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Abstract— The vigorous development of positioning technology
and ubiquitous computing has spawned trajectory big data.
By analyzing and processing the trajectory big data in the form
of data streams in a timely and effective manner, anomalies
hidden in the trajectory data can be found, thus serving urban
planning, traffic management, safety control and other applica-
tions. Limited by the inherent uncertainty, infinity, time-varying
evolution, sparsity and skewed distribution of trajectory big
data, traditional anomaly detection techniques cannot be directly
applied to anomaly detection in trajectory big data. To solve this
problem, we propose a hierarchical trajectory anomaly detection
scheme for Intelligent Transportation Systems (ITS) using both
machine learning and blockchain technologies. To be specific,
a hierarchical federated learning strategy is proposed to improve
the generalization ability of the global trajectory anomaly detec-
tion model by secondary fusion of the multi-area trajectory
anomaly detection model. Then, by integrating blockchain and
federated learning, the iterative exchange and fusion of the global
trajectory anomaly detection model can be realized by means
of on-chain and off-chain coordinated data access. Experiments
show that the proposed scheme can improve the generalization
ability of the trajectory anomaly detection model in different
areas, while ensuring its reliability.

Index Terms— Anomaly detection, intelligent transportation
systems, federated learning, blockchain.

I. INTRODUCTION

W ITH the development and maturity of sensor network
technology, communication technology and positioning

technology, various positioning devices and mobile intelligent
terminals such as mobile phones have been widely used,
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realizing large-scale collection of position-related information
of moving objects (people, vehicles, ships, etc.). This type of
location data contains information such as geographic coordi-
nates, speed, direction, time stamp, etc., and is continuously
increased and rapidly updated in the form of time-varying
evolution, so it is called trajectory big data [1]. In view of
the fact that trajectory big data can be recorded accurately
for a long time, and the activities of moving objects within
the time range can objectively reflect the activity rules of
individual (or groups) of moving objects, it has attracted
widespread attention from scholars in many fields such as
data science, sociology, and geography. Related research
work includes helping people better understand the motion
behavior of dynamically evolving objects, predicting their
future motion trends, and providing effective support services
for location-based social networks, intelligent transportation
systems (ITS), urban planning, military reconnaissance and
other applications. The application requirements of services
are constantly expanding, and the demand for online analysis
is increasing, which requires fast processing and response in
a relatively short period of time, which means that real-time
has become an important feature of trajectory big data [2].

Trajectory data-based pattern discovery aims to extract com-
mon features of many moving objects from massive trajectory
collections, which helps to discover abnormal patterns in
trajectory big data, which is critical in many location-based
service applications in ITS. Anomalies, also known as out-
liers [3], are usually caused by human error, instrument error,
heterogeneous data, changes in system behavior. Anomalies
are not noise, and while noise is very similar to anomalies,
noise can degrade the quality of a dataset. Therefore, in prac-
tical applications, denoising is often required in the data
preprocessing stage.

Anomaly detection is widely used in databases, data mining,
machine learning [4], and statistics, including intrusion detec-
tion and fault diagnosis in networks, healthcare monitoring,
and public safety emergencies. Taking anomaly detection
in urban traffic management as an example, in a saturated
urban road network, traffic accidents, bad weather, and road
emergencies can lead to congestion or paralysis of the entire
road network. Traditional intelligent traffic monitoring detects
abnormal traffic flow parameters by deploying magnetic detec-
tors such as video detectors or induction coils. Because such
equipment requires expensive infrastructure investment and
maintenance expenses, it cannot be densely installed and cover
the entire road network, resulting in loss or unreliability of
monitoring information in some areas. The real-time anomaly
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detection method based on the trajectory data of vehicles in
the urban road network can not only discover the abnormality
of traffic participants in the path pattern, identify traffic
congestion, detect changes in the road network, but also help
to update the traffic map.

At present, in-depth research on anomaly detection of
trajectory data has found that trajectory big data has the
following characteristics, namely uncertainty, sparsity, skewed
distribution, large scale, and fast update [5], [6], [7], [8].

• Uncertainty of trajectory data: Due to the limited accu-
racy of positioning technology, as well as the calculation
error, signal attenuation and loss of GPS positioning
equipment, there are spatial uncertainties in the collected
position data. At the same time, different collection fre-
quencies or different time series lengths also bring about
time series uncertainty of location data. The uncertainty
of space and time series makes the collected trajectory
data have a large positional deviation, thus reducing the
accuracy of trajectory abnormality detection results.

• Sparsity and skewed distribution of trajectory data: Tra-
jectory data reflects the activity law of moving objects,
and the activities of moving objects are generally peri-
odic, so the trajectory data often presents uneven dis-
tribution. For example, in an urban road network, only
a few vehicles pass through certain road sections for a
long time, while a few main roads have a large number
of vehicles passing through in a short time, which leads
to a skewed distribution of trajectory data.

• Large-scale and rapid update of trajectory data: Posi-
tional data for moving objects is generated in real-time
and continues to increase. As long as the moving object is
active, the position information will be continuously gen-
erated and accumulated, making the amount of trajectory
data infinite. Therefore, it is difficult to accurately define
the abnormal characteristics of motion behaviors and
propose an effective real-time anomaly detection method.

Given the uncertainty, sparsity, skewed distribution, large
scale and fast update of trajectory big data, we propose an
intelligent trajectory anomaly detection architecture, as shown
in Figure 1. The architecture collects vehicle trajectory data
through roadside units (RSUs) and aggregates these data into
an anomaly detection center for training a local trajectory
anomaly detection model. Then, each anomaly detection center
uses the local model to train the area trajectory anomaly
detection model. Finally, the global anomaly detection center
uses the area model to train the global trajectory anomaly
detection model.

This paper focuses on solving the following problems of
trajectory anomaly detection algorithms, namely the privacy
of the data provider cannot be protected during the anomaly
detection and the generalization ability of the trajectory anom-
aly detection model is poor. To this end, under the above
architecture, we propose a hierarchical trajectory anomaly
detection mechanism using machine learning and blockchain
technology for ITS. The main contributions of this paper are
as follows:

1) To address the problem of weak generalization ability
of the single-area trajectory anomaly detection model,
we propose a hierarchical federated learning strategy to
improve the generalization ability of the global trajectory

anomaly detection model through the secondary fusion
of the multi-area trajectory anomaly detection model.

2) To address the problem of untrustworthy training gener-
ation of trajectory anomaly detection models, by intro-
ducing blockchain technology into federated learning,
the iterative exchange and fusion of the global trajectory
anomaly detection model can be realized by means of
on-chain and off-chain coordinated data access, and the
trajectory anomaly detection model can be supervised
and aggregated in the federated training process.

3) Experiments show that the proposed scheme can
improve the generalization ability of the trajectory
anomaly detection model in different areas, while ensur-
ing its reliability.

The rest of this paper is organized as follows. Section II
presents the related work. Section III introduces the system
model and security model. Section IV gives the implementa-
tion details of the proposed scheme. Section V presents the
performance evaluation. Section VI concludes this paper.

II. RELATED WORK

Trajectory anomaly detection plays a very important role
in intelligent transportation systems. Scholars have carried out
research on trajectory anomaly detection from various aspects,
and have proposed a large number of excellent solutions.

Qian et al. [9] first defined two spatiotemporal models to
characterize the relationship between displacement and travel
distance/travel time, and identified the point as an anomaly
if travel time and travel distance were not within the normal
range. Then, the similarity of traffic patterns in different time
periods and neighboring areas was used to improve detection
efficiency and reduce the number of models that need to be
learned. Ahmed et al. [10] utilized the network structure and
the neighbors of nodes to build structural embeddings through
inter-node relationships, and then implemented a method to
learn latent representations of biased points in the road net-
work structure by employing random walks in a hierarchical
multi-layer graph to generate a set of Sequence to adjust
the node embedding to obtain the journey embedding, and
finally used LSTM to cluster the embedding to discover the
trajectory deviation points. Xu et al. [11] represented network
traffic data as tensors and obtained spatial and multi-scale
temporal patterns of traffic changes through sliding window
tensor decomposition, then identified different anomaly types
by measuring deviations from different spatial and temporal
patterns, and finally solved for anomalies chained best match-
ing paths to discover path-level anomalies. To address the
taxi fraud problem, Belhadi et al. [12] proposed a strategy for
identifying trajectory outliers for identifying individual and
group outliers. For single trajectory outliers, it was judged by
calculating the distance of each point in each trajectory, while
for group trajectory outliers it was achieved by using feature
selection and sliding window strategies. Then, they proposed
an algorithm based on hybrid data mining [13], which first
applied a clustering algorithm to construct micro-clusters, then
combined the k-NN algorithm to calculate outlier candidates,
and finally used a pattern mining framework as a pruning strat-
egy to generate outlier groups. Santhosh et al. [14] proposed
trajectory classification and anomaly detection using a hybrid
convolutional neural network and variational autoencoder
architecture, where color gradient representations introduced

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 11,2024 at 07:37:48 UTC from IEEE Xplore.  Restrictions apply. 



WANG et al.: AI-EMPOWERED TRAJECTORY ANOMALY DETECTION FOR ITS 4633

Fig. 1. A novel hierarchial trajectory anomaly detection architecture for ITS.

high-level features for object trajectories of different lengths,
and a time-incremental gravity model was used to extract
moving objects trajectory. Rovatsos et al. [15] adopted a
quickest change detection framework, assuming it is assumed
that the anomaly evolution is unknown but deterministic.
They modified the Loden detection delay to obtain anomaly
trajectories that maximize the delay of the detection process,
and the cumulative sum test and its improved version can be
used to solve the problem of time series data anomalies under
homogeneous and heterogeneous sensors. Wang et al. [16]
used disparity and intersection set distance metrics to evaluate
the similarity between trajectories, quantifying the differences
between different types of anomaly trajectories and normal
trajectories on this basis, and propose an trajectory anom-
aly detection method to find different anomalies. To detect
anomalies, Cho et al. [17] used multi-output Gaussian process
regression to probabilistically predict the output of the target
system, and then detected system anomalies by comparing
the predicted responses with the measurements of the target
system, where the Mahalanobis distance between trajecto-
ries exceeds the extreme value theoretical threshold then the
trajectory is anomaly. Ding et al. [18] proposed a heuristic
maximum fraud trajectory construction algorithm and a fraud
detection algorithm to detect anomaly taxi trips. The algorithm
detects fraudulent trips on synthetic, real trajectory datasets,
without the assistance of a meter. Qiao et al. [19] analyzed
pedestrian trajectories from the perspectives of clustering, bias
and trajectory entropy, thereby proposing an anomalous trajec-
tory identification framework, in which the improved K-Means
method was used for the clustering of pedestrian destinations
and trajectories, while the Mahalanobis distance It is used to

evaluate the trajectory deviation, and the dimensional charac-
teristics are established by the speed and angle difference of
the trajectory. Li et al. [20] proposed a classifier based on
a spatio-temporal cascaded autoencoder to explore the spatial
and temporal correlations of video data, where the spatiotem-
poral adversarial autoencoder obtains a Gaussian model to fit
regular data, while a spatiotemporal convolutional autoencoder
classifies each specific anomaly via reconstruction error, a two-
stream framework fuses appearance and motion cues for more
reliable detection results. Mothukuri et al. [21] proposed an
implementation of the detection of attacks in the IoT through
federally trained GRU models and guarantee the accuracy of
the global attack detection model by aggregating the detection
model updates from multiple data sources. Połap et al. [22]
proposed an alternative structure for federated learning in
which private data of participants can be sent to the server with
the best classification results for optimization in the samples of
other participants if they satisfy certain conditions. The server
collects these data as having the best classification results and
returns them and receives new enhanced data in return through
GAN. Ahmed et al. [23] proposed a graph-based algorithm
for anomalous trajectory detection and classify the trajectories
using machine learning algorithms on the features of the graph.
Belhadi et al. [24] proposed two types of anomalous behavior
detection algorithms. First, algorithms based on data mining
and knowledge discovery that study different correlations
between human behavioral data and identify collective human
anomaly behaviors from the extracted knowledge. Second,
algorithms that explore convolutional deep neural networks
to identify collective anomaly human behavior by learning
different features of historical data.
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Although the above research work has made great con-
tributions to the detection of anomaly trajectories in intelli-
gent transportation, it still needs to face the following two
challenges: (i) How to ensure the privacy of data providers
in the process of trajectory anomaly detection? (ii) How to
effectively improve the generalization of anomaly detection
model so that it can be applied to different areas and different
anomaly detection tasks? To address these two challenges,
this paper proposes a hierarchical deep federated learning
strategy for privacy-preserving, highly generalizable trajectory
anomaly detection.

III. SYSTEM MODEL

A. System Model

The system architecture considered in this scheme is cen-
tralized hierarchical federated learning. Centralized federated
learning is used because it provides higher efficiency and
centralization provides higher robustness compared to a peer-
to-peer structure, including the following roles, namely area
fusion server Sa , global fusion server Sg , anomaly detection
task issuer T I , federated learning participant Pn and IPFS
server Sip f s , Trust key issuer Ikey , as shown in Figure 2.

• Anomaly detection task issuer belongs to a certain area
and is responsible for issuing trajectory anomaly detection
tasks.

• Participants are multiple computing servers in a area,
which are responsible for collecting trajectory data of
traffic participants and training local trajectory anomaly
detection models in these trajectory data to detect traffic
participants with anomaly trajectories.

• Area fusion server is the anomaly detection center in each
area and is responsible for aggregating the local trajectory
anomaly detection models in its area to generate a area
trajectory anomaly detection model.

• Global fusion server is the global anomaly detection
center and is responsible for aggregating individual area
trajectory anomaly detection models to generate a global
trajectory anomaly detection model. The global anomaly
detection model is a more generalized anomaly detection
model compared to the local anomaly detection model
and the area anomaly detection model, which can achieve
trajectory anomaly detection in multiple areas at the same
time.

• IPFS server is responsible for persistent storage
of the models generated in federated learning by storing
the unique content-ID (Content-ID, CID) returned by the
models. Since the IPFS system is content-based address-
ing, the CID is generated by a hash function based on
the stored content.

• Trust key issuer is responsible for issuing key pairs
(pk, pr) to registered entities in the federated learning.
The public key pk is published in the blockchain network
to verify the signature; the private key pr is kept secretly
locally and is used to sign the data.

In this paper, two smart contracts need to be constructed for
model fusion, namely the area model fusion smart contract
SCr and the global model fusion smart contract SCg . The
contract SCr is constructed by the participants in each area
and the area fusion server, and executes the upload of the local
model, while the contract SCg is constructed by the area fusion

Fig. 2. System model of hierarchical trajectory anomaly detection.

server and the global fusion server and executes the upload of
the area model. To save storage resources on the blockchain,
we use an on-chain and off-chain collaborative approach to
perform federated learning. That is, all models built during
federated learning will be stored in the IPFS server, and
the fixed-length CIDs obtained by storing the models will
be stored on the blockchain. Entities that need model fusion
download the corresponding model in IPFS through the model
CID on the blockchain for fusion. Furthermore, regarding
the generalization ability of the trajectory anomaly detection
model, we define it as the ability to correctly detect anomalous
trajectories when performing the trajectory detection task after
transferring the trajectory anomaly detection model from one
area to another.

B. Security Model

This paper mainly focuses on the following two threats,
namely the threat of privacy leakage and the threat of model
unreliability.

• Privacy Leakage Threat: Since the trajectory data of
traffic participants may contain relevant private data, the
curious data computing center will lead to the leakage
of private information in the trajectory data during the
trajectory anomaly detection process.

• Model Unreliability Threat: During the process of build-
ing a global trajectory anomaly detection model, there
will be lazy participants submitting unreliable models or
trajectory data, resulting in an unreliable global anomaly
detection model.

Therefore, in the process of performing trajectory anomaly
detection, it is necessary to protect the trajectory data to pre-
vent the leakage of relevant private data of traffic participants,
and at the same time introduce a monitoring mechanism for
traffic participants and a traceability mechanism for model
reliability.

The main symbols and their meanings of the proposed
scheme are shown in Table I.
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TABLE I

MAIN SYMBOLS AND MEANINGS

Fig. 3. Smart contract construction and deployment.

IV. IMPLEMENTATION DETAILS OF THE PROPOSED

SCHEME

The blockchain-based hierarchical federated learning
scheme mainly includes two parts, namely federated learning
within trust areas and federated learning among trust areas.
Intra-trust area federated learning is a federated learning
performed between a area fusion server and participants in
different areas to generate a trust area model. The federated
learning between trusted areas is to perform federated learning
between the global fusion server and multiple area fusion
servers to generate a trusted global model.

Specifically, the proposed hierarchical federated learning
requires the construction of two trajectory anomaly detection
models, namely an area trajectory anomaly detection model
and a global trajectory anomaly detection model. The former
one is constructed through intra-area federated learning to
perform the task of trajectory anomaly detection in a fixed
area. However, this model has poor generalization ability.
In contrast, the later one is constructed by cross-area federated
learning, which has good generalization ability and can be
applied to trajectory anomaly detection tasks in each area
(including the one that is unable to detect trajectory anomaly).

A. Trusted Intra-Area Federated Learning

Before performing federated learning in a trusted area, the
area participants need to build the area model fusion smart
contract SCa with the area fusion server. The contract con-
struction process is shown in Figure 3. First, the participants
and the area fusion server build a smart contract SCa , and
the builder needs to sign the contract SCa , which will be
broadcast to all nodes via P2P. Next, the verification nodes
(miners) in the blockchain network verify the contract SCa ,
and the verified contract SCa is packaged into a new block
and recorded on the longest blockchain. Thus, the deployment
of the contract SCa is complete. The contract SCa specifies
the type of data submitted by the participant, limits the time
for local training, and opens an interface for uploading data
to the participant. After the contract is deployed, the federated
learning in the area is set in motion.

Fig. 4. CID upload process.

Participants train on the local dataset Da
n to generate a local

model twa
n . The process of participant Pa

n local training can
be defined as follows:

twa
n = LT (twa, Da

n , Adam), (1)

where LT (·) represents the local training process used by
the participant, Adam is the optimizer used to perform local
model training.

When participants complete the local training, the model
will be signed, and the signature Si gpra

n
(twa

n ) will be stored
together with the model twa

n in the IPFS server. Meanwhile,
the IPFS server will return the unique identification of the
corresponding storage content. Then, the participant Pa

n call
the area model fusion smart contract SCa , and the contract
will verify participants’ legitimacy, and check whether the
local training time has expired. Next, the local model and the
signatures of participant Pa

n will be submitted to the smart
contract SCa , while participants upload the CID of the local
model through the upload interface, and broadcast it to all
nodes through P2P. Next, the CID is verified by validating
nodes (miners) in the blockchain, and it is packaged into a new
block and recorded on the longest blockchain. At this point,
the local model CID upload is complete as shown in Figure 4.

When the CID upload is complete, the area fusion server
Sa calls the contract SCa , downloads the local model from
the IPFS server according to the CID in the blockchain, and
verifies the signatures of all participating models again. After
verification, the area fusion server Sa fuses all local models to
generate the area model twa of the current federated learning
in the area. The area model fusion algorithm adopts FedAvg,
i.e., twa = 1

N

∑N
n

twa
n , where N is the number of local

models. We then summarize the intra-area federated learning
in Algorithm 1.

Algorithm 1 Trusted Intra-Area Federated Learning
Require: Area model fusion smart contract SCa ,
Ensure: Area anomaly detection model twa

1: for participants in area a do
2: Participant Pa

n train locally to generate the local model
twa

n .
3: Participant store local model twa

n to obtain the CID, and
upload the CID to blockchain via SCa .

4: end for
5: The miner performs verification, and generates a new

block.
6: The area fusion server Sa downloads the local models from

the IPFSs based on the CID stored in the blockchain.
7: The area fusion server Sa merge local models into the area

model twa .

Since the blockchain is traceable and immutable, the verified
and on-chain CID will not be tampered with and can be traced
forever. When the task issuer needs to audit the process of fed-
erated learning, blockchain and IPFS can well help him audit
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the model data generated in federated learning. In addition,
IPFS is content-addressable, and CIDs are generated based
on the hash function of the stored content. Once a participant
uploads the CID, the corresponding model cannot be tampered
with. Therefore, intra-area federated learning is credible.

B. Trusted Inter-Area Federated Learning

Before performing federated learning between trusted areas,
the global fusion server Sg and the area fusion server Sa build
a global model fusion smart contract SCg , which opens the
interface for the area fusion server to submit data. When all
areas have completed intra-area federated learning, each area
fusion server stores the signatures and area models in the
IPFS server to obtain the CIDs. Then, each area fusion server
uploads the area model CID to the blockchain through SCg .

Note that the inter-area federated learning is designed to
aggregate area models only to generate the global model.
When all area fusion servers complete uploading, the global
fusion server Sg first calls the contract SCg , then downloads
the corresponding models from the IPFS server and verifies
the signatures of them. The verified areas model are fused into
the global model t W at the current round t of the federated
learning. Only when the prediction accuracy of the model t W ,
denoted by Acc(t W ), on the evaluation dataset reaches the
preset threshold θ , the federated learning ends such that the
model t W is the final trajectory anomaly detection model. The
inter-area federated learning is summarized in Algorithm 2.

Algorithm 2 Trusted Inter-Area Federated Learning
Require: Global model fusion smart contract SCg ,
Ensure: Global anomaly detection model t W
1: while the prediction accuracy Acc(t W ) is lower than

threshold θ do
2: for each area a do
3: Area fusion server Sa performs Trusted Intra-Area

Federated Learning.
4: Area fusion server Sa stores the area model twa to

obtain the CID, and upload it to the blockchain via
SCg .

5: end for
6: The miner performs verification, and generates a new

block.
7: The global fusion server Sg downloads the area models

from the IPFS based on the CID stored in the blockchain.
8: The global fusion server Sg fuses area models to generate

the global model t W at round t .
9: end while

Like intra-area federated learning, blockchain and IPFS are
introduced in the inter-area federated learning process to make
it trustworthy, traceable, and tamper-proof.

C. Inter-Area Model Weighted Fusion Strategy

Since the task issuer needs to ensure the reliability of the
global model for the trajectory anomaly detection service of
the area a, it is necessary to reduce the loss of the reliability of
the area model during the fusion process, thereby improving
the generalization ability of the global model. To this end,

we propose a weighted fusion strategy of inter-area models.
In the fusion process of area models, the weight of each area
model is determined by the degree of deviation between the
model and the model in the area where the task issuer is
located, that is, the greater the deviation, the lower the weight.
For convenience, we call the model in the area where the task
issuer is located as the target model, and the models in other
areas as other models.

During the area model fusion, we let all the area models to
be aggregated in the global fusion server Sg consist of the set
Sett , i.e.,

Sett = {twa |a ∈ A}, (2)

where A represents the set of area a. Since the Euclidean
distance can visually reflect the distance between models in
space, while the cosine similarity only considers the direction
of the model tensor. Therefore, Euclidean distance is used as a
measure of the difference between models. Let the Euclidean
distance Eda

a� between other models twa�
and the target model

twa be calculated by

Eda
a� =

√
(twa� − twa)

2
. (3)

On this basis, for models twa�
, we calculate the weights ιa�

in fusion by

ιa� = δ · Eda
a�

R∑
a�

Eda
a�

, (4)

where δ indicates that the weight coefficient is a value between
0 and 1. Obviously, the weight ιa for the target model in
fusion equals to ιa = 1 − δ. Then, the global fusion server Sg
aggregates all area models, and generates a global model t W
of inter-area federated learning by

t W = δ ·
A∑
a

ιa� · twa� + (1 − δ) · twa . (5)

In this paper, we set the number of rounds of inter-domain
federated learning to R, that is, the scheme ends after R
rounds of inter-area federated learning are executed, thus
producing the final federated learning global model R W .
Furthermore, whether it is intra-area federated learning or
inter-area federated learning, all models need to be sent to
the relevant servers for fusion. Therefore, we do not strictly
require synchronization, but only require that all in-domain
participants or area fusion servers participating in the task need
to upload the model.

D. Trajectory Anomaly Detection Based on Hierarchical
Federated Learning

In this section, we present an anomalous trajectory detection
scheme based on hierarchical federated learning, as follows.

• Step 1: The task issuer publishes the trajectory anomaly
detection task.

• Step 2: Each anomaly detection center is established as
a computing center within its area.

• Step 3: Each computing center trains the local trajectory
anomaly detection model according to the collected local
trajectory data.
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• Step 4: Each computing center stores the model and
uploads the CID of the local model. Validation nodes
(miners) perform relevant validations and record the CIDs
of these local anomalous trajectory detection models as
new blocks in the blockchain.

• Step 5: Each anomaly detection center downloads the
local trajectory anomaly detection model according to its
CID, and aggregates it to generate the new area trajectory
anomaly detection model of each area.

• Step 6: Each anomaly detection center completes the
storage of the area trajectory anomaly detection model
and the upload of the CID. Verification nodes (miners)
perform relevant verification and record the CIDs of the
trajectory anomaly detection models in these areas as new
blocks in the blockchain.

• Step 7: The global anomaly detection center downloads
the area trajectory anomaly model according to the CID
of the area trajectory anomaly detection model and
aggregates it to generate the global trajectory anomaly
detection model.

• Step 8: The global anomaly detection center evaluates
the global anomaly detection model. If the model meets
the requirements, the federated learning ends; otherwise,
a new round of federated learning will be performed.

• Step 9: The task issuer performs the trajectory anom-
aly detection task through the global anomaly detection
model.

The federated learning scheme generates the final global
trajectory anomaly detection model by secondary fusion of
area models with different characteristics in different areas,
which improves the generalization ability of the original
single-area model. At the same time, we propose a weighted
fusion method to reduce the loss of service reliability of
the target area after the fusion of different area models,
improve the generalization ability of the global trajectory
anomaly detection model, and ensure the reliability of the
model. Furthermore, since the data exchange between different
fusion servers is still generated by the local models trained by
the participants, the proposed hierarchical federated learning
scheme can still provide the same local data privacy protection
as traditional federated learning.

V. EXPERIMENT

A. Experiment Setup

In this section, we comprehensively evaluate the proposed
scheme through the scientific computing libraries Tensorflow
in python. The experimental environment is configured on the
computer of Intel(R) Core(TM) i5-10300H CPU @ 2.50GHz
and RTX2060 6G, and the version of Tensorflow used is 2.2.0.
In addition, we deployed a 4-node blockchain network through
FISCO BSCO in the virtual machine of ubuntu20.04 for the
verification of the proposed blockchain scheme.

The anomaly detection model in the simulation experiments
is a two-layer neural network model, as shown in Table II. The
first layer is the LSTM layer, containing 64 neural units with
tanh activation and sigmod recurrent activation; the second
layer is the Dense layer, containing 7 neural units.

In this paper, the real-world traffic flow dataset NGSIM,
which is available at “https://ops.fhwa.dot.gov/
trafficanalysistools/ngsim.htm”, is used to learn

TABLE II

ANOMALY DETECTION MODEL

Fig. 5. Data download.

a trajectory anomaly detection model. The NGSIM dataset
has been widely used in the field of traffic flow simula-
tion. It consists of vehicle dynamic information collected by
cameras arranged along the road in different time periods,
including vehicle speed, acceleration, and position coordinates.
In addition, this paper uses the data-driven texture synthesis
method proposed in [25] to synthesize six types of traffic
trajectories including normal driving, sudden acceleration,
long-term stop, frequent shifting, left-right swing and reverse
driving by controlling parameter settings as test sets, and the
proportion of abnormal trajectories is about 5%.

The experiment simulates federated learning between two
areas, area A and area B, with 2 participants in each area.
The task issuer is in area A, and entrusts the global model
fusion server to aggregate different models in the two fields
to generate the final global model.

B. Experiment Result

Figure 5(a) and (b) show the cpu utilization and memory
consumption of each node when testing the download interface
after deploying the area model fusion smart contract SCa
and the global model fusion smart contract SCg in a 4-node
blockchain network. As shown in figure 5(a), the maximum
memory usage of node 0 to node 3 is 76.7mb, 77.3mb, 74.6mb
and 75.2mb, respectively; the average memory usage is
76.6mb, 77.3mb, 74.5mb and 75.2mb, respectively. As shown
in Figure 5(b), the maximum CPU usage of node 0 to node
3 is 15.2%, 13.8%, 15.6% and 14.6%; the CPU occupancy
was 12.2%, 11.4%, 12.2% and 11.2%.
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Fig. 6. Data upload.

Figure 6 (a) and (b) show the cpu utilisation and memory
consumption of each node when testing the upload inter-
face after deploying the area model fusion smart contract
SCa and the global model fusion smart contract SCg in
a 4-node blockchain network. As shown in Figure 6(a),
the highest memory usage of node 0-node 3 is 135.4mb,
135.3mb, 154.0mb and 135.6mb, respectively; the average
memory usage is respectively 108.9mb, 109.6mb, 111.9mb
and 107.3mb. As shown in Figure 6(b), the highest CPU
occupancy rates of node 0-node 3 are 54%, 60%, 58% and
58.2%, respectively; the CPU occupancy rates are 36%, 39.3%,
39.7% and 40.9%, respectively. In summary, it can be seen that
the upload interface consumes more resource node resources
compared to the download interface.

The intra-area federated learning and the inter-area federated
learning in area A under the proposed scheme are evaluated,
and the results are shown in Figure 7, where the evaluation
dataset is the area A’s evaluation data. It is clearly that with the
increase of the number of federated learning rounds, the area
A model continuously learns the local data features of each
participant in the area, and the area A model has an increasing
anomaly detection accuracy in the evaluation dataset. For the
global model, since other area models will be aggregated, the
anomaly detection accuracy on the evaluation dataset of area
A is at a low level of only about 20% at the beginning. With
the inter-area federated learning round increases, the anomaly
detection accuracy of the global model on area A’s evaluation
dataset increase, and finally is almost as high as that of the
original model in area A. However, since the other area models
are aggregated to construct the global model, the detection
accuracy will be slightly lower than that of the original area
model by about 2%, which is acceptable.

As shown in the Table III, trajectory anomaly detection
comparison between the proposed scheme and the baselines
CNN-GPSTasST [26] and CNN-VAE [14] in terms of Accu-
racy, Recall and F1 during the federated learning. Observed
from the comparison results, we find that with the increase
of the number of federated learning rounds, the anomaly

Fig. 7. Federated learning performance.

TABLE III

ANOMALY DETECTION MODEL COMPARISON

Fig. 8. Model generalization.

detection model in this scheme can reach 85.7%, 83.8%,
and 84.8% respectively in each index, which are higher than
84.2%, 75.4%, and 78.6% of CNN-GPSTasST and 84.5%,
76.7%, and 82.5% of CNN-VAE after 10 rounds’ federated
learning. As we expected, all baselines perform worse than
the proposed scheme simply because the proposed scheme
is designed to build a trajectory anomaly detection model
with strong generative ability by introducing a weighted fusion
method, while comparing with the baselines.

The model’s generalization ability is evaluated in Figure 8,
and the evaluated dataset is the fusion dataset of each area eval-
uation dataset. As shown in Figure 8, since the training data of
the area models of area A and area B are limited to the areas
where they are located, the features learned by the area models
are relatively less, so the prediction accuracy in large-scale
evaluation dataset is lower, thereby the generalization ability
of the model is not high. The global model constructed
by this scheme improves the generalization ability of the
model through the secondary weighted aggregation of different
area models. Therefore, in the process of large-scale data
evaluation, the global model constructed by this scheme has
higher prediction accuracy than the area A model and the area
B model, which suggests it has a higher generalization ability.
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The experimental results show that the scheme proposed
in this paper improves the generalization ability of the model
while ensuring the reliability of the global model, meanwhile
it can ensure the credibility of the federated learning.

VI. CONCLUSION

The rapid popularization of mobile Internet and smart
devices equipped with positioning systems has led to the
rapid accumulation of trajectory data. Therefore, mining use-
ful information from large-scale trajectory data has become
a hot spot in the field of smart transportation research in
recent years. Detecting abnormal trajectories of vehicles in
cities is often limited by the inherent uncertainty, infinity,
time-varying evolution, sparsity and skewed distribution of
trajectory big data, which makes traditional anomaly detection
techniques unable to be directly applied to anomaly detection
for trajectory big data. To solve this problem, this paper
proposes a hierarchical trajectory anomaly detection scheme
for intelligent transportation systems using machine learning
and blockchain technology. Specifically, a hierarchical feder-
ated learning strategy is proposed to improve the generaliza-
tion ability of the global trajectory anomaly detection model
by secondary fusion of the multi-area trajectory anomaly
detection model. Then, through the fusion of blockchain and
federated learning, the iterative exchange and fusion of the
global trajectory anomaly detection model is achieved through
on-chain and off-chain collaborative data access. Experiments
show that this scheme can improve the generalization ability
of the trajectory anomaly detection model in different areas,
while ensuring its reliability.

Due to the new threat of privacy leakage in federated
learning, future research directions will consider designing tra-
jectory anomaly detection methods with fine-grained privacy-
preserving mechanisms. At the same time, the problem of opti-
mizing asynchronous federated learning from the perspective
of privacy protection will be considered.
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