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A Privacy-Enhanced Multiarea Task Allocation
Strategy for Healthcare 4.0
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Abstract—The continuous development of Healthcare 4.0
has brought great convenience to people. Through the In-
ternet of Things technology, doctors can analyze patients’
health data and make timely diagnosis. However, behind the
high efficiency, the mobile crowdsensing technology used
for data transmission still has the risk of leaking the privacy
of task and patient information. To this end, this article
proposes a privacy-enhanced multi-area task assignment
strategy, named PMTA. Specifically, we use deep differen-
tial privacy to add noise to patient data, and then put the
noise-added dataset into a deep Q-network for training,
combined with a spectral clustering algorithm, to obtain an
optimal classification strategy. Further, in order to address
the problem of data silos, we adopt federated learning to
jointly train the classification models of different hospitals
to obtain a global model and realize data sharing among
different hospitals. Finally, we use the optimal classification
of patients for task deployment on the blockchain, and limit
patients to only apply for tasks of the corresponding level
through the smart contract technology, so as to protect task
privacy. Experimental results show that our strategy can
not only effectively protect task and patient privacy, but also
achieve better system performance.

Index Terms—Blockchain, deep differential privacy,
federated learning, Healthcare 4.0, Internet of Things (IoT),
mobile crowdsensing.

I. INTRODUCTION

W ITH the rapid development and innovation of Industry
4.0 technologies, the entire world is transitioning to-

ward digital, fully automated, and cyber-physical systems [1].
Emerging technologies in Industry 4.0, including the Internet of
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Things (IoT), big data analysis, blockchain, cloud computing,
and artificial intelligence, have been implemented in various
other fields [2]. They have now been applied to the medical
and health sector, making revolutionary changes to the field,
and effectively promoting the emergence and development of
Healthcare 4.0 [3]. The IoT technology is one of the most
adopted technologies that promote the frontier development of
Healthcare 4.0. It brings many key benefits, including providing
efficient technical support for patients with chronic diseases, the
elderly, and patients who need long-term health monitoring [4],
[5]. The main purpose of the IoT technology in the field of digital
health is to provide each participant with highly personalized,
affordable, accessible, and timely Healthcare 4.0 services.

While the IoT technology brings high efficiency and conve-
nience to Healthcare 4.0, it also faces some challenges. Among
them, the mobile crowdsensing technology, as a commonly used
computing mode in the IoT, can collect relevant information of
participants scattered in various places [6]. In this process, it
is inevitable that both the data collector and the data provider
will face the problem of data privacy leakage [7]. Since there
has been tremendous work devoted to solving the problem of
privacy leakage of data providers, this article will focus more
on protecting the privacy information of tasks published by data
collectors [8]–[11]. This means that different hospitals cannot
directly exchange medical data through data sharing, even for
better treatment development. Thereby, the problem of data silos
arises [12]. The challenge mentioned previously is the problem
that need to be solved urgently in the field of Healthcare 4.0.

Based on the abovementioned challenges, this article pro-
poses an effective privacy-enhanced multi-area task assignment
strategy (PMTA) for Healthcare 4.0. The strategy mainly in-
cludes three important modules, namely data privacy protection
module, data provider classification module, and smart contract
design module. The first module provides privacy protection
for data providers (i.e., patients). In this module, in order to
prevent the sensitive personal information of data providers
from being recovered by malicious attackers, a deep differential
privacy protection method based on deep convolutional gener-
ative adversarial networks (DCGAN) [13] was proposed. The
second module provides privacy protection for task data of data
collectors (i.e., doctors). In this module, in order to protect the
privacy information in tasks published by data collectors, tasks
and data providers are classified by different machine learning
techniques [14]. The last module implements the publishing and
storage of data collection tasks. In this module, different levels of
data providers request deployed tasks from the blockchain [15].
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We then summarize the main contributions of this article as
follows.

1) In order to protect the privacy of patients, i.e., to prevent
their sensitive information from being stolen or leaked
during data acquisition tasks, we propose a deep dif-
ferential privacy protection method based on DCGAN.
Specifically, a deep neural network is trained by adding
Gaussian noise to the gradients of the parameters to
provide differential privacy protection to patient data.
Then, these data are generated through the generative
adversarial mechanism of DCGAN to provide further
privacy protection for patient data.

2) In order to protect the privacy of the task, that is, to
prevent the patient from maliciously obtaining the privacy
information contained in the data collection task issued
by the doctor through collusion and other methods, we
propose a patient classification method based on deep
Q-learning, spectral clustering and federated learning.
Specifically, considering the correlation between the ba-
sic information of patients, deep Q-learning (DQN) com-
bined with the RatioCut algorithm in spectral clustering
is used to classify patients, and assign a level to each
patient according to the potential influence factor (PIF)
w.r.t. information dissemination. Finally, through feder-
ated learning, a global classification model is generated
for the areas where each hospital is located.

3) In order to protect task privacy and achieve efficient
task deployment, we design a smart contract to limit
patients’ application to carry out tasks. Specifically, tasks
are deployed on the blockchain, and in smart contracts,
we set that patients can only apply for tasks corresponding
to their individual levels, thereby greatly reducing the
possibility of collusion between patients.

4) Extensive experiments are conducted on a real-world
dataset MIMIC-IV. Experimental results and analysis
show that the proposed strategy PMTA can not only pre-
vent the patient’s privacy information from being leaked
or maliciously stolen, but also protect the privacy of task
data. In addition, the blockchain-based task deployment
system adopted by the strategy has excellent performance
in terms of throughput and latency.

The rest of this article is organized as follows. Related work
is presented in Section II. The system model is introduced in
Section III. The implementation details of the proposed strategy
PMTA is elaborated in Section IV. Experimental results and
analysis are given in Section V. Finally, Section VI concludes
this article.

II. RELATED WORK

Privacy and security issues in healthcare 4.0 have attracted
significant attentions, and many research works have been
proposed.

Elmisery et al. [16] enhanced user privacy by utilizing end-
user personal gateways as intermediate fog nodes between
IoT devices and cloud healthcare services. To protect the pa-
tient’s electronic health records, Hathaliya et al. [17] developed

a biometric-based authentication and key agreement scheme
against known and unknown attacks. Considering the security,
privacy, and interoperability problems of existing telesurgery
systems, Gupta et al. [18] combined the immutability and in-
teroperability of smart contracts, and proposed a blockchain-
based, safe and flawless, interoperable telesurgery framework.
Then, aiming at the problems of safety, reliability, delay, and
storage cost of existing drone systems, Gupta et al. [19] pro-
posed an outdoor medical supply mechanism based on the
Ethereum blockchain using drones. The mechanism provides
reliable communication between drones and entities, ensuring
the early delivery of needed medical supplies to critically ill
patients. In order to protect data security and privacy under
the condition that both the transmission medium (such as cloud
server) and the key are compromised, Qiu et al. [20] designed
a secure data storage by combining selective encryption al-
gorithms with fragmentation and dispersion. Gupta et al. [21]
addressed security and privacy issues through Ethereum smart
contracts, and published storage costs through the InterPlanetary
File System. In addition, they demonstrated a real-time smart
contract written in Solidity and deployed in the Truffle suite, and
tested for security vulnerabilities in the MyThril open-source
tool. To improve data accessibility among healthcare providers,
Tanwar et al. [22] developed an access control policy algorithm.
The algorithm used the concept of chain code to realize the
sharing of electronic medical records based on Hyperledger
by simulating the environment. Bhattacharya et al. [23] built
a blockchain-based deep learning-as-a-service framework for
sharing EHR records among multiple healthcare users.

These state-of-the-art strategies provided efficient and secure
solutions to the privacy issues in Healthcare 4.0. They used
various technologies to protect patient data, either on the user
side, or on the medical database side, or by controlling access
rights. Compared with these strategies, this article proposes an
effective PMTA strategy, named PMTA, for Healthcare 4.0,
which can protect the privacy of both patients and tasks.

III. SYSTEM MODEL

The PMTA system model proposed in this article is shown
in Fig. 1. To address the problem of data silos, we construct
a global model across different hospitals through federated
learning. Among them, data silos mean that each organization
has its own data, and the data between different organizations are
often stored and customized independently, so the data of each
organization are like an island, unable to connect and interact
with other data. Federated learning is essentially a distributed
machine learning technology, and its goal is to achieve global
modeling and improve model effects on the basis of ensuring
data privacy security and legal compliance [24]. Therefore, using
federated learning not only protects the privacy of patient data in
various hospitals, but also enables data sharing among different
hospitals. In this system model, we treat each hospital as an
independent area, data collectors usually refer to the doctors
in the hospital, and data providers refer to the patients who
participate in the data collection task.
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Fig. 1. System model of PMTA.

Specifically, in order to prevent the patient data from being
subjected to inference attacks and other attacks that can threaten
patient privacy during the model training process, the data of
patients participating in data collection are sent to the server
with noise addition. This process adopts DCGAN-based deep
differential privacy protection algorithm. After adding noise to
the patient data, an optimal classification strategy of the data
provider for each area is calculated by the deep reinforcement
learning technology [25], which is implemented using the DQN
algorithm [26]. After the training of the classification model of
data providers of each area is completed, these models are com-
bined to form a global model through the federated averaging
algorithm [27].

In order to prevent malicious data providers from stealing
the privacy in the tasks issued by doctors through collusion
attacks, data providers will be classified by the classification
server, and on this basis, tasks will also be classified. This is
because task classification can prevent malicious data providers
from obtaining complete information in tasks at one time,
thereby preventing direct leakage of task privacy. In contrast,
data provider classification is to prevent malicious data providers
from piecing together the complete task information through
collusion, thereby preventing indirect leakage of task privacy.

After completing the classification of tasks and data providers,
in order to ensure that data providers of different levels can only
select tasks of the corresponding level, data collectors publish
tasks in the blockchain and use the smart contract technology to
limit the task selection of data providers. The smart contract
designed on the basis of the classification of tasks and data
providers can effectively prevent malicious data providers from
stealing private information in tasks through collusion attacks.

Therefore, PMTA not only improves the privacy protection
of patient data through the deep differential privacy technology

Fig. 2. Flowchart of PMTA.

and federated learning technology, but also ensures that sensitive
information in the tasks issued by the hospital is not stolen
by implementing data provider and task classification on the
blockchain.

IV. IMPLEMENTATION OF THE PMTA

The proposed PMTA consists of three important modules,
which are as follows:

1) data privacy protection module,
2) data provider classification module, and
3) smart contract design module (see Fig. 2).

A. Data Privacy Protection

In order to prevent attackers from using GAN to restore the
data in the training dataset during the application of the deep
learning model, and to protect the sensitive information of data
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providers in the training dataset, we proposes a DCGAN-based
differential privacy protection method.

First, we explain why DCGAN is employed in data privacy
protection. GAN is mainly composed of a generator G and
a discriminator D. G and D are two sides of the game, the
generator G captures the distribution of the sample data, and the
discriminator is a binary classification, which is used to judge
whether the input result comes from the training data (rather than
the generated data). Therefore, in the GAN training process,
the goal of the generator G is to generate results close to the
original data to fool the discriminator D, and the goal of D is
to distinguish the results generated by G from the real data as
much as possible. Since G and D are difficult to balance, GAN
optimizes the following objective function:

min
G

max
D

V (D,G) = Ex∼Pdata(x)[log2 D(x)]

+ Ez∼Pz(z)[log2(1−D(G(z)))] (1)

where Pz is the input noise distribution of G, and Pdata is the
actual data distribution.

However, ifG andD are not well balanced,Gmay eventually
collapse to a saddle point. To avoid this shortcoming, Radford
et al. [13] proposed DCGAN. This method first uses batch
normalization to solve the initialization problem, then removes
the fully connected layer to improve the convergence speed,
and finally uses strided convolution and fractionally strided
convolution, instead of pooling layers, reducing spatial sam-
pling; then, the training process becomes stabilized. Thereby,
we adopt DCGAN combined with the deep differential privacy
mechanism to provide privacy protection for data providers.

1) Deep Differential Privacy Implementation: Providing dif-
ferential privacy protection to data providers can be achieved by
adding differential privacy noise to the process of minimizing
the parameter loss function of a deep learning model, i.e.,
feedforward neural network (FNN), using stochastic gradient
descent with the following steps.

1) Use the stochastic gradient descent algorithm to randomly
select a number of training samples S and calculate the
gradient of each sample, i.e., gt(xi)← ∇θtL(θt, xi).

2) Check whether gt(xi) is lower than the thresholdC; if not,
adjust gt(xi) by ḡt(xi)← gt(xi)/max(1, ‖gt(xi)‖2/C).

3) Add Gaussian noise to the gradient, i.e., ḡt(xi)←
1
S

∑
i=1 ḡt(xi) +N (0, σ2 C2I), and then update the pa-

rameters by θt+1 ← θt − ηḡt, where η represents the
learning rate.

The abovementioned steps are iteratively executed T rounds.
Abadi et al. [28] suggested that the training of the deep neural
network can be based on lot. Thereby, we first calculate the
gradient value of each batch. Then, we randomly select a group
of batches to form a lot, calculate its gradients, and add noise
to it, where each lot follows an independent distribution with
probability q = L/N andN denotes the size of the input dataset.
Finally, we calculate the average gradient of lot for parameter
update. Each iteration of the algorithm consists of N/L compu-
tations of lots.

2) Privacy Loss Calculation: Although the algorithm can
provide differential privacy protection for data, it still brings

privacy loss, and this value reflects the privacy protection effect
of the deep learning model. Therefore, we need to calculate
the privacy loss throughout the training process. The privacy
loss is defined as follows. For two adjacent datasets d, d′ ∈ D
and the mapping mechanism M , introducing an auxiliary input
variable aux and an output o ∈ R, the privacy loss of the mapping
mechanism M at the output o, denoted by c(o;M, aux, d, d′), is
defined as

c(o;M, aux, d, d′) � log
Pr[M(aux, d) = o]

Pr[M(aux, d′) = o]
. (2)

The training process usually requires the use of gradient de-
scent for many times, resulting in the accumulation of the privacy
budget. According to the composability of differential privacy,
the moments accountant method can be used to minimize the
privacy loss. Note that the parameters of each layer of the neural
network are closely related to the differential privacy mechanism
in each iteration, so for a given mapping mechanism M , the
privacy loss in the λth iteration, denoted by αM (λ; aux, d, d′),
is defined as

αM (λ; aux, d, d′)

� logEo∼M(aux,d)[exp(λc(o;M, aux, d, d′))]. (3)

Further, the privacy loss boundary value of the mapping mech-
anism M , denoted by αM (λ), is defined as

αM (λ) � max
aux,d,d′

αM (λ; aux, d, d′). (4)

It has been proved that αM (λ) satisfies the following proper-
ties: 1) Given a mechanism M consisting of a set of submecha-
nisms M1,M2, . . . ,Mk, satisfying Mi :

∏i−1
j=1 Rj ×D → Ri,

the privacy loss bound satisfies αM (λ) ≤
∑k

i=1 αMi
(λ); 2)

∀ε > 0, the mapping mechanism M is (ε, δ)-differentially
private if and only if δ = min exp(αM (λ)− λε) [28]. The
abovementioned two properties determine the privacy loss
of each iteration of the deep neural network algorithm and
the maximum number of iterations that can achieve the tol-
erance of data privacy violation. In particular, in the case
of adding Gaussian noise, let μ0 and μ1 be the probabil-
ity density functions of N(0, σ2) and N(1, σ2), respectively,
and μ be the mixture probability density function of these
two. That is, μ = (1− q)μ0 + qμ1. It can be deduced that
α(λ) = logmax(E1, E2), where E1 = Ez∼μ0 [(μ0(z)/μ(z))

λ],
E2 = Ez∼μ[(μ(z)/μ0(z))

λ], such that the privacy loss boundary
equals to q2λ(λ + 1)/(1− q)σ2 +O(q3/σ3). That suggests the
proposed DCGAN-based method is (ε, δ)-differentially private
for any δ and ε < c1q

2 T , if we choose

σ ≥ c2
q
√
T log(1/δ)

ε
(5)

where c1 and c2 are constants.
To sum up, in FNN training, the privacy budget of the deep net-

work is calculated, and Gaussian noise is added to the stochastic
gradient descent to minimize the overall privacy budget. Then,
based on the data feature processed by the differential privacy
empowered FNN, DCGAN is used to generate privacy protected
data (see Fig. 3).
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Fig. 3. The framework of data privacy protection based on DCGAN.

B. Data Provider Classification

1) Spectral Clustering-Based Data Provider Classification:
We implement the classification of each areal data provider
through a spectral clustering algorithm. To be specific, we treat
all data providers in the area as nodes of the network, so that we
can classify data providers according to their attributes. First, we
construct a network G of potential relationships for each area. In
G, each node represents a data provider in the area, while each
edge is associated with the similarity value fsim(., .) between the
end points of that edge, i.e., for edge vivj , we have

fsim (vi, vj) = e
−
‖ xi − xj ‖2

2σ2 . (6)

In order to ensure the balance between classes, that is, the
number of nodes in each class needs to be roughly the same,
so as to effectively avoid the impact of the large gap between
the number of data providers in different categories [29]. To
this end, we use the RatioCut algorithm to partition the graph G.
When the classification of data providers is completed, we define
the (PIF w.r.t. information dissemination of each data provider
vi, considering node degreeD(.), betweenness centralityBC(.),
and local clustering coefficient Lc(.) on vi, as

PIFi = D(v) + Lc(v) + BC(v). (7)

According to PIFi, each data provider vi is given an initial level
Li for task application, i.e., Li ∝ PIFi. That is, the larger the
PIF, the higher the level. However, with the execution of data
collection tasks, the level of each data provider will change
according to the degree of task completion and the degree of
task privacy leakage as well. This means that malicious data
providers are likely to be unable to apply for tasks due to their
low level.

2) DQN-Based Optimal Classification Mechanism: In
PMTA, we adopt a DQN-based method, which provides
the optimal classification for data providers. Different from
Q-learning, DQN uses deep neural networks instead of the
traditional Q-table, where these deep neural networks can be
represented by two action-value functions Q(.) and Q̂(.) with
parameters ω and ω−, respectively. Due to the nonuniformity
between high-dimensional state space and low-dimensional
action space, both neural networks only use the state as input
and the output is the Q-value of the action-value function about
each possible action.

Based on the classification results obtained from the previ-
ous decision, we take the largest proportion of malicious data
providers in each category as the current state sj , and set the
classification strategy as action aj , and execute action aj in state
sj will be rewarded rj . Since the classification of data providers
directly affects the execution of tasks, the reward should be
calculated w.r.t. the privacy protection degree of the task and
the task completion degree of the data provider. The reason for
that is as follows. We argue that nonmalicious data providers can
provide good privacy protection for each class, while malicious
data providers are highly likely to sabotage the task. Therefore,
the reward is given by

r = α

n∏

k=1

(1− Pk) + (1− α)

∑n
k=1 ck (1− Pk)

N
(8)

whereα and 1− α represent the proportion of privacy protection
degree and task completion degree in actual demands, respec-
tively, n represents the number of classifications, Pk denotes
the percentage of malicious data providers of the kth class, ck
represents the number of data providers of the kth class, and N
is the total number of data providers.

To get optimal classification, we train the deep neural network
using supervised learning with the target Q-value. Specifically,
we perform a gradient descent with respect to the parameter ω
according to the loss function (yj −Q(sj , aj ;ω))

2, where

yj = rj + γmaxa′Q̂(sj+1, a
′;ω−). (9)

At every T time steps, we update ω− by ω− = ω. Then, the
optimal data provider classification is obtained, when the DQN
algorithm converges.

3) Model Training Based on the Federated Average
Algorithm: Through the algorithm in the previous section, we
achieve the optimal classification of each areal data provider, and
then, we need to train these local submodels into a global model
to solve the problem of data silos, which will help doctors to
provide patients a more comprehensive diagnosis. Considering
that federated learning can complete the training of a global
model under the premise of ensuring data privacy [30], this
article uses the federated average algorithm to generate a global
DQN-based classification model. We assume that there are K
participants (i.e.,K areal data providers) joining in the federated
learning with totally n samples, where the number of samples of
the kth participant is denoted by nk. Then, the federated average
algorithm aggregates the parameters of each participant ωk by
weighted averaging to update the parameters of the global model
ω̃ in each training round t, i.e.,

ω̃t+1 =

K∑

t=1

nk

n
ωk
t+1 (10)

where ωk
t+1 is learned by the kth participant according to the

parameter of the global model ω̃t obtained in the previous round.
When the federated average algorithm converges, the global data
provider classification model is obtained.
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Fig. 4. Smart contract execution process diagram.

C. Smart Contract Design

After classifying data providers, data collectors classify rel-
evant tasks as needed, and these tasks will be deployed on
the blockchain. Similar to literature [31], we modify the block
header and add a level attribute to it to ensure that only tasks
of the same level can be stored in the block, and also limit the
permissions of data providers to apply for tasks in the block.

Specifically, in the task publishing process, data collector
inputs the corresponding task level as the attribute of the task, and
publishes it to the block of the corresponding level for storage.
Then, when data provider requests a task, the smart contract
matches its level with the level of the requested task. If the
match is successful, data provider can view the corresponding
task content; otherwise, the request is rejected. The specific task
request and access control process are shown in Fig. 4. As we
have analyzed before, classification of tasks and data providers
not only prevents data providers receiving tasks from obtaining
complete task information at one time, but also prevents them
from obtaining privacy information contained in tasks through
collusion attacks.

V. PERFORMANCE EVALUATION

A. Experiment Setup

We use Python to verify the performance of the proposed
PMTA on data provider classification on a computer with an Intel
Core i7 processor with a frequency of 1.50 GHz, 16G running
memory, and a 64-bit Windows 10 operating system. In addition,
we run Hyperledger Fabric 1.2 in Ubuntu system with VMware
Workstation 14 Pro, 4 GB RAM, two processors to evaluate the
performance of the blockchain in PMTA.

This experiment is conducted using a real-world dataset
MIMIC-IV.1 As a relational database, MIMIC-IV contains

1[Online]. Available: https://physionet.org/content/mimiciv/0.4/

Fig. 5. Training loss for three different areas.

comprehensive information, such as laboratory measurements,
medications used, recorded vital signs, and more for each patient
in hospitals at the tertiary academic medical center in Boston,
MA, USA. This database is designed to support a variety of
research in healthcare. In the experiments, we use the basic at-
tributes of patients for classification of patients (data providers),
asking patients to provide their treatment data to the doctors (data
collectors) as data collection tasks. At the same time, we assume
that there is a certain ratio of malicious patients who may provide
incomplete treatment and may leak sensitive information of the
task. The deep learning network model used in the experiment
is an FNN with a depth of 3, the nodes in the hidden layer are
1000, the activation function is ReLU, and a softmax classifier
with cross entropy.

In addition, we evaluate the performance of the proposed strat-
egy PMTA by metrics, such as training loss, training accuracy,
average blockchain latency, throughput, and CPU utilization.
Generally speaking, the performance of a strategy can be re-
flected by the number of training rounds required to improve
training accuracy and reduce training loss. At the same time,
low latency, low CPU usage, and high throughput imply the op-
timization provided by the strategy for blockchain performance.

B. Experimental Results

1) Training Results of DQN and Federated Learning: We
divided patient data into three different areas, i.e., Area 1, Area 2,
and Area 3, to verify the performance of PMTA in data provider
classification using DQN. Fig. 5 shows the loss value of the
model training in each area. From the observation of the figure,
we find that with the continuous increase in the number of train-
ing rounds, the corresponding loss value first drops rapidly and
then gradually stabilizes, getting closer to 0. Although there are
some differences among the data providers from three different
areas, the overall trend is basically the same. In addition, it is
clear that the algorithm is close to convergence around 400
rounds, this is because we use the RatioCut algorithm, which
can balance class division, and the DQN algorithm, which can
provide optimal classification, for data provider classification.
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Fig. 6. Global model training accuracy.

Fig. 7. Blockchain performance in average (a) CPU utilization,
(b) throughput, and (c) latency based on three different classification
scenarios.

We assigned patient data into three, five, and nine different
areas, respectively, to verify the performance of PMTA for data
provider classification using federated learning. Fig. 6 depicts
the training accuracy of the federated learning model. The three
curves in this figure represent different training cases. Observed
from this figure, it is obviously that no matter how many areas
are involved in the federated learning, training accuracy is

Fig. 8. Blockchain performance in average (a) CPU utilization,
(b) throughput, and (c) latency with different number of transactions,
when the number of classes equal to 3.

constantly rising with the increase in the number of training
rounds. Similar to Fig. 5, the global model constructed by feder-
ated averaging also stabilizes at around 400 rounds to converge,
this is because the federated average algorithm fully takes into
account the difference in the number of samples in each area to
accelerate the convergence of the algorithm.

The experimental results shown in Figs. 5 and 6 suggest that
the DQN-based classification mechanism of the proposed PMTA
can classify data providers from areas of different characteristics
efficiently and accurately within limited training rounds.

2) Performance Evaluation of Blockchain: In Fig. 7, we com-
pare the blockchain performance under different classification
scenarios in terms of average throughput, latency, and CPU
utilization. Specifically, these performance results are all test
results when the transaction number is set to 3000. As shown in
Fig. 7(b) and (c), it is clear that the throughput and latency of
the system increase significantly with the increase in the sending
rate, while the CPU utilization shown in Fig. 7(a) is relatively
stable, basically staying between 13% and 14%. Among them,
in Fig. 7(b), when the number of classifications equals 6 and
the sending rate increases to 350tps, system throughput reaches
the highest value, which is nearly 96tps. Moreover, in Fig. 7(c),
when the number of classifications equals 3 and the sending rate
reaches 100tps, system latency is as low as 11.06 s.
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Fig. 8 shows the comparison of blockchain performance in
terms of average throughput, latency, and CPU utilization with
three classes and different numbers of transactions. We use
tx2500, tx3000, and tx3500 to denote the number of transactions
to be 2500, 3000 and 3500, respectively. Fig. 8(a) shows the CPU
utilization for three transaction numbers. It is obvious that the
CPU utilization is relatively stable, always staying between 13%
and 14%. As shown in Fig. 8(b), when the number of transactions
equals 2500 and the sending rate increases to 400tps, system
throughput reaches the highest value of 100tps. As shown in
Fig. 8(c), the average latency goes up significantly with the
increase in the sending rate, i.e., the more the transactions, the
longer the latency.

The experimental results shown in Figs. 7 and 8 indicate that
the proposed PMTA, through data provider and task classifica-
tion based on DQN, spectral clustering and federated learning,
and the corresponding smart contract design, can efficiently and
securely process large-scale transactions. This suggests that the
PMTA can effectively solve the problems of patient privacy
leakage and data silos, thereby promoting the rapid development
of Healthcare 4.0.

VI. CONCLUSION

In this article, we proposed a PMTA for Healthcare 4.0 using
IoT, blockchain, and AI technologies. In PMTA, the mobile
crowdsensing technology in IoT was used to issue tasks and
receive data. In this process, in order to protect the sensitive
information of data providers from being leaked, the strategy
used deep differential privacy technology to add noise to the
provided data. In addition, in order to protect sensitive informa-
tion in tasks, we employed deep Q-networks combined with the
spectral clustering technique and federated learning technique
to train optimal classification strategies to classify tasks and
data providers. Finally, in order to achieve privacy protection
and improve task deployment efficiency, we combined data
provider classification and task classification with task storage
and publishing on the blockchain, and limited the choice of
data providers through the design of smart contracts on different
levels of tasks. Experimental results and performance analysis
clearly showed that our proposed strategy performs well in terms
of data privacy protection, task privacy protection, and system
performance.

REFERENCES

[1] X. Zhou et al., “Intelligent small object detection for digital twin in smart
manufacturing with industrial cyber-physical systems,” IEEE Trans. Ind.
Inform., vol. 18, no. 2, pp. 1377–1386, Feb. 2022.

[2] X. Zhou, Y. Li, and W. Liang, “CNN-RNN based intelligent recommenda-
tion for online medical pre-diagnosis support,” IEEE/ACM Trans. Comput.
Biol. Bioinf., vol. 18, no. 3, pp. 912–921, May/Jun. 2021.

[3] C. Huang, G. Zhang, S. Chen, and V. Albuquerque, “Healthcare industry
4.0: A novel intelligent multi-sampling tensor network for detection and
classification of oral cancer,” IEEE Trans. Ind. Inform., to be published,
doi: 10.1109/TII.2022.3149939.

[4] X. Fan, H. Wang, F. Xu, Y. Zhao, and K.-L. Tsui, “Homecare-oriented
intelligent long-term monitoring of blood pressure using electrocardio-
gram signals,” IEEE Trans. Ind. Inform., vol. 16, no. 11, pp. 7150–7158,
Nov. 2020.

[5] X. Zhou, X. Yang, J. Ma, and K. I.-K. Wang, “Energy efficient smart routing
based on link correlation mining for wireless edge computing in IoT,” IEEE
Internet Things J., to be published, doi: 10.1109/JIOT.2021.3077937.

[6] X. Zhou, X. Xu, W. Liang, Z. Zeng, and Z. Yan, “Deep-learning-enhanced
multitarget detection for end–edge–cloud surveillance in smart IoT,” IEEE
Internet Things J., vol. 8, no. 16, pp. 12588–12596, Aug. 2021.

[7] C. Guo, P. Tian, and K.-K. R. Choo, “Enabling privacy-assured fog-based
data aggregation in e-healthcare systems,” IEEE Trans. Ind. Inform.,
vol. 17, no. 3, pp. 1948–1957, Mar. 2021.

[8] J. Ni, A. Zhang, X. Lin, and X. S. Shen, “Security, privacy, and fairness in
fog-based vehicular crowdsensing,” IEEE Commun. Mag., vol. 55, no. 6,
pp. 146–152, Jun. 2017.

[9] H. Jin, L. Su, H. Xiao, and K. Nahrstedt, “Incentive mechanism for privacy-
aware data aggregation in mobile crowd sensing systems,” IEEE/ACM
Trans. Netw., vol. 26, no. 5, pp. 2019–2032, Oct. 2018.

[10] J. Ni, K. Zhang, Q. Xia, X. Lin, and X. S. Shen, “Enabling strong privacy
preservation and accurate task allocation for mobile crowdsensing,” IEEE
Trans. Mobile Comput., vol. 19, no. 6, pp. 1317–1331, Jun. 2020.

[11] H. Wu, L. Wang, G. Xue, J. Tang, and D. Yang, “Enabling data trustworthi-
ness and user privacy in mobile crowdsensing,” IEEE/ACM Trans. Netw.,
vol. 27, no. 6, pp. 2294–2307, Dec. 2019.

[12] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “FedHealth: A federated
transfer learning framework for wearable healthcare,” IEEE Intell. Syst.,
vol. 35, no. 4, pp. 83–93, Jul./Aug. 2020.

[13] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,” 2015,
arXiv:1511.06434.

[14] S. Messaoud, A. Bradai, O. B. Ahmed, P. T. A. Quang, M. Atri, and M. S.
Hossain, “Deep federated q-learning-based network slicing for industrial
IoT,” IEEE Trans. Ind. Inform., vol. 17, no. 8, pp. 5572–5582, Aug. 2021.

[15] Y. Sun, L. Zhang, G. Feng, B. Yang, B. Cao, and M. A. Imran, “Blockchain-
enabled wireless Internet of Things: Performance analysis and optimal
communication node deployment,” IEEE Internet Things J., vol. 6, no. 3,
pp. 5791–5802, Jun. 2019.

[16] A. M. Elmisery, S. Rho, and M. Aborizka, “A new computing environment
for collective privacy protection from constrained healthcare devices to IoT
cloud services,” Cluster Comput., vol. 22, no. 1, pp. 1611–1638, 2019.

[17] J. J. Hathaliya, S. Tanwar, S. Tyagi, and N. Kumar, “Securing electronics
healthcare records in healthcare 4.0: A biometric-based approach,” Com-
put. Elect. Eng., vol. 76, pp. 398–410, 2019.

[18] R. Gupta, S. Tanwar, S. Tyagi, N. Kumar, M. S. Obaidat, and B. Sadoun,
“Habits: Blockchain-based telesurgery framework for healthcare 4.0,” in
Proc. Int. Conf. Comput., Inf. Telecommun. Syst., 2019, pp. 1–5.

[19] R. Gupta et al., “VAHAK: A blockchain-based outdoor delivery scheme
using UAV for healthcare 4.0 services,” in Proc. IEEE Conf. Comput.
Commun. Workshops, 2020, pp. 255–260.

[20] H. Qiu, M. Qiu, M. Liu, and G. Memmi, “Secure health data sharing for
medical cyber-physical systems for the healthcare 4.0,” IEEE J. Biomed.
Health Inform., vol. 24, no. 9, pp. 2499–2505, Sep. 2020.

[21] R. Gupta, A. Shukla, and S. Tanwar, “Aayush: A smart contract-based
telesurgery system for healthcare 4.0,” in Proc. IEEE Int. Conf. Commun.
Workshops, 2020, pp. 1–6.

[22] S. Tanwar, K. Parekh, and R. Evans, “Blockchain-based electronic health-
care record system for healthcare 4.0 applications,” J. Inf. Secur. Appl.,
vol. 50, 2020, Art. no. 102407.

[23] P. Bhattacharya, S. Tanwar, U. Bodkhe, S. Tyagi, and N. Kumar, “BinDaaS:
Blockchain-based deep-learning as-a-service in healthcare 4.0 applica-
tions,” IEEE Trans. Netw. Sci. Eng., vol. 8, no. 2, pp. 1242–1255, Apr.–
Jun. 2019.

[24] B. Yin, H. Yin, Y. Wu, and Z. Jiang, “FDC: A secure federated deep
learning mechanism for data collaborations in the Internet of Things,”
IEEE Internet Things J., vol. 7, no. 7, pp. 6348–6359, Jul. 2020.

[25] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network embed-
ding: A deep reinforcement learning approach with graph convolutional
networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 6, pp. 1040–1057,
Jun. 2020.

[26] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[27] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[28] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.

[29] U. V. Luxburg, “A tutorial on spectral clustering,” Statist. Comput., vol. 17,
no. 4, pp. 395–416, 2007.

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 11,2024 at 07:32:54 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TII.2022.3149939
https://dx.doi.org/10.1109/JIOT.2021.3077937


2748 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 3, MARCH 2023

[30] X. Qu, J. Wang, and J. Xiao, “Quantization and knowledge distillation
for efficient federated learning on edge devices,” in Proc. IEEE 22nd Int.
Conf. High Perform. Comput. Commun., IEEE 18th Int. Conf. Smart City,
IEEE 6th Int. Conf. Data Sci. Syst., 2020, pp. 967–972.

[31] H. Lin, S. Garg, J. Hu, G. Kaddoum, M. Peng, and M. S. Hossain, “A
blockchain-based secure data aggregation strategy using sixth generation
enabled network-in-box for industrial applications,” IEEE Trans. Ind.
Inform., vol. 17, no. 10, pp. 7204–7212, Oct. 2021.

Xiaoding Wang received the Ph.D. degree in
applied mathematics from the College of Math-
ematics and Informatics, Fujian Normal Univer-
sity, Fuzhou, China, in 2016.

He is currently an Associate Professor with
the College of Computer and Cyber Security,
Fujian Normal University. His main research in-
terests include network optimization and fault
tolerance.

Mengyao Peng received the bachelor’s degree
in network engineering from the Lishui Univer-
sity, Lishui, China, in 2019. She is currently
working toward the the master’s degree in cy-
berspace security with the School of Computer
and Cyberspace Security, Fujian Normal Uni-
versity, Fuzhou, China.

Her research interests include mobile crowd-
sensing, blockchain, and privacy security.

Hui Lin received the Ph.D. degree in computing
system architecture from the College of Com-
puter Science, Xidian University, Xi’an, China,
in 2013.

He is currently a Professor with the College
of Computer and Cyber Security, Fujian Nor-
mal University, Fuzhou, China, where he is also
an M.E. Supervisor with the College of Com-
puter and Cyber Security. He has authored or
coauthored more than 50 papers in international
journals and conferences. His research inter-

ests include mobile cloud computing systems, blockchain, and network
security.

Yulei Wu (Senior Member, IEEE) received the
B.Sc. (first-class Hons.) degree in computer sci-
ence and the Ph.D. degree in computing and
mathematics from the University of Bradford,
Bradford, U.K., in 2006 and 2010, respectively.

He is currently a Senior Lecturer with the De-
partment of Computer Science, College of En-
gineering, Mathematics, and Physical Sciences,
University of Exeter, Exeter, U.K. His main re-
search interests include networking, Internet of
Things, edge intelligence, AI and ethics, and

privacy and trust.
Dr. Wu is an Associate Editor for the IEEE TRANSACTIONS ON NET-

WORK AND SERVICE MANAGEMENT and IEEE TRANSACTIONS ON NETWORK
SCIENCE AND ENGINEERING, as well as an Editorial Board Member of
Computer Networks and Future Generation Computer Systems. He is
a Senior Member of the ACM, and a Fellow of the Higher Education
Academy (HEA).

Xinmin Fan received the master’s degree in
software engineering from Fuzhou University,
Fuzhou, China, in 2006.

He is currently the Deputy Director and a
Researcher with the Network and Data Cen-
ter (Network Information Office), Fujian Normal
University, Fuzhou, China. He is also the Secre-
tary General of the Fujian University Online Ed-
ucation Alliance, the Vice Chairman and Secre-
tary General of the Fujian University Education
Technology Research Association, and a Mem-

ber of the “MOOC Construction Specification and Application Guidelines
Drafting Group” of the Teaching Informatization and Teaching Method
Innovation Steering Committee of the Ministry of Education. He has
been engaged in the research and application practice of education
informatization, online education, and higher education management for
a long time.

Authorized licensed use limited to: Fujian Normal University. Downloaded on June 11,2024 at 07:32:54 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


