we can claim
that a larger αi indicates a faster convergence of CE-PFML.

Then, the convergence of gradient descent and its depen-
dence on α is tested. We refer to [42] and make a numerical
analysis using a simple logistic regression to explore the
effects of αi on convergence. We assume that each client
performs the following regularized logistic regression:

fi (x )
def
=

1

Di

Di∑

j=1

[
log

(
1 + exp

(
−aTi,j x

))]
+

λ

2
||x ||2. (25)

where λ is a parameter for regularization. It is clear that fi
is λ−smooth and λ−strongly convex. Here we set αi = α
for each client i. The related experience result is shown in
Figure 2, where loss is calculated by f (x ) − f ∗ and squared
averaged distance is 1

n

∑n
i=1 ||xi − x∗i ||2. For the MNIST,

FEMNIST and CIFAR10 datasets, the squared averaged dis-
tance and loss decreased as α increased, and the magnitude of
the squared averaged distance and loss corresponding to dif-
ferent α decreased with the global number of rounds of SGD
are almost consistent. It demonstrates that larger values of α
can get better convergence, because we rely more on local
optima, converging to MM ∗ faster.
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Fig. 2. Squared averaged distance and loss vs. number of global rounds of SGD for logistic regression with l2 regularizer.

In Figure 3, we set α = 0.01, β = 0.01, αi = 0.8, the
test accuracy of CE-PFML is higher than that of FedAvg and
Per-FedAvg, and its performance is more stable than the latter
two, which can be seen from the two subgraphs. As mentioned
above, we set the size of αi according to the correlation degree
of different participants’ data. If the data correlation is high,
the CE-PFML model will perform better than other methods.
In FEMNIST experiment as shown in the figure on the right,

the performance of the CE-PFML model is unstable when the
data heterogeneity of different participants is higher.

For simplicity, we randomly assign 10 equal parts of IID
CIFAR10 data to participants, we try to compress 77% of
parameters in over 80% of the communication rounds (the
compression rate is 83%), while the accuracy of our model can
reach 97% of the accuracy of the uncompressed model, just
like the performance of model of the green line in Figure 4. By
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Fig. 3. Test Accuracy vs. number of global rounds for MNIST and FEMNIST. αi = 0.8.

TABLE IV
COMPARISON OF DIFFERENT ALGORITHMS FOR CIFAR10

Fig. 4. Accuracy vs. number of global rounds for CIFAR10. αi = 0.8.

setting q = 10, we can found that Preparation Phase is longer
than q = 5, which is not conducive to the performance of the
final model. It can be verified from model performance of both
green line in Figure 4. Moreover, as illustrated in Table IV,
the communication cost of our method is greatly reduced by
compression compared to FedAvg, Per-FedAvg, pFedMe [43],
while maintaining the accuracy of model.

To verify the effectiveness of DP applied to CE-PFML,
we use the Omniglot [44] dataset for few-shot image clas-
sification, specifically 5-ways-m-shots (i.e., m = 5, 10, 15).

Fig. 5. Test Accuracy vs. ε in CE-PFML with or without Task-Global DP.
αi = 0.8.

In Figure 5 and Figure 6, 5-ways-5-shots are used to com-
pare the test accuracy performance of CE-PFML without DP,
Task-Global DP version and Local DP version respectively.
Obviously, the test accuracy drops a lot after using DP, but
it is beneficial to both the sample-owner and the task-owner,
because it can largely avoid malicious adversaries’ access to
private information. The results demonstrates that CE-PFML
without DP has nothing to do with ε, further, as ε increases
(i.e., 5, 10, 15), the accuracy of Task-Global DP and Local
DP all show an increasing trend, and the accuracy seems to
be close to the optimal (63% and 61%) when ε = 10. In
addition, we also did a set of experiments with m-shots (m =
5, 10, 15), as shown in Figure 7, The results show that with
the increase of m, the accuracy corresponding to DP version
is improved, indicating that the more samples are added, the
negative impact of noise on the accuracy can be reduced to a
certain extent.
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Fig. 6. Test Accuracy vs. ε in CE-PFML with or without Local DP. αi = 0.8.

Fig. 7. Test Accuracy of CE-PFML without DP or with DP vs. N in 5-ways-
N-shots. αi = 0.8.

VII. CONCLUSION

In this paper, there is the model personalization challenge
in FL due to the goal of an “average” global model, as well
as communication bottlenecks in edge networks. To handle
the above issues, motivated by the mixture of global and
local models, we describe the system model of federated
meta-learning in edge networks, and propose the CE-PFML
algorithm, which can obtain a novel personalized model to
improve the accuracy and flexibly accelerate the convergence
of the model by adjusting the size of the personalized coeffi-
cient. Further, the local model to be uploaded is transformed
into the latent space through autoencoder, thereby reducing
the amount of communication data, thereby reducing com-
munication overhead, and Task-Global DP and Local DP are
applied to provide privacy protection for model generation.
Simulation experiments demonstrate that our method is more

effective and efficient compared with several other algorithms.
Therefore, CE-PFML can be used to obtain a novel personal-
ized model to improve efficiency and reduce communication
costs for different edge network applications.
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