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Abstract—The issues of privacy and bias in datasets are rapidly
becoming important challenges that the computer vision field
needs to address. So far, there has been little attention paid
to solutions for protecting the privacy of new datasets. In our
work, we explored a object detection solution on the WIDER
FACE dataset by anonymizing the dataset using face synthesis
and enhancing the WIDER FACE dataset by balancing facial
features along the dimensions of gender and skin color. Using
both the original dataset and our enhanced dataset to train the
target detection model, our target detection results show that
our model can maintain detection performance while preserving
privacy and partially balancing bias.

Index Terms—Face Detection,Privacy Protection,Machine Vi-
sion

I. INTRODUCTION

Neural network-based methods have made great break-

throughs in recent years. For example, chatgpt has developed

rapidly in the field of text communication, the StyleGan

[10]–[12] algorithm , and the stable diffusion algorithm have

achieved great success in the field of AI image generation.

Great results. These achievements benefit from better archi-

tectures, but on the other hand, they are also due to the ever-

increasing dataset size [34].

With the addition of big data technology, target detection

algorithms based on deep learning [36], [37], such as face

recognition and automatic driving [33], have stronger robust-

ness. Through big data, these deep learning methods can

continuously improve their capabilities [35]. An expert in the

field of AI, has stated that the future development path of deep

learning should change from using big data to train models

to using high-quality data created by methods such as data

enhancement and synthetic data. However, how to ensure the

privacy of big data has always been a problem that machine

learning workers have been considering [29].

Researchers have identified two significant issues with both

currently used datasets and newly proposed datasets. The first

issue is the existence of serious data biases, as discovered

by researchers such as [2], [25], who found that children
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and minorities are significantly underrepresented in common

datasets. This bias in the dataset can be reflected in the model,

resulting in biased output results. For instance, the Google

image [20] labeling algorithm mistakenly labeled two Black

people as gorillas, and facial analysis models have lower

accuracy for minority women’s faces than for White men’s

faces [2].

The second issue is the unauthorized use of images for

training machine learning models, as described in [17]. While

these data images were collected under a Creative Commons

license, the license does not provide or specify any information

regarding their use in training artificial intelligence models.

This may potentially violate the license, as the trained models

can be explored to reveal the entire training sample, such

as addresses and bank accounts in GPT-2 [3], or possibly

images [16]. Therefore, it is necessary to remove personal

privacy information from the images. This not only protects

personal information in the images from being stolen, but also

strictly enforces national information security laws such as the

Personal Information Protection Law and the Data Security

Law.

One common variable in these two issues is the use of raw,

unedited data, which often either violates privacy or contains

biases. However, because collecting unbiased datasets with

consistent consent of individuals is often very expensive or

even unfeasible [25], in this paper, we investigate methods

to mitigate these issues by modifying the training data. In

summary, our contributions are as follows:

• We study measures to preserve data privacy while main-

taining the performance of face object detection.

• We propose a novel approach to balance race, gender bias

in training datasets while removing personally identifiable

information.

• We measure the bias of our model with the image

association test.
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Fig. 1. Schematic illustration of the privacy-preserving approach we study. On the left is an example picture we extracted from the WIDER FACE dataset,
the animal face dataset above is from StarGanv2, and the bottom is the face image we generated with StyleGan3. We use two face-changing methods to erase
the privacy of some pictures in the WIDER FACE dataset, and then add the generated pictures to the dataset and use the expanded dataset to train the face
detection algorithm.

II. RELATED WORK

A. Measurement bias

According to experiments, many models have biases. For

example, [2] showed that facial recognition tools have lower

accuracy for women of color than for white men. Openly

available models have been shown to have biases towards

minority ethnic features [13], [20]. Furthermore, [21] found

that unsupervised models trained on ImageNet contain inter-

sectional biases related to race and gender. We investigated

biases in our model using their test. To mitigate biases, [27]

and others developed a method to eliminate the impact of bias

in the collected dataset before conducting statistical analyses.

According to [23] and others, even with a balanced dataset,

models can amplify implicit gender bias. They suggest using

a generative adversarial network approach to remove personal

information by obscuring private areas of images. [8] explored

how to effectively transform input data to balance datasets

while eliminating potential data biases. Our method uses

non-sensitive facial images generated by StyleGAN3 [10] to

replace the private facial information in the training dataset

and balance the dataset bias.

B. Preserving Privacy

Even that image recognition algorithms inevitably expose

some identifiable and sensitive elements, privacy protection

is crucial in computer vision. Various methods have been

developed to address privacy issues in computer vision models,

such as face occlusion [22], reduced resolution quality [19],

and others [18], [24]. [15] demonstrated how targeted blurring

can be applied in privacy-sensitive areas to protect privacy

while maintaining image utility. [8] evaluated the performance

of privacy protection in modern object detection algorithms.

In our approach, we use synthetic animal and human facial

images to obscure sensitive information in the dataset and eval-

uate the performance using advanced face detection methods.

C. Synthesis of faces

The transfer of human faces with similar poses to target

images is also a popular research topic in the field of computer

vision. [28] pasted celebrity faces onto other images to gen-

erate new composite faces. [4], [5] significantly improved the

effectiveness of face transfer by learning mappings between

different visual domains, and their approach outperforms other

algorithms in terms of visual quality and diversity.

D. Mitigating bias

In [23], the authors found that when using adversarial loss

to enhance the model architecture to obscure parts of images

that leak protected features (such as race and gender), the

multi-label prediction performance on COCO only slightly

decreased.
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Fig. 2. Example image. 4 versions of the same WIDER FACE image, each taken from one of our datasets. (a) is the original image, (b) is the image
synthesized by animals, (c) (d) is the gender-balanced and race-balanced image synthesized with the AI image.

E. Face Detection

Despite the significant progress made in single-stage face

detection, accurately and efficiently locating faces in the

wild remains an open challenge. Retinaface [6] proposed a

robust face detector that leverages the benefits of joint extra-

supervision and self-supervised multi-task learning to perform

pixel-level face localization on faces of various scales.

III. METHODS

This article explores protecting data privacy and ensuring

a balanced model bias without compromising face detection

efficiency. We used StarGanv2 [5] to perform image facial

synthesis transformations on the Wilder Face [26] dataset

while maintaining detection performance. These modified im-

ages and the original Wilder Face dataset were used to train

RetinaFace. The model’s target detection performance was

measured on both the modified and original datasets. Finally,

we attempted to measure the representational bias of all fine-

tuned Resnet50 backbones using image embedding correlation

testing.

A. Synthesis of animal faces

The original WIDER FACE dataset contains 32203 training

images, 393703 labels, and we extracted 2600 of them as

the standard dataset. We developed a model for face image

translation using StarGanv2.Our model is illustrated in Figure

3, where the mapping network or style encoder provides

a specific domain style code S, which is injected into the

generator via ADAIN [9]. We sample latent codes from a

standard Gaussian distribution and input them into an MLP

to generate the style code. The style encoder transforms the

input style image into a style code through CNN. To generate

face images, a generator G takes an image x and a style code

s̃ as input, and learns to generate an output image G(x, s̃)

through an adversarial loss:

Ladv =Ex,y[logDy(X)]+

Ex,ỹ,z[log(1−Dỹ(G(x, s̃))] (1)

In order to use the style code s̃ when generating images, we

employ a style reconstruction loss:

Lsty = Ex,ỹ,z[‖s̃− Eỹ(G(x, s̃))‖] (2)

Fig. 3. Our model summary: The generator transforms an input image into
an output image that reflects the domain-specific style code through the
instance normalization (IN) [32] downsampling and and uses adaptive instance
normalization (AdaIN) upsampling to output the image. The style code is
injected into all AdaIN layers. The mapping network converts a latent code
into style codes for multiple domains through MLP, randomly selecting one
during training. The style encoder extracts the style code of a style image
through CNN, and the generator performs style code synthesis to generate
the image. The discriminator distinguishes real and fake images from the
generator. Note that all modules, except the generator, have multiple output
branches, with one selected during training for the corresponding domain.

And a style diversity loss to enhance the diversity of generated

images:

Lds = Ex,ỹ,z1,z2 [‖(G(x, s̃1))− (G(x, s̃2))‖] (3)

At the same time, in order to ensure that the original features

such as face pose can be maintained in the generated image,

we use the cycle consistency loss:

Lcyc = Ex,y,y,z[‖x−G(G(x, s̃2), ŝ)‖] (4)

Among them, ŝ is the style code of the original image.The

overall objective function can be summarized as:

min
G,F,E

max
D
Ladv + λstyLsty − λdsLds + λcycLcyc (5)

Where λsty, λds, λcyc are the hyperparameters of each item,

and they are all set to 1 in our training model.
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Fig. 4. Some image processing examples in our extended dataset.

We use the CelebA [14] and animal face [5] datasets to train

our animal face synthesis model on StarGanv2, and then cut

out the faces in the WIDER FACE dataset and use StarGanv2

to synthesize the animal face images. A synthetic face image

is generated. And use [1]’s face fusion algorithm to fuse the

synthetic face with the face in the data set into an image that

does not contain the face privacy of the original image. Finally,

the generated image is replaced with the corresponding image

in the standard dataset to complete the face synthesis dataset.

B. Face Transformation
We modified the WIDER FACE dataset to synthesize face

images without privacy and scramble the skin color of the

face. In order to synthesize images, we use the pre-trained

StyleGan3 network to generate AI faces and delete 1000

images with different skin colors and genders for backup,

and then use StarGanv2 to synthesize the generated faces

with the cut face images in WIDER FACE to generate Face

images without personal privacy. We select photos of different

ethnic and gender characteristics in the images generated by

StyleGan3 to synthesize the faces in WIDER FACE to achieve

the purpose of balancing race and gender.This potentially

increases workload but reduces privacy breaches and biases.

From the generated image, we further select the face with

better facial features and distort it so that its label is aligned

with the face in the original image, and finally paste the gener-

ated face into the original image. Finally, the edited images are
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replaced with the corresponding images in the standard dataset

to generate gender-balanced and race-balanced datasets.

For the cross-balanced dataset, we add all images synthe-

sized to the standard dataset and add labels.Figure 2 shows

an example of the images included in our dataset, with more

examples in Figure 4.

C. Face Detection

We use Retinaface, which is currently a relatively good

face detection model, to test the effect of our model. We use

our different data sets to train the detectors, get 5 trained

ResNet50 networks, and use different networks to run the

verification set of WIDER FACE, and the detection results

are used as indicators of the respective detection capabilities

of the models.

D. Bias measure: iEAT test

To measure the bias in image representations, we conducted

tests using iEAT [21], which is adapted from the Implicit

Association Test (IAT) in social psychology [7]. The test

measures differential associations between certain target con-

cepts (e.g. men, women) and a set of attributes (e.g. career,

family) across all images. Firstly, we trained a RetinaFace

model with a ResNet50 backbone to extract visual features on

different datasets. We calculated the cosine distance between

normalized representations of different visual features, and

recorded the p-values and effect sizes d of the null hypothesis

to test for bias in the model. The specific procedures are as

follows:

The test statistic measures the differential association of

target concepts X and Y with attributes A and B

s(X,Y,A,B) =
∑

x∈X

s(x,A,B)−
∑

y∈Y

s(y,A,B) (6)

where s(w,A,B) is the differential association of w with the

attribute, quantified by the cosine similarity of the vectors

s(w,A,B) =meana∈A cos(w, a)− meanb∈B cos(w, b)
(7)

We test the significance of this association with a permutation

test on all possible equal-sized partitions (Xi, Yi)i of X ∪
Y to generate a null hypothesis , as if there were no biased

associations. And use the p value to measure the impossibility

of the null hypothesis unilaterally

p = Pr[s(Xi, Yi, A,B) > s(X,Y,A,B)] (8)

Whereas the effect size, a standardized measure of the split

point between the relative associations of X and Y with A and

B, can be described as

d =
meanx∈Xs(s,A,B)−meany∈Y s(y,A,B)

stdw∈X∪Y s(w,A,B)
(9)

A larger effect size indicates a significant correlation of

differences.
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Fig. 5. The detection results of our model on WIDER FACE are compared
with other detection models, where -std represents our standard model, -af
represents the animal face synthesis model, -rb represents the race balance
model, -gb represents the gender balance model, -grb represents our aug-
mented cross-balanced model

121

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 12,2024 at 07:15:05 UTC from IEEE Xplore.  Restrictions apply. 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Retinaface-0.954
Retinaface-gb-0.892
Retinaface-rb-0.887
Retinaface-std-0.885
Retinaface-af-0.881
Retinaface-grb-0.874

(a) easy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Retinaface-0.940
Retinaface-gb-0.847
Retinaface-std-0.837
Retinaface-af-0.831
Retinaface-rb-0.831
Retinaface-grb-0.829

(b) medium

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Retinaface-0.844
Retinaface-gb-0.571
Retinaface-std-0.561
Retinaface-af-0.549
Retinaface-grb-0.545
Retinaface-rb-0.528

(c) hard

Fig. 6. Horizontal comparison of the detection results of our model on
Retinaface

IV. RESULT

A. Face detection performance

As shown in Figure 5, although the performance of our

model has decreased compared with the original Retinaface,

both our standard model and the modified model still outper-

form some face detection models. From the detection results

in Figure 5(c), we can see that our model has insufficient

performance in the hard mode, but it should be known that

the face is almost invisible in the hard mode, or contains only

minimal privacy. Overall, all our models are able to maintain

good detection performance.

The horizontal comparison results for all of our models

are shown in Figure 6. As shown in Figures 6(b) and 6(c),

our standard model Retinaface-std performs the best in the

medium and hard modes, but only slightly outperforms our

other models. In the easy mode, our modified model has

detection performance comparable to the standard model, with

no performance loss in evaluating synthetic faces, and even

performs better than the standard model in detecting animal

faces and achieving race balance. This may be due to the

artifacts in the synthetic images. All models trained on the

modified dataset perform equally well as our standard model in

detecting objects in the WIDER FACE dataset. This suggests

that with an appropriate face transformation method, we can

train a face detector on datasets where not all images contain

real faces, without sacrificing performance on real face images.

B. iEAT bias measurement

The IEAT test measures bias across many variables, but we

focus on those we consider to be social biases and only discuss

statistically significant results. The smaller the p-value, the

stronger the significance, and the larger the d-value, the greater

the bias. Comparing gender balance and race balance models

to the standard model, bias was reduced by around 25%

for ”Arab-Muslim” and by around 10% for ”gender-science”

and ”weight”. All other differences were either of negligible

size (such as ”religion”) or results where the difference in

effect size was not statistically significant (such as in ”age”).

Compared to the standard model, cross-balance increased bias

in all significant categories (such as ”weight” and ”disabil-

ity”). Similarly, the animal-synthesis model increased bias in

”disability” and ”Arab-Muslim”, while slightly decreasing bias

in the ”gender-science” and ”weight” categories. The results

of the IEAT association test show that our modified model

slightly reduces bias compared to the standard model.

For completeness, we include results from random initializa-

tion as well as a Resnet50 backbone pretrained on Retinaface.

While results from random initialization are not interpretable,

the results from Retinaface pretrained backbone showed the

least bias in the ”weight” and ”disability” categories, and the

highest bias in the ”Arab-Muslim” category. Models trained

on the standard model showed similar bias results, suggesting

that our data preprocessing had a limited impact.
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TABLE I
IEAT RESULT(P/D)

RI RP Std AS GB RB CB
Insect-Flower 1.000 1.000 1.000 1.000 1.000 1.000 1.000

-0.899 -0.549 -0.874 -0.981 -0.952 -1.146 -1.107
Gender-Science 0.289 0.168 0.072 0.039 0.053 0.014 0.164

0.142 0.168 0.471 0.380 0.329 0.358 0.595

Gender-Career 0.106 0.079 0.636 0.578 0.846 0.952 0.734

0.326 0.289 -0.132 -0.148 -0.124 -0.316 -0.226

Disability 0.567 0.025 0.048 0.037 0.053 0.037 0.084

-0.483 0.935 1.042 1.043 1.021 1.026 1.089

Asian 0.147 0.288 0.365 0.124 0.016** 0.352 0.221

0.536 0.462 0.364 0.426 1.062 1.071 0.244

Arab-Muslim 0.198 0.024 0.032 0.023 0.025 0.028 0.187

0.453 0.326 0.732 0.745 0.637 0.629 0.884

Age 1.043 0.463 0.529 0.529 0.425 0.513 0.572
-1.245 0.281 0.364 -0.378 -0.236 -0.085 0.373

Weight <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

1.235 1.116 1.679 1.467 1.316 1.341 1.768

Weapon (Modern) 0.225 0.321 0.216 0.627 0.209 0.746 0.314
0.351 0.515 0.184 -0.241 0.709 -0.415 0.193

Weapon 0.383 0.852 0.025 0.048 0.424 0.505 0.315
0.102 1.234 0.609 0.395 0.902 -0.834 0.099

Skin-Tone 0.837 0.798 0.553 0.961 0.125 0.990 0.294
1.452 0.833 0.617 0.308 0.012 0.133 0.189

Sexuality 0.205 0.782 0.790 0.540 0.413 0.543 0.212
0.140 -0.687 -0.056 -0.057 -0.033 -0.960 -0.144

Religion 0.147 0.258 0.185 0.277 0.301 0.123 0.124
0.379 0.310 0.415 0.444 0.323 0.306 0.252

Race 0.018 0.579 0.475 0.285 0.376 0.833 0.357

1.054 -0.478 -0.429 -0.366 -0.212 -0.258 -0.366

Native 0.415 0.258 0.891 0.347 0.832 0.773 0.632
0.200 -1.054 -0.436 -0.310 -0.425 -0.235 -0.425

Abbreviations:RI:random initialization,RP:Retinaface pre-training,Std:standard,AS:animal synthe-
sis,GB:gender balance,RB:racial balance,CB:cross balance.

The highlight represents the size of the p-value: p<0.1 ; p<0.05 ; p<0.01

V. CONCLUSIONS

We propose a privacy-enhancing model based on object

detection, which solves the problems of privacy leakage and

bias in object detection by training object detection algorithms

using synthesized face datasets while maintaining detection

performance. Experimental results show that the Retinaface

optimized for WIDER FACE can be trained with the same

performance as the standard model without using real face

datasets. Moreover, when using synthesized or edited faces

to make the dataset more balanced in terms of gender and

race, the detector learns the same things and achieves a more

balanced detection performance. We also investigated whether

the proposed two metrics could be used to eliminate model

bias. Although the results were different from our expectations,

the bias was still eliminated for some labels,and more metrics

should be used to eliminate model bias.
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