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Abstract—Digital healthcare services have become an integral
part of our lives. There is an increasing number of healthcare
professionals and patients using medical wearables for diagnosis
and treatment, which simplifies and improves the diagnostic and
therapeutic process. However, inappropriate use of medical data
may result in the disclosure of private patient information. For
protecting patients’ privacy when using medical wearables, we
propose a new blockchain-based data access security scheme.
Specifically, the elliptic curve encryption algorithm and zero-
knowledge authentication method are used to authenticate the
identity of patients and doctors in the blockchain network. Fur-
thermore, we develop a smart recommendation method based on
deep reinforcement learning to recommend appropriate doctors
for patients. Next, patients allow recommended doctors to access
their medical data, and smart contracts specifically designed for
secure data access to medical wearables will regulate subsequent
data access. The security analysis and experimental results
demonstrate that the proposed scheme can effectively protect
patients’ privacy during treatment through secure authentication
and data access for medical wearables.

Index Terms—Medical Wearables, Blockchain, Machine
Learning, Privacy Protection, Data Access.

I. INTRODUCTION

Since January 2020, the COVID-19 pandemic has swept
across the world, and many countries are facing a critical
situation with a dramatic increase in the number of patients,
many of whom have difficulty accessing care from primary
doctors or caregivers [1]. In recent years, the Internet of
Things (IoT) and wearable devices have flourished, using
which the remote patient monitoring and data analysis can
improve the quality of medical care [2]. With the deployment
of 5G technology, one of the key IoT applications is wearable
device networks, which collects patients’ test data such as
blood pressure, heart rate and blood sugar levels through
medical wearables, and transmits patients’ health data to
doctors through smart devices such as smartphones and tablets
for health monitoring, diagnosis and treatment of diseases [3],
[4].

In order to jointly process patient monitoring data in medical
institutions at all levels, secure data sharing is required among
wearable devices. However, patients’ medical data is highly
confidential, and sharing data may result in the disclosure of
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patients’ personal information and health data [5]. Moreover,
the patients’ data should be owned by themselves, so they
have the right to manage their medical data, and the doctors
can access the relevant data only after being authorized by
the patients [6]. However, due to the limitation of network
infrastructure, the existing medical system is inadequate to
support the safe sharing of medical data. For example, most
current IoT data sharing models are based on centralized
architectures, in which if the data center is attacked, the entire
system will be out of service and data will be compromised. In
addition, medical systems are vulnerable to privacy breaches
due to illegal access [7]. According to Comparitech’s statistics,
from 2009 to 2022, the medical institutions in the United
States suffered nearly 5000 data leakage incidents, affecting
more than 342 million medical records. Among them, 2020
is the year with the largest number of medical data leakage
incidents, with a total of 803. The number of data leakage
incidents in 2021 was also very high, reaching 711, followed
by 520 in 2019. This shows that medical data leakage incidents
have increased exponentially in the past three full years.

The above analysis suggests that data sharing in medical
wearable devices should first address the problem of access
control. Access control technology is one of the cornerstones
of data protection, which is used to control the data security
interaction between access subjects and objects. At present,
the main access control models include role-based access
control (RBAC) [8], attribute-based access control (ABAC)
[9] and task-based access control (TBAC) [10]. These access
control models have defects in maintaining data’s ownership
and defining access rights, and there are problems of single
access control and centralized policy decisions, which makes
the access control mechanism itself unreliable. Besides, se-
lecting a third party to centrally organize the implementation
of access control management will lead to many security
regulatory loopholes, face multiple threats such as internal
illegal operations and external illegal attacks, and is not easy
to track and verify. If these access control models are used in
the data sharing of medical wearable devices, it will inevitably
lead to misdiagnosis, thus making patients unable to receive
timely treatment. Therefore, in order to enhance the security
of wearable medical devices and protect the privacy of patient
data, it is necessary to design a reliable and efficient identity
authentication and data access control mechanism [11].

The access control mechanism based on smart contracts
allows users to use smart contracts to control the access to
all data interaction processes between the subject and object,
and realize the supervision and management of all data such as
the attribute status of the subject and object, the authorization
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traceability information, the policy update history, and so on
[12]. In a decentralized, tamper proof and traceable network
environment of blockchain, medical data can be encrypted
and stored on the blockchain. By setting access permissions
through smart contracts, users can achieve efficient and secure
point-to-point data sharing. In addition, the execution status
and result data of the smart contract will be recorded on
the blockchain in the form of transactions and cannot be
revoked [13] such that the data reliability is fully guaranteed.
This means the authentication and access control based on
smart contracts provide new solutions for medical data privacy
protection. However, we still need to address the issue of
how to intelligently and reasonably determine the identity and
authority of patients and doctors in smart contracts, which
poses a new challenge to the diagnosis supported by medical
wearable devices.

To address this problem, we propose a new blockchain-
based data access security scheme to protect patients’ data
privacy. The main contributions of this paper are summarized
as follows:

1) To provide effective authentication, the elliptic curve
encryption algorithm and zero-knowledge authentication
method are used to authenticate the identity of patients
and doctors in the blockchain network.

2) To provide better treatment, we develop a smart recom-
mendation method based on deep reinforcement learning
to recommend appropriate doctors for patients. Specif-
ically, we use the average match between the patients’
diseases and the doctors’ expertises to design a doctor
recommendation mechanism based on the deep rein-
forcement learning algorithm DQN to ensure that all
patients can be recommended to the appropriate doctors.

3) To realize efficient access control, the patients grant the
recommended doctors the access to their medical data,
following a procedure which is monitored and guided by
the smart contract specifically designed for secure data
access of medical wearables.

4) The security analysis and experimental results demon-
strate that the proposed scheme can effectively protect
patients’ privacy during treatment through secure au-
thentication and data access for medical wearables.

We organize the rest of this paper as follows. The related
works are covered in Section II. The background knowledge
is introduced in Section III. The system model is presented
in Section IV. The implementation details of the proposed
scheme is given in Section V. The security analysis is provided
in Section VI. The performance evaluation is conducted in
Section VII. This paper is concluded in Section VIII.

II. RELATED WORK

The research on secure data access in the medical industry
has received extensive attention from scholars, and a large
number of related research work has been published. The
work related to secure data access falls within three categories,
namely, public key based, smart contract based, and machine
learning based.

Public Key based Data Access. Axon et al. [15] showed
that blockchains can be used to build a privacy aware PKI,

while eliminating some of the problems encountered in tra-
ditional PKIs. Then, they proposed PB-PKI [16], a privacy-
aware framework, which stores the key under the chain and
encrypts the key on the chain to avoid binding user identity
and public key, thus protecting identity privacy. The framework
divides user identity privacy into global privacy and adjacent
local privacy.In the neighborhood trusted node, the user iden-
tity is bound to the public key. In the globally untrusted nodes,
the offline key is used to protect identity privacy. Ali et al.
[17] proposed Blockstack, which is a large-scale deployed
distributed PKI system built on a blockchain system. Bui et
al. [18] proposed that in distributed group member manage-
ment, entities are represented by public keys, authorization
information is encoded into the signature certificate, and then
the hash value of the revocation certificate is stored on the
blockchain. Although these identity authentication schemes
can effectively solve the problems of single point of failure
and certificate transparency, the cost of computing resources
in the management and maintenance of public key certificates
is huge.

Smart Contract based Data Access. Aiming at the charac-
teristics of high difficulty in medical data management, com-
plex data subjects, and incomplete privacy protection, MedRec
[19], [20] used smart contracts to achieve access control of
medical data on the blockchain, and adopts distributed data
integration and access control for medical data of different
departments and levels. MedRec has three levels of contract.
Registration contracts are used to manage patient identity
information, authorization contracts are used to achieve data
permission management, and associated contracts SC bind
patient identity information and corresponding role permis-
sions. Guo et al. [21] proposed a hybrid blockchain-edge
architecture. This architecture combines the technology of
blockchain and edge intelligence to realize the access control
management of electronic health records via smart contracts.
Song et al. [22] designed an attribute-based access control
using smart contracts scheme for IoT. This scheme solved
the dynamic, distributed and reliable access control problems
in an open IoT environment. Sultana et al. [23] proposed
a data sharing and access control system, which is used
for communication between devices in the IoT. The system
provides effective access control management through access
control contract, registration contract and judgment contract,
and realizes the authentication of data sharing. Authentication
and access control based on smart contracts provide ideas for
the protection of medical data privacy, but the problem of
reasonably setting the identity and authority of patients and
doctors in smart contracts still needs to be solved, especially
in the field of diagnosis supported by medical wearables.

Machine Learning based Data Access. Liu et al. [24]
proposed an efficient permission decision scheme based on
machine learning, which converted attribute based access con-
trol requests into permission decision vectors, and converted
the access control permission decision problem into a binary
classification problem. Tay et al. [25] combined machine
learning and dynamic authorization technology to adaptively
adjust the role and policy control for intelligent performance
perception. According to the user’s performance, the new
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roles and authorization levels are systematically updated with
respect to the system constraints. Esposito et al. [26] pro-
posed a novel identity and authorization policy distributed
management solution by leveraging blockchain technology.
Fragkos et al. [27] proposed a new hybrid role access control
model based on the principles of offline deep reinforcement
learning and Bayesian belief networks. This model utilizes a
completely offline agent to model the user’s behavior history as
a trust index based on Bayesian beliefs, ensuring that internal
users comply with system security rules, while dynamically
improving the access control model through policy learning.
Liu et al. [28] proposed a novel random access scheme
for machine-type-communication devices, which maximized
the access efficiency for contention-free and contention-based
random access. Given the limited delay and set of random
access opportunities, the random access control model is
built to maximize random access efficiency. Lin et al. [29]
proposd an attribute based security access control mechanism.
This mechanism established the relationship between doctors’
social attributes and their trusts, and combines graph convo-
lutional networks with the SIR model based loss function to
calculate doctors’ trust. Doctors are only allowed to access
specific medical data when their trusts are above the corre-
sponding threshold. Despite the efficiency and intelligence in
data access, these schemes have problems such as insufficient
data privacy protection, insecure transmission process, and low
sharing efficiency.

Different from the existing solutions, the proposed solu-
tion aims to provide a secure, intelligent and efficient data
access solution to assist patients in treatment. To this end,
we apply zero-knowledge proof and elliptic curve encryption
to user authentication. In addition, we use machine learning
to intelligently recommend online doctors based on patients’
syndromes to achieve timely diagnosis. Moreover, we combine
data access control with the design of smart contracts to protect
the data privacy of patients.

III. BACKGROUND

The authentication of user identity in medical wearable
device system is designed based on elliptic curve algorithm
and zero knowledge proof. To ensure the secure medical data
sharing on the Ethereum platform, we use smart contracts
to improve the efficiency and security of access control. For
clarity, we first introduce three important technologies, namely
the Ehtereum, the Elliptic Curve Encryption, and the Zero
Knowledge Proof.

• Ehtereum [30]: Ethereum is an open source, global de-
centralized computing infrastructure that can be used to
execute smart contracts. Developers can use the Tur-
ing complete programming language inside Ethereum
to create decentralized applications with any consensus
mechanism. Ethereum virtual machines run on miners,
and transactions require miners to participate in repeated
hashing to generate work. The cost of executing functions
in smart contracts in Ethereum is GAS, which is gener-
ated by an Ethereum conversion. In general, Ethereum is
the medium used to pay transaction fees and computing

services on Ethereum, and gas consumed is used to
reward miners.

• Elliptic Curve Cryptosystem (ECC) [31]: At present, the
most commonly used identity authentication mechanisms
are basically based on RSA algorithm. However, with
the continuous improvement of security requirements in
various fields, the length of keys used by RSA is also
increasing, which directly leads to the increase of RSA
computing. Compared with RSA, ECC requires much
less keys and can achieve the same level of security. Its
essence is a discrete logarithm problem on an elliptic
curve. Suppose p is a prime number in a prime field
modulo P, and ep(a, b) is a nonsingular elliptic curve
in a prime field fp. Then, ep(a, b) is represented by

y2 = x3 + ax+ b, (1)

where x, y ∈ fp and 4a3 + 27b2 ̸= 0.
• Zero Knowledge Proof [32]: The identity authentication

technology based on zero-knowledge proof requires that
the authenticator can prove that he/she is a legitimate
user without letting the authenticator get any useful
information during the authentication process, thus en-
suring the security of the information. To be specific,
Interactive zero-knowledge proof refers to the realization
of interactive response in the connection process of the
two parties executing the protocol. After the prover P
executes the one-step protocol, the verifier V responds,
and P responds accordingly according to the response of
V, repeating the process until the whole interaction is
completed. The zero-knowledge proof of security needs
to satisfy the following three properties, namely correct-
ness, completeness and Zero knowledge. To be specific,
for correctness, prover P cannot fool prover V. In other
words, if P doesn’t know something, the probability that
V believes P is low. For completeness, verifier V cannot
deceive verifier P, i.e., if P knows something, P can
always convince the verifier. For zero knowledge, verifier
V cannot obtain any information about knowledge during
the verification process.

IV. SYSTEM MODEL

In this paper, we consider a remote patient monitoring
model based on blockchain as shown in Figure 1, which con-
sits of the following objects, namely the data owner (DO), the
data user (DU), the trusted authority (TA), edge servers (ES),
intelligent devices, wearable devices, blockchain networks and
distributed data storage systems.

• TA: It generates registration information for users, which
is verifiable. The successfully registered user will get the
identity certificate generated by the trusted authority.

• DO: It refers to the patient who provides health data.
He/she needs to register with the trusted authority and
obtain unique identity. The DO submits the health data
through the intelligent terminal, encrypts the health data
with the symmetric encryption algorithm, obtains the
ciphertext, and sends it to the InterPlanetary File System
(IPFS) outside the chain. Then, IPFS will return a down-
load link to retrieve the data and store the key locally.
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• DU: It refers to the doctor who requests for the DO’s
health data.

• ES: It refers to an entity that can verify the identity
of users and generate access credentials for data access.
When the data access on the chain is abnormal, it can be
traced back to the user’s identity.

• Intelligent Devices: Smart IoT [33] terminals (such as
mobile phones and computers) are devices used by pa-
tients to interact with blockchain networks.

• Wearable Devices: The devices (such as bracelets) collect
health data of patients, including blood pressure, heart
rate, blood glucose, blood lipid and sleep status.

• Blockchain Networks: It is responsible for both access
control and data verification. Each user must access the
health data through the access control on the blockchain.
After successfully obtaining the data, the user can verify
the consistency and integrity of the data through the
blockchain.

• Distributed Data Storage Systems: In this paper, the IPFS
is considered. The data is stored in IPFS after encryption.
If the DU want to retrieve the data, he/she needs the
authorization of the DO to obtain the data decryption
key.
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Fig. 1. Remote patient monitoring model.

In this model, patients send their own vital signs collected
by medical wearables, such as heart rate, blood pressure,
blood oxygen, blood sugar and other indicators to a smart
Healthcare platform. The platform stores this information
on the blockchain, and then recommends suitable doctors
to patients through a doctor recommendation system [14],
which is granted access to patient data only with the patient’s
consent. To ensure privacy, each DO encrypts his/her own
health data and stores the encrypted ciphertext to IPFS, which
will send the storage address back to the DO. Then, the
appropriate DU will be recommended using data mining [34].
If the DO decides to authorize the DU, then the access
control policy Ψ is set and recorded on the blockchain. Once
being authorized, the DU will be granted the permission.
Meanwhile, the ciphertext storage address will be sent to the
DU, using which the corresponding ciphertext is downloaded

and then decrypted. Thus, the DU can make timely diagnosis.
It is worth to mention that before making the request, the
DU’s identity should be checked to ensure that he/she is a
legitimate user.

The symbols and their descriptions used throughout this
paper are listed in Table I.

TABLE I
SYMBOL DESCRIPTION.

Symbols Descriptions
ep Finite field
g The base point on the elliptic curve
h Hash function
uid User’s Identity
mu User’s information
νu User’s signature
pke User’s Ethereum public key
ske User’s Ethereum private key
sku User’s private key
pku User’s public key
mhd Health data
c. Ciphertext
δ Download address

V. THE IMPLEMENTATION DETAILS OF THE PROPOSED
SCHEME

The proposed scheme is composed of the following mod-
ules, namely the information registration, identity authentica-
tion, health data storage, doctor recommendation, health data
access request and authorization, and decrypt and obtain data.

A. Information Registration

User u must first register with the TA. To be specific, the
TA obtains the user’s private key and calculates the user’s
public key. Then, the private key, the public key and a unique
identity uid are generated for the user. Finally, the TA saves
the encrypted private key and uid on the blockchain and sends
the uid to the user u, who obtains his/her private key from
the blockchain. The details of the above process is specified
as follows:

First, the personal information mu is signed by the user
u with Ethereum private key ske, the signature of which is
denoted by νu. Meanwhile, the user sends Ethereum public
key pke, mu and νu to the TA as the registration request
information, i.e.,

req = (mu, pke, νu),

νu = sign(mu, ske).
(2)

After receiving req, the TA first verifies the signature
information νu with pke. If the verification is successful, then
the Ethereum account address addre is obtained from the pke;
otherwise, an error message is returned to the user u.

Then, the TA checks whether the Ethereum address has
been occupied while interacting with the smart contract. If it
is not, the TA calculates the user’s public key pku = sku · g,
by randomly selecting sku ∈ ep as the user’s private key, and
generates a unique identifier for the user by

uid = h
(
(sku, pku), h(mu)

)
. (3)
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Meanwhile, it encrypts sku with pke to obtain ciphertext
csku , calls the smart contract to store addre, csku and uid

on blockchain, and sends the uid back to the user u.
Finally, the user call the smart contract to find the corre-

sponding identity uid according to his/her Ethernet address
addre, after receiving the information. If u

′

id = uid, then the
smart contract sends csku to the user u, who will decrypt
the private key sku with the Ethereum account private key
ske, which provides data support for subsequent identity
authentication. The information registration is summarized in
Algorithm 1.

Algorithm 1 User Registration
Input: the user information mu; User signature νu; User

Ethereum public key pke
Output: allow or deny

1: calculate the signature ν
′

u = sign
(
h(mu), pke

)
2: if ν

′

u = νu then
3: addre = GetEthAddress(pke)
4: if IsExist(addre) = false then
5: select sku ∈ ep
6: calculate pku = sku · g
7: calculate uid = h

(
(sku, pku), h(mu)

)
8: calculate csku = enc(sku, pke)
9: storage {addre, csku

, uid} to blockchain
10: return uid

11: end if
12: else
13: return exist
14: else
15: return error
16: end if

B. Identity Authentication

During user authentication, the user needs to send the
request information with the digital signature to the server.
If it is invalid, then the identity authentication is interrupted;
otherwise, the zero-knowledge proof is used for identity au-
thentication.

To be specific, user u first sends the digital signature to
the server. Then, the server verifies if the digital signature is
correct. If it is, then the zero-knowledge identity authentication
is performed as follows. User u randomly selects k ∈ ep,
calculates r = k · g, and sends it to the server. Once the
server receives r, randomly selects q ∈ ep, converts it into
hexadecimal rh, and sends it back to user u. Next, user u
calculates v = k+ rh · sku after receiving the random number
rh, and returns it to the server. Then, the server verifies the
correctness of the vg = r+rh ·pku for identity authentication.
Naturally, If the authentication is valid and the user is correctly
identified, then the request is approved; otherwise, the request
is denied.

C. Health Data Storage

In our case, the wearable devices collect the user’s health
data. To encrypt the health data mhd, we choose AES as the

symmetric encryption algorithm, i.e.,

cmhd
= enc(mhd, kAES). (4)

After the data owner DO encrypts the data, the AES key
kAES is stored locally. To verify the integrity of the encrypted
data block, the hash value of the encrypted data is calculated.
Meanwhile, the DO signs the encrypted data with his/her
private key to provide data authentication. Then, the DO
stores the signature, denoted by σ = sign(cmhd

), and the
encrypted data cmhd

in IPFS. Then, IPFS returns the download
address δ of the data to the DO. Finally, the DO store data
{uid, δ, h, σ} on the blockchain. The process of health data
storage is summarized in Algorithm 2.

Algorithm 2 Health Data Storage
Input: the user health data mhd

Output: success or failure
1: calculate the ciphertext cmhd

= enc(mhd, kAES)
2: store AES key kAES

3: calculate the hash value h = h(cmhd
)

4: calculate the signature σ = sign(cmhd
)

5: δ =IPFS(cmhd
, σ)

6: store data {uid, δ, h, σ} on the blockchain
7: return success or failure

D. Doctor Recommendation

The design of the medical recommendation system [35],
[36] can make a preliminary diagnosis of the patient’s condi-
tion by recommending a suitable doctor for the patient. For
example, PPMR [37] takes the reputation score of doctors, the
similarity between user needs and doctor information as the
basis for medical service recommendation, and the reputation
score of doctors is measured through user feedback. MDCM
[38] is a multi-modal deep computation model designed for
syndrome recognition that is a crucial part of syndrome differ-
entiation. DRMP [39] introduces gating mechanisms based on
the knowledge of drug-drug interaction and Bayesian neural
networks, which enable it to make multiple recommendations
for patients and provide confidence in each recommendation
result. However, all these algorithms focus on optimizing the
single doctor-patient pairing. To solve this problem, the deep
reinforcement learning [40] algorithm DQN is employed for
doctor recommendation with the consideration of maximizing
patient-doctor matching degree on average.

In the DQN based doctor recommendation, we let the
selection of doctors consist of the state s. That is, s =
(c1, c2, . . . , cn), where ci ∈ (0, 1) represents whether the ith
doctor is chosen or not. We consider that every doctor has his
own field of expertise di, i.e., di = {e1, e2, . . . , en}, where ej
represents the jth disease. If the ith doctor’s expertise set can
intersect with the jth patient’s syndrome set pj to a certain
extent, then the doctor may be recommended to this patient.
According to the above analysis, we give the definition of
matching degree mi,j about the ith doctor and the jth patient
as follows:

mi,j =

∣∣F (di) ∩ pj
∣∣∣∣pj∣∣ , (5)
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where F (.) is the function that maps diseases to their syn-
dromes. According to this definition, we only need to find a
reasonable threshold value, and when the doctor-patient match-
ing degree is higher than the threshold value, we recommend
this doctor to the patient. Therefore, we use the threshold
θ as the action a, i.e., a = θ. Since the platform needs to
recommend doctors to multiple patients, we use the average
matching degree as the reward γ to measure the quality of the
recommendation algorithm for M doctors and N patients, i.e.,

γ =
1

N

M∑
i=1

N∑
j=1

m1i,j , (6)

where m1i,j denotes the matching degree (5) under the rec-
ommendation condition given by

1i,j =

{
1 if doctor i is recommendated for patient j

0 otherwise.
(7)

To get the optimal doctor recommendation policy π, the
Q-network is trained using supervised learning with the loss
function given by

L(ω) =
[
γt + βmaxat+1Q̂(st+1, at+1;ω

−)−Q(st, at;ω)
]2
,

(8)
where st, at and γt denote the state, action and reward at
the time step t during the recommendation threshold decision
process, respectively; β is the learning rate; ω and ω− are
the parameters of the Q-network and target Q-network, and
the Q value of which are denoted by Q and Q̂, respectively.
The proposed DQN based doctor recommendation procedure
is summarized in Algorithm 3.

Algorithm 3 DQN based Doctor Recommendation

Input: initialize replay memory D, action-value Q and Q̂
with random weights ω and ω−

Output: doctor recommendation policy π
1:
2: Initialize
3: for episode = 1,M do
4: Initialize state s1
5: for t = 1, T do
6: Select a random action at with probability ϵ , other-

wise at = maxaQ
∗(st, a;ω)

7: Get reward γt and next state st+1 after executing at

8: The transition (st, at, γt, st+1) is stored in D
9: Sample random minibatch of transitions

(st, at, γt, st+1) from D
10: Set

yt =

{
γt (6) if episode ends at step t+ 1

γt + βmaxat+1
Q̂(st+1, at+1;ω

−) otherwise

11: Update
(
yt − Q(st, at;ω)

)2
using gradient descent

method for ω
12: Update the target Q-network every T steps, ω− = ω
13: end for
14: end for

E. Health Data Access Request and Authorization

The DU first pass the authentication of the edge server.
When the DU requests access to health data, the whole
access control process is divided into two stages, namely
permission judgment and access authorization. To be specific,
the permission judgment stage is used to query roles and
access control policies, while the access authorization stage is
used to grant the data owner DO access rights. We summarize
both stages as follows:

First, we verify whether the DU has the right to access
the data. The authority determination contract queries its
own authority according to the uid of the DU. If there
is an access policy Ψ set by the DO, it is determined as
passed. After the permission is verified, the DU can obtain
data = {uid, δ, h, σ} stored in the blockchain and send an
access request to the DO, which is summarized in Algorithm
4.

Algorithm 4 Access Rights Check
Input: the user identity of data owner uid; User role set

user role; Role permission set role permission
Output: allow or deny

1: set roles=[], permissions=[]
2: for i = 1, user role.length do
3: if user role[i].uid = uid then
4: roles.push(user role[i])
5: end if
6: end for
7: for m = 1, roles.length do
8: for j = 1, role permission.length do
9: if role permission[j].role = roles[m] then

10: permissions.push
(
role permission[j]

)
11: end if
12: end for
13: end for
14: if permissions is null then
15: return deny
16: else
17: return allow
18: end if

After the DO receives the access request, if he/she agrees,
then the following process will be performed. Specifically,
DO randomly selects r ∈ ep, and calculates

c1 = rg,

c2 = kAES + r · pku.
(9)

Then, DO sends c = {c1, c2} to the DU via the edge server.

F. Decrypt and Obtain Data

Once obtaining the DO’s authorization, the DU can use
his/her private key sku to decrypt the symmetric key kAES ,
and obtain the ciphertext cmhd

from IPFS according to the
download address δ.

c2 − sku · c1 = kAES + r · pku − sku · rg
= kAES .

(10)
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After obtaining the ciphertext cmhd
and the symmetric key

kAES , the DU calculates the hash value h
′

by

h
′
= h(cmhd

). (11)

If h
′
= h, then the cmhd

is proved that it has not been tampered
with. Then, the DU decrypts the ciphertext cmhd

with kAES

to obtain the DO’s health data by

mhd = dec(Cmhd
, kAES). (12)

VI. THEORETICAL ANALYSIS ON SECURITY AND
PERFORMANCE

In this section, we give the theoretical analysis to prove the
security of the proposed scheme in terms of introducing the
attacks prevented. We also analyze the cost of the proposed
scheme in both computation and communication.

A. Security Analysis

The identity authentication is to make the verifier believe
the identity of the certifier without disclosing personal infor-
mation, and the security of which depends on that of elliptic
curve discrete logarithm and zero knowledge proof. By intro-
ducing the following attacks, namely single point of failure
attack, tamper attack, replay attack, impersonation attack, and
collusion attack, and conducting theoretical analysis, we prove
that the proposed scheme can resist these attacks.

• Single Point of Failure Prevention [19]: Because the
blockchain is a distributed ledger, each full node will
store all the information in the chain, which can prevent
the failure of centralized applications. A few node failures
will not affect the operation of the entire system.

• Tamper Resistance [41]: Because the scheme exists in the
blockchain network, and the blockchain system is decen-
tralized, the transactions in the blockchain are transparent
and cannot be tampered with, which can ensure that the
user’s identity credentials and related transactions will not
be maliciously tampered with, thus ensuring the integrity
of the user’s information.

• Replay Attack [42]: This attack randomly selects different
random numbers during each authentication process. So
attacker A tries to listen to all the information exchanged
during an authentication process, and he/she cannot
fool authenticator V by resending outdated messages.
Thereby, it is effectively against any replay attack.

• Impersonation Attack [43]: In such attack, attacker A
pretends to be prover P to make an interactive request
to verifier V, but attacker A does not have the private
key of prover P. If A forges the signature, the attacker
cannot pass the signature verification; if A intercepts the
signature, the attacker cannot pass the zero-knowledge
authentication process. In this scheme, if the attacker
A intercepts r and g, the difficulty of deriving k from
r = kg is equivalent to the difficulty of solving the
elliptic curve discrete logarithm problem ECDLP. If v
is intercepted, deriving sku from v = k + rh · sku also
belongs to solving ECDLP, which is also very difficult.
Because k and rh are randomly generated during the

authentication process, and each authentication process
will produce different values.

• Collusion Attack [44]: Malicious verifier V colluded with
attacker A, and the malicious verifier V told attacker A
all the obtained information of prover P in the authen-
tication. However, in the zero-knowledge authentication,
the malicious verifier can only get r and v, but cannot get
the private key information of prover P. If the attacker
A wants to obtain the private key of prover P from v,
its difficulty is equivalent to the difficulty of obtaining
elliptic curve. Therefore, attacker A can hardly crack in
the limited time.

According to the above analysis, we claim that the pro-
posed scheme can resist malicious forgery, impersonation and
disclosure, thus it has considerably high security.

B. Performance Analysis

Both of the computation overhead and communication over-
head of the proposed scheme are analyzed as follows:

• Computation Overhead: Let Tm, Th, and Tcode represent
the cost of the last point multiplication operation of group
g on the elliptic curve, a hash function operation, and run-
ning an encryption or decryption operation, respectively.
Thus, the calculation overhead of registration phase and
authentication phase equals to Tm+2Th+Tcode and 3Tm,
respectively. And, recommending the appropriate doctors
through DQN is equivalent to solving the set coverage
problem with the same scale in terms of computation
overhead. Among them, the number of doctors is M ,
and the number of patients is N . If the greedy algorithm
is adopted, then the computation overhead of finding an
approximate solution for a set coverage problem is the
order of M2, denoted by Tdqn, which bounds that of the
DQN-based doctor recommendation algorithm.

• Communication Overhead: Let Lid, Lsign, and Lp rep-
resent the length of identity information, user signa-
ture, and element in ep, respectively. In the registration
stage, the length of the registration information req =
(mu, pke, νu) sent by the user is Lid +Lsign + C, where
C represent a constant, while the length of the response
information uid returned by the authentication server is
Lid. Thus, to complete the user registration, the total
communication cost equals to 2Lid + Lsign + C. In
the authentication phase, the user sends the signature
information to the user with a length of Lsign. After
the signature verification is passed, the authentication
server returns a message agreeing to zero knowledge
authentication with a length of C. The user sends login
authentication request information r = kg with a length
of Lp, while the length of the response information r
returned by the authentication server is Lp. In addition,
the length of the information v sent by the user to
the authentication server is also Lp. When the authen-
tication is passed, the authentication server sends the
authentication information to the user with a length of C.
Thus, the communication overhead required to complete
an identity authentication equals to 3Lp + 2C + Lsign.
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Since the DQN-based doctor recommendation algorithm
needs to collect patient disease and doctor expertise
data for training, the communication overhead equals to∑M

i=1 Ldi
+
∑N

j=1 Lpj
, where Ldi

and Lpj
represent the

length of the ith doctor’s expertise and the length of the
jth patient’s syndrome, respectively.

VII. PERFORMANCE EVALUATION

A. Experiment Setup

In this section, we conduct the experiment on a computer
with Intel Core i5 processor, 8G memory, 3.2GHz CPU
frequency and Ubuntu system. We use the Solidity language
to compile smart contracts, then compile smart contracts in
the online compilation environment Remix, and finally build
a private chain to deploy smart contracts through Ganache.
In addition, we use JPBC2.0.0 library and Java development
language to implement zero-knowledge authentication scheme
based on elliptic curve. The DQN network used in the exper-
iment consists of an input layer, three hidden layers, and an
output layer. The activation function is relu with a learning
rate of 1e-3.

Performance evaluation adopts the following perfor-
mance indicators, namely throughput, delay, data encryp-
tion and decryption time consumption, and upload and
download time consumption. We also evaluate the per-
formance of the proposed doctor recommendation algo-
rithm in terms of average matching degree. The dataset
used in the experiment contains the information data of
151,989 doctors in 5,024 hospitals in China, which is avail-
able at “http://n3.datasn.io/data/api/v1/n3a2/hospital clinic
doctor in china/main/list/?app=html-bunker”, including doc-
tor’s title, expertise, peer evaluation, patient evaluation, etc. We
grade the doctor’s ability according to the doctor’s expertise.
That is, each doctor’s ability is scored according to his/her
expertise, with a score range of 0 to 100. In addition, we use
the Ethereum private chain as the experimental environment,
the configuration of which is shown in Table II.

TABLE II

TEST ENVIRONMENT.

Parameter Version

Geth 1.10.12-stable

The operation system Ubuntu20.04

IPFS 0.12.0

Solidity 0.5.0

Node.js V14.18.1

B. Experiment Results

The performance of the proposed scheme is evaluated
in terms of Ethereum network performance, user identity
authentication and access control efficiency, data processing
efficiency, and smart contract deployment cost.

1) Ethereum Network Performance: The Ethereum private
chain runs on a single host. The test method is to send 1000
transactions to Ethereum, set the transaction type to write and
query, and then observe the change results of the average
system delay and throughput under different transaction trans-
mission frequencies. The results are shown in Figure 2 (a) and
Figure 2 (b). As shown in these figures, when the transaction
type is write, there is no significant change in latency when
the transaction transmission frequency falls within the range of
0∼30. However, with the increase of transaction transmission
frequency, the average delay increases gradually. When the
transaction transmission frequency reaches 80, the throughput
tends to be stable. When the transaction type is query, the
change of average delay is not obvious and can be ignored.
The throughput is maximized at 600 transaction transmission
frequencies. This is because when the transaction type is
write, Ethereum needs nodes to consume gas synchronously,
and the increased transaction volume needs to be queued for
verification.
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Fig. 2. Effect of transaction transmission frequency on (a) write and (b) query

performance.

2) User Identity Authentication and Access Control Effi-
ciency: Both ECC and RSA encryption algorithm are con-
sidered in the experiment, wherein ECC uses 256 bits of
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Fig. 3. Latency comparison between ECC and RSA with user number varies from 20 to 200 in (a) user identity registration, (b) user signature verification,

and (c) user identity authentication.

encryption length and RSA uses 2048 bits of encryption
length. And the transaction efficiency of user registration and
authentication stage is analyzed.

In the user identity registration stage, the trusted authoriza-
tion center performs experimental verification of user public
and private keys and signature generation based on ECC
and RSA encryption algorithms respectively according to the
registration information submitted by users. The verification
latency is shown in Figure 3 (a). Observed from this Figure,
as the number of users increases, the latency of the registration
phase of user identity information is also increasing. The
time consumed for user identity registration based on RSA
increases rapidly with the number of users, and the processing
efficiency is relatively low. The time consumed by ECC
user identity information registration grows slowly. Both of
user signature verification and user identity authentication are
performed based on ECC and RSA and the experimental
results are shown in Figure 3 (b) and Figure 3 (c), respec-
tively. It is clear that RSA spent more time in the signature
verification phase than ECC. Note that in user authentication,
both checks and verifications are performed. Therefore, in the
whole authentication process, the processing efficiency of ECC
is higher than that of RSA. In addition, as the number of
users increases, the latency of user identity registration and
authentication increases linearly, because users need to queue
for processing.

The average matching degree comparison between the pro-
posed scheme and the baselines PPMR [37] and MDCM [38]
are shown in Figure 4 (a) and 4 (b). Note that the PPMR
algorithm is to recommend the doctor with the highest credit
rating after the doctor’s ability reaches a certain threshold,
while MDCM maps the multimodal symptoms of a patient
to the most appropriate doctor which is somehow similar to
our approach. Since the doctor credit is not considered in this
paper, the PPMR will select doctors whose ability exceeds the
threshold to adapt to the current test environment. As can be
seen from Figure 4 (a), the higher the ability of doctors, the
higher the average matching degree when the number of pa-
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Fig. 4. Average matching degree comparison with the variation of (a) doctor

ability and (b) user number.
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tients is set to 160. The average matching degree of our scheme
is significantly higher than that of both PPMR and MDCM
as we expected. This is because our scheme optimizes the
doctor recommendation by maximizing the average matching
degree, while both baseline algorithms focus on optimizing the
single doctor-patient pairing. As can be seen from Figure 4 (b),
the average matching degree of either approach experiences
a little fluctuation as the number of patients increases with
the ability of each doctor reaches 95. Although both PPMR
and MDCM have successfully reached their highest average
matching degrees, 88% and 87%, respectively, due to almost
all doctors have the ability to cure every disease, our scheme
is still about 5% higher than PPMR and about 6% higher
than MDCM. The results shown in Figure 4 suggest that the
proposed scheme can provide better doctor recommendation
services for patients.

3) Data Processing Efficiency: As can be seen from Figure
5, because of the symmetric encryption algorithm AES, the
encrypted file size is about twice the size of the raw file for
all 6 files. As a result, the time required to decrypt the file is
higher than the encryption time as shown in Figure 6.
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Fig. 5. Data size comparison between raw data and encrypted data.

This experiment calculates the time of data encryption and
decryption by changing the size of health data block, and
evaluates the computational overhead in the data management
system. As shown in Figure 6, the computation cost of
encryption and decryption algorithm has no great impact on
the calculation cost of encryption and decryption algorithm.
In addition, as the size of the health data block increases,
the running time increases slowly, which shows that the
computation overhead of this scheme is controllable. It can
also be observed from this figure that the size of the health
data block should not exceed 15MB, so as to reduce the
computation overhead of the system.

Observed from Figure 7, we find that as the data size
increases, it will take more time to upload or download data
from the IPFS system, but the time consumed is still within
the acceptable range. Even if the size of the ciphertext data is
60MB, it only takes 0.778 seconds to complete the upload and
0.355 seconds to download. In particular, we find that it only
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Fig. 6. Time consumption comparison between encryption and decryption of

files with different data sizes.

takes 18.534 seconds to upload 1G data to the IPFS system
and 10.436 seconds to download.
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Fig. 7. Time consumption comparison between upload and download of

ciphertexts with different data sizes.

4) Smart Contract Deployment Cost: We use solidity to
store patient health data information and control user permis-
sions. The contract is deployed on the private chain network of
Ethereum and tested with MetaMask wallet. We also test the
gas consumption of the main functions on the smart contract
and the system response time when calling the smart contract
functions. The test results are shown in Table III, which
indicate that the response time of each system is about 2
seconds.

VIII. CONCLUSION

Under the influence of the COVID-19, more and more
medical care professionals and patients use medical wearable
devices for diagnosis and treatment, which simplifies and
improves the diagnosis and treatment process. However, the

This article has been accepted for publication in IEEE/ACM Transactions on Computational Biology and Bioinformatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2023.3281819

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on June 12,2024 at 07:25:16 UTC from IEEE Xplore.  Restrictions apply. 



11

TABLE III

SMART CONTRACT DEPLOYMENT.

Smart Contract Function Gas Cost Response Time (ms)

registerPatient 43828 1826.45

registerDoctor 48095 2120.24

uploadData 245054 2736.38

sendRequestToPatient 53408 2687.68

agreeAccess 50146 1887.49

revokeAccess 35278 2942.67

getData 0 27.63

patients’ private information may be leaked due to improper
use of medical data. In this paper, a new blockchain-based data
access security scheme is designed to solve this problem. The
scheme combines blockchain, elliptic curve encryption and
zero-knowledge proof to protect patients’ medical data privacy.
To provide better treatment, the DQN algorithm is employed
to recommend appropriate doctors for patients. Thus, only
authenticated patients can access the blockchain network and
store their medical data, while authenticated doctors can access
patients’ health data after obtaining their authorizations. The
experimental results along with security analysis demonstrate
that our scheme can effectively protect patients’ data privacy
during treatment through secure authentication and data access
for medical wearables.

Our future works focus on the management of visitors’
rights, and the access rights management scheme will be
improved to strengthen privacy protection and security.
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