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Abstract: In the domain of reinforcement learning (RL), deriving efficacious state representations and
maintaining algorithmic stability are crucial for optimal agent performance. However, the inherent
dynamism of state representations often complicates the normalization procedure. To overcome
these challenges, we present an innovative RL framework that integrates state normalization tech-
niques with residual connections and incorporates attention mechanisms into generative adversarial
imitation learning (GAIL). This combination not only enhances the expressive capability of state
representations, thereby improving the agent’s accuracy in state recognition, but also significantly
mitigates the common issues of gradient dissipation and explosion. Compared to traditional RL algo-
rithms, GAIL combined with the residual connection-based state normalization method empowers
the agent to markedly reduce the exploration duration such that feedback concerning rewards in the
current state can be provided in real time. Empirical evaluations demonstrate the superior efficacy of
this methodology across various RL environments.

Keywords: reinforcement learning; generative adversarial imitation learning (GAIL); residual
connection; state normalization

MSC: 68T01

1. Introduction

Reinforcement learning (RL) [1], a significant branch of machine learning, emphasizes
training agents to learn optimal strategies through environmental interactions. The pri-
mary goal of this approach is the maximization of long-term cumulative rewards. Recent
advancements in RL methodologies have resulted in remarkable successes across various
domains, such as gaming, robotic control, and autonomous driving [2–4]. These achieve-
ments underscore the versatility and efficacy of RL in solving complex, dynamic problems.

In RL, the term “agent” refers to a machine’s ability to perceive and interact with
its surroundings, distinguishing it from the “model” concept in supervised learning. An
RL agent bases its decisions on sensory inputs and is motivated by rewards that affect
the environmental state [5]. This approach contrasts with supervised learning, which
relies on labeled data. Instead, RL uses a “reward function” as a guiding principle in its
learning process. However, this method introduces distinct challenges. RL models are
particularly sensitive to the configuration of the reward function, with minor changes
potentially leading to significant variations in the resulting policies [6,7].

Imitation learning [8] has been implemented to address these RL challenges. This
approach allows agents to emulate expert decision-making strategies through demon-
stration data. By adopting this method, the need for manual configuration of the reward

Mathematics 2024, 12, 214. https://doi.org/10.3390/math12020214 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12020214
https://doi.org/10.3390/math12020214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0009-1682-5123
https://doi.org/10.3390/math12020214
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12020214?type=check_update&version=1


Mathematics 2024, 12, 214 2 of 14

function is circumvented, consequently reducing the agent’s dependence on specific reward
function configurations.

Imitation learning can be categorized into three main types:

• Behavior cloning (BC): This method boasts simplicity and rapid implementation, yet
it necessitates extensive data support and is susceptible to cumulative errors [9].

• Inverse reinforcement learning (IRL): While it effectively tackles the problem of cu-
mulative errors, IRL incurs significant computational demands and has constrained
practical applicability [10].

• Generative adversarial imitation learning (GAIL): This method excels in learning
policies that adapt to states beyond the scope of expert demonstrations, showcasing
superior generalization abilities [11]. This feature sets it apart from behavior cloning,
which is limited to mimicking strategies directly observable in expert demonstrations,
resulting in narrower adaptability.

GAIL effectively reduces the agent’s reliance on the reward function. However, its
learning process can become unstable during exploration, potentially slowing down the
learning rate, especially in situations with substantial variance in states or observations.
The optimization algorithm within GAIL requires additional time to adapt to these diverse
value ranges. As a result, this might lead to decreased learning efficiency, compromised
training effectiveness, and a general downturn in performance.

Addressing these issues, our approach integrates state normalization with residual
connections. In standard neural network training, challenges like gradient vanishing
and exploding often present substantial obstacles. Implementing residual connections
significantly alleviates these issues, thereby improving the speed and stability of the leaning
process. Furthermore, state normalization helps the model achieve a deeper understanding
of environmental states, consequently enhancing learning efficiency.

Furthermore, we enhance the model’s representational capacity by incorporating
attention mechanisms. In diverse reinforcement learning scenarios, the importance of states
and actions varies across time steps. The inclusion of attention mechanisms allows our
model to adaptively focus on relevant information from these varying periods. This feature
enables the model to accurately understand and react to dynamic environmental changes,
thus improving its performance in complex RL tasks.

Based on the aforementioned discussion, the main contributions of this paper can be
summarized as follows:

• The introduction of a novel normalization method combined with residual connections,
designed to effectively address the challenges of gradient vanishing and exploding in
reinforcement learning models.

• The incorporation of attention mechanisms into the neural network to refine internal
focus during the training process, enabling the model to selectively emphasize state
feature variables that are critical for current decision making.

2. Related Work

Normalization techniques are crucial in training deep neural networks [12–14]. They
significantly enhance training efficiency and performance by standardizing input features,
especially when employing first-order optimization algorithms like stochastic gradient
descent (SGD) [15,16]. The impact of normalization is particularly pronounced in this
context. It not only accelerates the learning speed but also improves the overall stability
and performance of the model. This allows networks to excel even in uniformly optimized
environments. Among these techniques, batch normalization (BN) is essential in deep net-
work training [17,18]. BN adjusts intermediate feature maps based on statistical data from
small-batch samples. The success of BN has led to the development of other normalization
methods, such as layer normalization [19,20] and spectral normalization [21,22], providing
a diverse range of options for different learning environments.

In deep reinforcement learning, the utility of these normalization techniques is con-
strained, owing to the nature of online learning. A primary reason is that the input data
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frequently deviate from the principles independence and identical distribution. In the
Section 4, we delve into the key factors that make BN inapplicable to reinforcement learning.

In addressing these issues, Bhatt A et al. [23] introduced a cross-normalization tech-
nique that combines transitions within and outside the policy. This approach not only
optimizes stability but also reduces dependence on the target network. Additionally,
Gogianu F et al. [24] demonstrated the efficacy of spectral normalization in controlling
parameter updates in deep reinforcement learning, highlighting the necessity of focusing
on neural network components and their learning dynamics. However, these methods
overlook the pivotal role of the reward function in reinforcement learning training. To
remedy this, our study proposes a dynamic normalization method that integrates resid-
ual connections within the GAIL framework. This innovation is aimed at addressing the
previously neglected role of the reward function, with the goal of enhancing the model’s
generalization capabilities and training efficiency.

3. Preliminary

First, let us define a Markov decision process (MDP) [25], which is typically formulated
as a sextuple, i.e., ⟨S ,A,P , r, ρ0, γ⟩, where:

- S represents the set of all possible states;
- A is the set of all possible actions available to the agent (at each time step, the agent

selects and executes a single action from this set);
- P(st+1|st, at) is the state transition function, which describes the probability of transi-

tioning from state st to state st+1 when action at is taken;
- r(s, a) is the reward function, indicating the immediate reward that the agent receives

given the current state and the chosen action;
- γ ∈ [0, 1] is the discount factor, which is used to compute the present value of

future rewards.

Next, we define the expert policy as πE and the learner’s policy as π. For policy π, the
expected trajectory is expressed by the following formula:

Eπ [g(s, a)] ≜ E
[

∞

∑
t=0

γtg(st, at)

]
(1)

Here, s0 ∼ ρ0 denotes the initial state distribution, at ∼ π(at|st) represents the action
chosen according to policy π, and g is a custom function that can be used to further describe
state–action pairs [26].

Thus, the reinforcement learning process can be expressed as shown in Figure 1.

Figure 1. Reinforcement learning framework.
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Residual connections: represent a substantial technological advancement in deep
learning. Their fundamental principle is the introduction of a “shortcut path” or “skip con-
nection” between neighboring layers in a network [27–29]. This architecture allows signals
to skip one or more layers, transmitting directly to deeper layers. This method effectively
addresses the problem of information decay, a frequent challenge in deep networks [30].

In a traditional feedforward network without residual connections, each layer is
typically formulated as y = H(x), where x represents the input, y is the output, and H(x)
denotes the operation performed by that layer. Conversely, in a residual network equipped
with residual connections, the formulation of each layer is modified to H(x) = F(x) + x,
where F(x) signifies the residual mapping of the layer. This function is tasked with learning
the necessary adjustments to the input (x) to yield results that more closely align with
the anticipated output. The equation F(x) = H(x)− x thus represents the residual or the
difference between the input and the output. This structure allows the signal to bypass any
number of layers, effectively preventing decay between layers.

The residual connection approach empowers the network to fully exploit the robust
expressive capabilities inherent in deep abstraction while simultaneously addressing com-
mon challenges associated with training deep networks. Notably, it helps mitigate the issue
of gradient vanishing. In the next section, we discuss how to combine residual connections
with normalization methods.

GAIL: GAIL is a specialized form of imitation learning. Its fundamental concept
revolves around aligning the learning policy with the expert policy as closely as possible in
terms of the occupancy measure across all state–action pairs. To achieve this goal, the GAIL
algorithm introduces a policy (π) and a discriminator (D). In this framework, the policy (π)
plays a role similar to the generator in a generative adversarial network: for a specific state
(s), it determines the corresponding action (a). On the other hand, the discriminator (D)
takes the state–action pair (s, a) as input and outputs a value between 0 and 1, representing
its judgment of whether the pair comes from an expert. To distinguish the data generated
by the policy (π) from expert data, the task of the discriminator (D) is to make the output
value for data from the expert as close to 0 as possible and the value for data from the
policy (π) as close to 1 as possible.

Based on this objective, the loss function of D can be defined as:

L(ϕ) = −Eρπ [log Dϕ(s, a)]− EρE [log(1− Dϕ(s, a))] (2)

Meanwhile, the goal of the policy (π) is to have its generated trajectories mistakenly
recognized by D as expert trajectories. To achieve this, the output of D can be used as the
reward function for the policy (π). Specifically, for sampled state–action pair (s, a), the
reward (r(s, a)) can be set as− log D(s, a). Through continued adversarial training, the data
distribution generated by the policy (π) gradually approaches the expert data distribution.

4. Methods

In RL, the state plays a pivotal role by offering the agent current insights about
the environment, thereby facilitating informed decision making. The effectiveness and
efficiency of a reinforcement learning algorithm are intrinsically linked to the quality of its
state representation, as highlighted in [31]. A meticulously crafted state vector equips the
agent with vital information regarding its surroundings, which is essential for executing
suitable actions.

However, the original representation of states may encounter problems such as large
differences in numerical ranges and masked feature variations. More critically, untreated
state data can lead to instability in the learning process, such as gradient explosion or
vanishing, which can affect learning performance [32]. To address these challenges, a
strategy called “state normalization” is introduced. This is achieved by standardizing the
state features to a fixed numerical range or giving them zero mean and unit variance. Such
processing not only enhances the stability and convergence speed of learning but also
improves the model’s generalization capability.
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Traditional single-normalization methods also have their limitations, such as normal-
izing only the output of individual layers, ignoring the mutual influence between layers in
the network, or losing some key information in the normalization process. To overcome
these issues, we consider incorporating “residual connections” into the normalization
process. Residual connections allow information to flow across multiple layers of the
network, thereby enhancing information flow and training stability. By combining the two,
we can achieve efficient and stable network structures like a “residual normalization block”,
resulting in superior performance across various tasks.

When considering which normalization method to adopt, we attempted to incorporate
batch normalization (BN) into the network to handle states. However, we found that
the policy’s performance deteriorated after applying BN. An analysis of the reasons is
presented as follows:

• First, when the batch size is small, BN performs poorly. This is easily understood,
as BN uses sample statistics within the batch to estimate the statistics of the entire
dataset. With a small batch size, the estimation of statistics is inaccurate, leading to a
decrease in training effectiveness. Even when we increased the batch size, the issue
was not resolved.

• Secondly, by referring to relevant literature [17,33], we discovered that BN is chal-
lenging to apply effectively to deep reinforcement learning. Compared to supervised
learning, in reinforcement learning, the agent needs to continuously interact with
the environment to sample new data. These sampled data are unstable initially and
gradually stabilize as training progresses. However, after policy improvement, the
agent begins to explore new states, causing a change in the data distribution. At this
point, the statistics computed by BN are no longer suitable for the new data, leading
to policy degradation. In contrast, supervised learning can randomly sample from the
training set, ensuring a stable data distribution and ensuring the effectiveness of BN.

In supervised learning:

1. Regardless of the network’s performance, we always sample randomly from the
training set, ensuring stable training data.

2. With stable data, BN tends to stabilize as well, computing fixed mean and variance.

However, in RL, the relationship between BN stability and data stability, as shown in
Figure 2 is described as follows:

1. Training data are sampled by the agent interacting with the environment are
initially unstable.

2. After some time, the data stabilize, and BN also stabilizes.
3. With policy improvement, the agent starts to explore new states, causing a change in

the data distribution.
4. The statistics computed by BN are no longer suitable for the new data, leading to a

decline in policy performance.
5. The decline in policy performance further to further unstable data, forming a

vicious cycle.

Figure 2. The logical relationship between BN stability and the adoption of data stability.
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In summary, BN proves challenging to apply effectively in reinforcement learning
training, necessitating other techniques to address the issue of data instability. Therefore,
in this study, we did not directly employ BN but utilized a state normalization approach
combined with residual connections.

First, let us explain how state normalization is performed. Here, we employ the
“robust” Z-score standardization method [34]. Z-score standardization is a common data
preprocessing technique used to adjust the scale of data such that their mean is 0 and their
standard deviation is 1. Specifically, for each data point, we subtract the mean of the entire
dataset, then divide it by the standard deviation of the dataset. However, in some cases, the
original Z-score standardization may be affected by outliers. To address this issue, we use
the “robust” Z-score standardization method, which utilizes the median of the data instead
of the mean and the interquartile range (IQR, i.e., the difference between the upper quartile
and the lower quartile) as a replacement for the standard deviation for normalization.

This method is more “robust” because the median and IQR are less affected by outliers.
Therefore, if the data contain many outliers or the aim is to reduce the impact of outliers on
the standardization results, using the “robust” Z-score method is recommended.

Step 1: We start by performing Z-score standardization on the states:

Snorm =
S− µ

σ
(3)

where S is the original state, and µ and σ are the mean and standard deviation of the state
set, respectively. Since the “robust” option is chosen, µ = 0 and σ = 1.

Step 2: We calculate the mean of the state set:

mean =
min_range(state) + max_range(state)

2
(4)

where min_range(state) represents the minimum state information in the state set, and
max_range(state) is the maximum.

Step 3: We divide the standardized states by the mean computed in Equation (4):

Sfinal =
Snorm

mean
(5)

The completion of state normalization through these three steps prepares the model
for further training. It is important to note, however, that this method may be less effective
for simpler state spaces. For instance, in tasks like CartPole, where state variables exhibit
minor fluctuations and lack significant outliers or complex distributions, this approach may
not be as beneficial. Consequently, it tends to be more advantageous in scenarios involving
data with complex distributions or outliers. The details are provided in Algorithm 1.

However, traditional normalization methods have some limitations. Notably, in high-
dimensional or complex state spaces, they can distort the original structure and intrinsic
relationships within the data.

In response to these challenges, we introduce a strategy that incorporates residual
connections. The core principle of residual connections is to append the output from a
preceding layer to the input of the subsequent layer. This approach enables the network to
concentrate on learning the residuals rather than the full feature mappings [28], as shown
in Figure 3.

Specifically, in state normalization, this method first normalizes the state to obtain a
normalized form (state), then adds it to the original state, i.e., normalized (state) + state.
This combined state is used as the input to the next layer, which is mathematically expressed
as layer_input = normalized (state) + state.

This strategy brings the following benefits:

1. Due to the presence of residual connections, the original state information is preserved
and not lost;
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2. The network can learn differential information about the normalized state, enhancing
training effectiveness;

3. Even when normalization performs poorly, the model can still rely on the original
state information, thereby enhancing robustness;

4. Residual connections facilitate the flow of optimization gradients, avoiding the prob-
lems of gradient vanishing and explosion.

Algorithm 1 State Normalization

Require: E: Environment; D: Discriminator; π: Policy; Texpert: Expert trajectories; N:
Number of training epochs; R: Replay Buffer; C: Replay Buffer capacity

1: Initialize: C = {}, R← Texpert
2: Sample trajectories Tpolicy using π in E and store in R, maintaining capacity C by

removing oldest data if necessary
3: for epoch = 1 to N do
4: Tpolicy ← π(E),R← R ∪ Tpolicy
5: if |R| > C then
6: Remove the oldest data from R
7: end if
8: for each (s, a) in R do
9: D.train(s, a) //Train D to differentiate between Texpert

and Tpolicy
10: end for
11: Train policy π using rewards from D and experiences from R,

π.train(D, (−logD(s, a)))

Where, −logD(s, a) represents the returned reward
12: Calculate state normalization statistics from R,S = {s1, s2, . . . , sn} ← R
13: µ = 1

n ∑n
i=1 si;σ2 = 1

n ∑n
i=1(si − µ)2; mean = min(S)+max(S)

2
14: end for
15: for each state s in R do
16: snorm = s−µ

σ
17: s = snorm

mean
18: end for

The incorporation of residual connections notably enhances the network’s represen-
tational and fitting capabilities. By integrating skip connections, the network becomes
more adept at identifying features across various levels. Additionally, it gains the ability
to bypass certain non-essential layers when needed [27]. This allows information to flow
unimpeded, even in deep networks, reducing the problem of gradient vanishing and help-
ing the network capture richer characteristics. Therefore, adopting residual connections
not only preserves the original features of the state but also optimizes the training stability
of the network, accelerating the convergence process.

To capture dependencies in long-range state sequences and empower the agent to
make more effective decisions in complex environments, we introduced a self-attention
mechanism in GAIL. The definition of this mechanism is as follows:

Attention(Q, K, V) = Softmax(
QKT
√

dk
)V (6)

where Q, K, and V are the query, key, and value respectively, and dk represents the dimen-
sionality of the key.

In the context of RL, we consider the past states and actions as keys and values, re-
spectively, and regard the current state as the query. Utilizing the self-attention mechanism
enables the agent to evaluate the relevance of past states and actions for its present decision
making, facilitating more informed choices.
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Figure 3. The structure of a residual module.

Figure 4 shows an example of a network architecture incorporating the self-attention
mechanism. Here, sE and aE represent the expert’s state and action, respectively, and D is
the discriminator, whose goal is to distinguish whether the state–action pair comes from
the agent or the expert. D(st, at) is the discriminator’s evaluation of the action (at) taken
by the agent in state st. The workflow of GAIL is summarized as follows. The agent
generates trajectories in the environment based on the policy (π), while the discriminator
distinguishes the source of these trajectories. The agent updates its policy with the aim of
misleading the discriminator into thinking that its behavior comes from the “expert”. As
training progresses, the agent’s policy approaches that of the expert, while the discriminator
strives to accurately differentiate, enhancing the effectiveness of imitation learning.

Figure 4. A neural network structure with self-attention.
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5. Experiments
5.1. Experimental Description

In our experimental setup, task-specific reward mechanisms were established follow-
ing the guidelines of OpenAI Gym [35]. We compiled multiple datasets from expert policies,
each comprising around 50 trajectories of state–action pairs. During the model implemen-
tation phase, the GAIL policy interacted iteratively with the environment to collect new
state–action pairs. These samples primarily informed the training of the discriminator. To
boost its accuracy, a self-attention mechanism was integrated into the discriminator. This
enhancement enabled precise evaluation of the differences between the generated policy
and the actual expert policy. The output from the discriminator was then converted into a
reward signal for the policy. This reward signal was utilized in training the policy through
reinforcement learning algorithms.

In this experiment, we employed the proximal policy optimization (PPO) algorithm.
Additionally, to ensure the stability of state–action pairs, we integrated a form of state
normalization combined with residual connections into the algorithm. We evaluated the
performance of the optimized GAIL model on three benchmark physical control tasks.

To ensure fairness in comparison, the hidden layers of the policy network in all
experiments were uniformly set to have 128 units. At the start of each experiment, all
networks underwent random initialization. For each task, we ensured that all three methods
received an equal amount of environmental interaction training (Table 1).

In this experiment, the following hardware setup was used:

• CPU: 12th Gen Intel(R) Core(TM) i7-12650H; clock speed: 2300 Mhz; 10 cores and 16
logical processors.

• GPU: NVIDIA GeForce RTX 4050.

Table 1. Hyperparameter configuration.

Hyperparameter Value Description

Actor Learning Rate 1× 10−3 The learning rate within the actor network
when generating expert trajectories.

Critic Learning Rate 1× 10−2 The learning rate within the critic network
when generating expert trajectories.

Learning Rate 1× 10−3 The learning rate for the GAIL network.
Discount Factor (γ) 0.98 The discount factor for future rewards in the

value function.
Lambda λ 0.95 The λ parameter for generalized advantage

estimation (GAE).
Epsilon (ϵ) 0.2 The clipping parameter in proximal policy op-

timization (PPO).
Random Seed 0 The seed value for the random number gener-

ators to ensure reproducibility.

Our experiments commenced with preliminary tests on PyGame, selecting LunarLander-
v2 as the test environment, as shown in Figure 5. In this game, the task is to maneuver a
lander to ensure a safe landing on diverse terrain. The player’s objective is to accurately guide
the lander to a stable descent within a flat area marked by two flags. A successful landing in
the designated zone rewards the player with high scores; conversely, if the lander crashes or
strays off-screen, the game ends in failure, potentially resulting in low or negative scores.
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Figure 5. LunarLander game.

We compared the performance of the GAIL algorithm with that of our enhanced
version, GAIL-norm, in this setting. The experimental results, as shown in Figure 6, revealed
that our GAIL-norm method not only surpassed the traditional GAIL in terms of stability
but also demonstrated superior performance from the early stages of the experiment.

Figure 6. Performance comparison in LunarLander-v2.

We conducted two baseline tests on the improved GAIL:

1. Behavior cloning: The given dataset of state–action pairs was divided into 70%
training data and 30% validation data. We trained the model using supervised
learning, employing the Adam [36] optimizer. Throughout the training process, we
continuously monitored the validation error until it no longer decreased.

2. GAIL: GAIL is a method that utilizes a GAN architecture [37]. Its objective is to
minimize the Jensen–Shannon divergence between the distributions of expert and
learner behavior.

We conducted simulations on the learned policy, with the obtained rewards presented
on the vertical axis. In this simulation, we employed a data-scaling method, mapping the
rewards of the expert policy to 1 and the rewards of the random policy to 0.
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Figure 7 shows a performance comparison of our method with BC and GAIL on tasks
such as Cartpole, HalfCheetah, and Humanoid.

Figure 7. Performance comparison.

As mentioned earlier, the “robust” Z-score standardization method has advantages
when dealing with data that contain numerous outliers. However, in environments like
the CartPole task, where the data distribution is relatively simple and lacks a significant
number of outliers, this method does not demonstrate the expected effectiveness.

Our method outperforms the other two algorithms in the remaining two tasks. De-
tailed experimental data clearly show that the performance of the behavior cloning (BC)
method lags that of the other methods. This can primarily be attributed to the compounding
error effect, which is a well-known issue with behavior cloning methods, as pointed out in
the literature [9,38].

5.2. Ablation Experiment

To demonstrate the independent effects of combining the normalization method
with residual connections and attention mechanisms on the algorithm’s performance, we
conducted the following ablation experiment:
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In the CartPole, HalfCheetah, and Humanoid control tasks, we compared the perfor-
mance of GAIL models that only incorporate residual connections for normalization with
GAIL models that only utilize attention mechanisms, as well as the performance of the
complete model.

Due to the similarity of performance of the three models, displaying the standard
deviation range would make the line graph appear too crowded. In order to observe the per-
formance curves of the three models more clearly, we do not present the standard deviation
in the graph of experimental results. The experimental results are shown in Figure 8.

In Figure 8, GAIL-1 represents the GAIL model that only incorporates attention mech-
anisms, while GAIL-2 represents the GAIL model that only utilizes residual connections
for normalization.

The results are consistent with our expectations. In the CartPole task, GAIL-2’s perfor-
mance is noticeably lower compared to the other two models due to the use of the “robust”
Z-score method. However, in the HalfCheetah and Humanoid tasks, the addition of either
residual connections for normalization or attention mechanisms improved the performance
of GAIL. This demonstrates that residual normalization and attention mechanisms, as
two relatively independent modules, can effectively enhance the performance of the GAIL
model in complex control tasks. The experimental results align with our hypothesis and
validate the positive impact of residual normalization and attention mechanisms on the
performance of GAIL.

Figure 8. Experimental results.
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6. Conclusions

This paper presents a new reinforcement learning framework designed to tackle the
difficulties of state representation and algorithmic stability in complex, dynamic environ-
ments. We integrated a residually connected state normalization method with generative
adversarial imitation learning (GAIL). This integration improves the utilization of state
information and partially addresses the problems of gradient vanishing and exploding.
Moreover, an attention mechanism is introduced to dynamically evaluate the significance
of information across different time steps, enhancing decision-making accuracy. While
these advancements boost algorithmic performance in complex scenarios, they demonstrate
limited improvement in simpler, low-dimensional tasks and entail increased computational
demands, necessitating high-performance computing resources. Future work will explore
the integration of meta learning to increase this method’s adaptability to various tasks and
its capacity for rapid adjustment to new challenges.
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