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A B S T R A C T

In Cyber-Physical Systems (CPS), distributed learning is essential for efficiently handling complex tasks
when sufficient resources are available. However, when resources are limited, traditional distributed learning
struggles to complete even simple tasks and presents a risk of privacy leakage. As a promising distributed
learning paradigm, federated learning only requires the client to send the trained model to the server instead
of private data, thereby preserving the client’s privacy to some extent. However, with the rapid development
of artificial intelligence technology, attack methods such as inference attacks still cause privacy leakage for
clients participating in federated learning. Moreover, due to its distributed learning nature, federated learning
cannot escape the dilemma of model accuracy being constrained by resources. To address the aforementioned
problems, this paper proposes a Federated local differential privacy scheme using Model Parameter Selection,
named Fed-MPS, for resource-constrained CPS. Specifically, to resolve the issue of limited CPS resources,
Fed-MPS adopts an update direction consistency-based parameter selection algorithm in federated learning to
extract parameters that enhance model accuracy for subsequent training, thereby improving the final model
accuracy and reducing communication overhead. Furthermore, Fed-MPS applies the local differential privacy
mechanism to further enhance clients’ privacy. By adding noise only to the chosen parameters, the privacy
budget is significantly reduced while ensuring model accuracy. Through privacy analysis, we prove that the
proposed Fed-MPS scheme satisfies (𝜖, 𝛿) − 𝐷𝑃 . Additionally, convergence analysis guarantees that Fed-MPS
will converge to the global optimum with a convergence ratio of 𝑂( 1

𝑇 2 ) within 𝑇 rounds of federated learning.
Extensive experiments on prominent benchmark datasets Cifar10, Mnist, and FashionMNIST demonstrate that,
compared with baseline schemes, the proposed Fed-MPS provides higher model accuracy for CPS under
resource constraints.
1. Introduction

Cyber-Physical Systems (CPS) represent the next-generation intel-
ligent architecture that seamlessly integrates computing, communi-
cation, and control [1]. This framework successfully enables inter-
action with physical processes through human–computer interaction
interfaces and facilitates the remote, reliable, real-time, secure, and
collaborative manipulation of physical entities through the network.
The implementation of distributed learning in CPS [2] has led to the
development of a CPS-based distributed learning architecture. As a
powerful distributed learning paradigm, federated learning offers effi-
cient model training [3] and a certain degree of privacy protection [4].
In federated learning, each client is responsible for training a local
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model from the initial one using its private data and then transmits the
trained model to the server for model aggregation. Subsequently, the
server distributes the aggregated model to all clients as the latest initial
model. This iterative process continues until the convergence condition
is met [5,6]. The architecture that combines CPS and federated learning
involves two types of participants, namely the client and server, and is
established within the three-layer network of CPS [7], comprising the
perception layer, network layer, and control layer. The local device is
part of the perception layer, and the transmission between the client
and server traverses the network layer, while the server operates within
the control layer. However, the storage and computing resources of
devices in CPS are often limited. Therefore, there might be impossible
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for devices to complete the model training due to resource constraints.
Consequently, there is an urgent need to design a more efficient fed-
erated learning mechanism tailored to the resource constraints of CPS.
Therefore, this paper considers the scenario depicted in Fig. 1, where
each client offloads the training task of its local model to the edge.
Taking into account the limited resources, the trained models will be
‘‘tailored’’ according to the different edge computing capabilities, and
the server will aggregate these models according to the ‘‘tailoring rules’’
during the aggregation process.

It is important to highlight that in federated learning [8], the
client only sends its trained model to the server, making it impossible
for the server to access the client’s private data. This design ensures
that models, rather than original data, are shared, providing clients
with a certain degree of data privacy [9]. However, with the rapid
development of artificial intelligence [10], hackers have demonstrated
increasingly sophisticated and diverse attack methods. In particular,
hackers can launch inference attacks to reverse-engineer models and
infer sensitive information, posing a significant threat to the data pri-
vacy of traditional federated learning [11]. To counter such attacks, the
concept of differential privacy was introduced by Dwork and Roth [12].
Subsequently, numerous privacy-preserving methods based on differen-
tial privacy have been proposed [13]. Most of these methods achieve
privacy protection by adding noise to the data, with the intensity of
privacy protection being determined by the amount of noise added. The
combination of federated learning and differential privacy can effec-
tively safeguard the privacy of clients in federated learning and prevent
inference attacks on models. Based on the target, i.e., the client or the
server, where the noise is added, the differential privacy of federated
learning can be categorized into local differential privacy and global
differential privacy. Given that local differential privacy is implemented
locally on the client side during model training, it is more efficient
in protecting clients’ privacy. Although the combination of federated
learning and differential privacy can effectively address the problem of
data privacy leakage in federated learning, it also introduces another
challenge. In differential privacy, the privacy budget increases with the
model size and communication rounds, which is inversely proportional
to the model accuracy. An excessively large privacy budget leads to
low model accuracy, while a small privacy budget compromises data
privacy protection. This issue is particularly severe in deep neural
networks with a large number of parameters, which is well known by
‘‘privacy budget explosion’’ because of the addition of massive noise to
the data for privacy protection.

To address the aforementioned challenges, this paper introduces
a Federated local differential privacy scheme using Model Parameter
Selection, named Fed-MPS, which significantly reduces communication
overhead and privacy budget for resource-constrained CPS. Addition-
ally, our scheme is designed to defend against black-box attacks in
inference, where attackers attempt to infer the workings of a model
solely through its inputs and outputs, without knowledge of its internal
structure and parameters. We summarize the main contributions of this
paper as follows:

• To improve the performance of distributed learning under re-
source constraints in CPS, we propose an update direction consis-
tency based parameter selection algorithm in federated learning
to alleviate the problems of high communication overhead and
low model accuracy. Specifically, this algorithm chooses model
parameters during federated learning training according to their
update directions, and only the selected model parameters can
participate in the subsequent training, ensuring model accuracy
while reducing communication overhead.

• To protect the privacy of federated learning participants, we add
Gaussian noise to the trained model to resist inference attacks.
Because the noise is only added to the chosen model parameters,
2

the problem of privacy budget explosion is also resolved.
• We conduct comprehensive privacy analysis and convergence
analysis on the proposed Fed-MPS scheme. The privacy analysis
proves that the proposed Fed-MPS scheme achieves (𝜖, 𝛿) − 𝐷𝑃 ,
where 𝜖 denotes the privacy budget and 𝛿 denotes the approxi-
mate max divergence, while the convergence analysis indicates
that this scheme can converge to the global optimum with a
convergence ratio of 𝑂( 1

𝑇 2 ) within 𝑇 rounds of federated learning.
• The extensive experiments are conducted on the benchmark

datasets Cifar10, Mnist, and FashionMNIST to evaluate the perfor-
mance of Fed-MPS by comparing with contemporary algorithms
CMFL and LDP-Fed. The experimental results demonstrate that
the proposed scheme outperforms the baselines by providing
better model accuracy in resource constrained CPS.

The remainder of this paper is organized as follows. The related
work is introduced in Section 2. Section 3 elaborates implementation
details of the proposed Fed-MPS scheme. Section 4 provides both
the privacy analysis and convergence analysis. Section 5 gives the
performance evaluation. Section 6 concludes this paper.

2. Related work

Given the stringent resource constraints in CPS, traditional dis-
tributed learning models often fall short of meeting task requirements,
thus necessitating a high degree of optimization for distributed learning
models. Currently, related research mainly falls into two categories:
model optimization under federated learning and model optimization
under federated learning with differential privacy protection. A com-
parison of the current mainstream research on federated differential
privacy is outlined in Table 1.

2.1. Model optimization for federated learning

Differing from the conventional federated fearning architecture,
Zhou et al. have developed a multi-center aggregation structure at
the global level, which learns multiple global models based on the
dynamically updated local model weights [14]. At the local level, they
have designed a hierarchical neural network structure that includes
personalized and federated modules to address issues of data and model
heterogeneity, thereby enhancing the performance of personalized fed-
erated learning in the context of Metaverse data. Zhou et al. [15]
proposed a peer-to-peer based privacy-aware asynchronous federated
learning framework for secure and resilient decentralized model train-
ing of modern mobile robotic systems. Additionally, they introduced a
clustering-based approach to select participants for federated learning
using social context data to enhance the safety and performance of
federated learning [16]. Xu et al. [17] proposed a privacy-preserving
federated learning method using a function-based encryption protocol,
reducing training time, data transfer, and improving communication
efficiency. Sattler et al. [18] developed a compression framework tai-
lored to meet the requirements of federated learning, extending the
existing top-k gradient sparsification compression technique with a
mechanism for downstream compression and weight updating, result-
ing in improved communication efficiency by reducing the model
size and privacy budget. Yang et al. [19] proposed an iterative al-
gorithm to address energy-efficient transmission and computational
resource allocation for federated learning over wireless communica-
tion networks, significantly reducing energy consumption in wireless
communication networks. Meng et al. [20] introduced an efficient and
privacy-enhancing federated learning scheme for industrial artificial
intelligence, which is non-interactive and prevents privacy data leak-
age even if multiple entities collude. Reisizadeh et al. [21] proposed
an efficient communication federated learning method with periodic
averaging and quantization to address communication and scalabil-
ity challenges in federated learning. A Hierarchical Hybrid Network
model is constructed to describe the multi-type relationships between
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Fig. 1. The architecture combining resources constrained CPS and federated learning.
Table 1
A comparison of current mainstream privacy protection strategies in federated learning.

References Scenes Advantages Limitations

[12] DP Quantitative protection of user privacy Limited user privacy protection
[27] Cross-silo FL Ensure user-level privacy No consideration of data availability
[28] FL Adaptively perturb the residual weights using LDP Adaptive perturbation adds additional cost
[29] LDP-FL Reduce communication overhead while protecting privacy Privacy budget explosion
[30] FL Achieves greater utility and smaller transfer rates Limited user privacy protection
[31] DP-FL Protect users’ privacy through DP Privacy budget explosion
[32] LDP-FL Improve communication efficiency, reduce privacy budget Compression model fails in model accuracy
[33] DP-FL Solve the privacy budget explosion by model shuffling Shuffling model adds extra cost
[34] LDP-FL Proposed mechanism bypasses the curse of dimensionality Model accuracy is not considered
[35] FL Improve model accuracy, protect client-level DP Model sparsity cause model accuracy loss
[36] LDA Solve the privacy problem in LDA by LDP-FL Privacy budget is not considered
[37] Fed-Distillation Noise-free DP Supports no privacy preserving ML methods
[38] DP-FL Adaptive gradient descent, reduce communications costs Privacy budget explosion
[39] FL Address privacy concerns in wireless IoT Poor tradeoff between privacy and accuracy
[40] Signds-FL Improve model convergence and accuracy Limited user privacy protection
[41] Blockchained-FL Data security and higher accuracy Privacy budget explosion
[25] FL Convergence guarantee, and low communication cost Poor trade-off between privacy and reliability
[26] pFL Model personalization Poor trade-off between privacy and reliability
[24] FML Model personalization Poor trade-off between privacy and reliability
[42] LDP-FL Low communication cost Poor trade-off between privacy and reliability
different entities to optimize big data recommendations [22]. Ghosh
et al. [23] proposed a new iterative federated clustering algorithm,
which alternately estimates the clustering identity of users and op-
timizes the model parameters of the client through gradient descent
to improve the efficiency of federated learning communication. Yang
et al. proposed the Group-based Federated Meta-Learning framework
(G-FML) [24] that employs a simple yet effective grouping mechanism
to adaptively partition clients into multiple groups, enabling group-
level meta-models to achieve personalization in highly heterogeneous
environments. Wang et al. proposed the Communication-Mitigated Fed-
erated Learning (CMFL) [25] that provides clients with feedback on
the global trend of model updating, reducing communication overhead
by avoiding irrelevant updates to the server and ensuring learning
convergence. Ma et al. proposed the dubbed Layer-wised Personalized
Federated learning (pFedLA) [26] that uses a dedicated hypernetwork
3

for each client on the server side and introduces a parameterized mech-
anism to update layer-wise aggregation weights for accurate model
personalization.

2.2. Model optimization for federated learning with local differential pri-
vacy

Seif et al. [43] proposed a private wireless gradient aggregation
scheme using LDP and federated learning to enhance privacy protec-
tion over wireless channels. Girgis et al. [44] proposed an efficient
communication scheme for privacy amplification by client-side sub-
sampling and used a privacy mashup model to reduce the privacy
budget. Hu et al. [32] proposed a new federated learning framework
with sparse amplification privacy, which combines random sparsization
with gradient perturbation to enhance privacy assurance. Liu et al. [33]
reduced the privacy budget by exploiting the privacy amplification
effect in the recently proposed shuffle model with differential privacy.
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Zhou et al. [31] proposed a Gaussian differential privacy-based fed-
erated learning algorithm Noisy-FL, which enabled user-level privacy
protection. Wang et al. [36] proposed a local differential privacy-based
federated learning framework for LDA models and provide theoretical
guarantees for data privacy and model accuracy. To address the trade-
off between privacy budget and model performance, Sun et al. [37]
proposed a new framework that applies the noise-free differential pri-
vacy (NFDP) mechanism to the federated model distillation framework.
Sun et al. [34] proposed a design for a local differential privacy
mechanism for federated learning to address the issue of an expo-
nential increase in privacy budget due to deep model iteration. Jiang
et al. [40] proposed a multidimensional selection algorithm based on
an exponential mechanism in federated learning to further improve the
convergence and accuracy of the model. Jiang et al. [45] proposed a
new hybrid differential privacy and adaptive compression for industrial
data processing with a federated edge learning framework to address
the problem of models subject to inference attacks. In addition, Javed
et al. [41] innovatively applied a local differential privacy federated
framework using blockchain, providing enhanced data security and
higher accuracy. Wang et al. [46] proposed a privacy-preserving feder-
ated framework, PPeFL, based on local differential privacy, addressing
the rapid increase in privacy budget and significantly reducing com-
munication overhead. Ren et al. [47] introduced EFedDSA, a solution
based on horizontal federated learning and differential privacy, aiming
to enhance the scalability of machine learning architecture and ad-
dress privacy concerns by improving local privacy protection strength.
Wang et al. [48] presented a federated learning framework based on
Edge-IoT to handle vertical and horizontal data, showcasing charac-
teristics of low communication costs and high precision. Truex et al.
proposed a federated learning system using local differential privacy
(LDP-Fed) [42] that guarantees formal differential privacy for the
repeated collection of model training parameters in federated training
of large-scale neural networks. It also implements selection and filtering
techniques for sharing selected parameter updates with the parameter
server.

In conclusion, while these methods can achieve privacy protec-
tion for federated learning in CPS, the model’s reliability is relatively
low. Considering the potential shortage of computational and stor-
age resources in CPS, the reliability of the model trained under such
conditions could be further compromised. To address this issue, this
paper reduces the training scale of the model through model parameter
selection, while also reducing the communication cost of federated
learning under the premise of ensuring model accuracy. This approach
to privacy protection has a lesser impact on the reliability of the model.
Therefore, the proposed method is suitable for resource-constrained
CPS.

3. Distributed learning architecture under resource constrained
CPS

In this section, we first give the formal statement of the problem
encountered in this paper, then give the implementation details of the
proposed Fed-MPS scheme.

3.1. Problem statement

The application of CPS-based federated learning to agriculture,
and the development of an intelligent agricultural system driven by
artificial intelligence and the Internet of Things, holds tremendous
promise for addressing numerous challenges faced by the agriculture
sector, such as unpredictable weather patterns, soil degradation, and
limited access to water resources. Traditional farming methods are
often labor-intensive and inefficient, failing to ensure optimal yield and
quality. The envisioned intelligent agricultural system will be equipped
with various sensors, including those for temperature, humidity, soil
moisture, and other environmental factors, embedded in farmland.
4

Table 2
The list of main symbols.

Symbol Meanings

𝐷𝑖 Dataset of client 𝑖
𝐵 Local mini-batch size
𝐸 Number of local epochs
𝜂 Learning rate
𝜃 Model parameters
𝜖 Privacy budget
𝐮 Update direction
𝑟(𝐮,𝐮𝐬) Relevance of local parameters and server update
𝛿 Failure probability
𝐺 Bounded gradient
𝑔 Gradient
𝜎 Gaussian distribution variance
𝜙(.) L2 sensitivity
𝐿 L-smooth
𝜇 𝜇-strongly convex
𝑒𝑡ℎ Error threshold
𝛼 Privacy budget of RDP
𝛽 Failure probability of RDP
𝑑, 𝑚 Dimensions of the model parameters
𝜉 Dataset of small batch
𝛹 Average optimization rate

These sensors are connected to the internet, providing real-time data
to cloud-based platforms. By leveraging efficient artificial intelligence
algorithms [49], the system can analyze sensor data to offer farm-
ers advice on optimizing agricultural outcomes, determining the best
timing for planting or harvesting crops, managing irrigation amounts,
and optimizing fertilizer use [50]. The system’s learning capability
is ensured through federated learning, continuously collecting farm
data to enhance overall performance. Processed data is securely stored
in the system’s database, accessible to authorized users anytime and
anywhere through a network-based dashboard. The recommendation
system of the intelligent agricultural platform ensures the appropriate
use of resources such as water, fertilizers, and pesticides, minimizing
agricultural input waste. In conclusion, the integration of CPS-based
federated learning with agriculture through the intelligent agricultural
platform offers a sustainable, high-yield, efficient, and cost-effective
future for agriculture.

This research has garnered widespread attention from academia and
industry. For instance, Kumar et al. [51] proposed a federated learn-
ing framework called PEFL for CPS-based agriculture. This framework
implements federated learning within the CPS architecture, enhanc-
ing the privacy protection capabilities in agriculture. Furthermore,
Yu et al. [52] integrated federated learning into the agricultural CPS
architecture, improving communication efficiency and achieving higher
precision. However, the robustness of such an intelligent agricultural
system heavily relies on the resources provided by the underlying CPS.
If the resources of the underlying system are constrained, then any
module built on that system may struggle to perform well. Addressing
this challenge requires a formal statement of the problems encountered
in this paper.

Suppose in resource constrained CPS, there are 𝑁 clients and one
server participating in federated learning. At each round, 𝑘 (𝑘 ≤ 𝑛)
clients are randomly chosen to perform local model training. Let set
𝐷𝑖 = {(𝑥𝑖,𝑘, 𝑦𝑖,𝑘)}

𝑛𝑖
𝑘=1 represent the private data of client 𝑖, where 𝑛𝑖 is

he corresponding sample number; 𝜃 represent the model parameters of
lient and server; 𝑏𝑖 denote the Gaussian noise sampled from 𝑁(0, 𝜎2𝐼𝑑 )
or client 𝑖. Our main concerns revolve around addressing the chal-
enges of privacy budget explosion, limited computational and storage
esources, and ensuring model training convergence. Therefore, the
roblem can be formally described as finding a solution that satisfies
he following equation while minimizing the computation and storage



Journal of Systems Architecture 150 (2024) 103108S. Jiang et al.

f
o
r

r

H
a
q
b
t

3

c
c
u
b
p
n
t
m
q
d

t
t
H
r
a
o
e
a
W
p
i

Fig. 2. The flowchart of the proposed Fed-MPS scheme. ① Each client train the local model using data collected by sensors. ② Parameter selection helps to reduce the scale of the
trained model about to be uploaded, where the selected parameters are denoted by solid yellow circles. ③ The noise perturbation is implemented to provide (𝜖, 𝛿)-DP protection
or each client. ④ The shrinked and perturbed models are aggregated toward the server through the network layer. ⑤ The server aggregates the models with a convergence ratio
f 𝑂( 1

𝑇 2 ) for 𝑇 rounds of federated learning. ⑥ The aggregated model is distributed to all clients. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)
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argmin
𝜃

1
𝑘

𝑘
∑

𝑗=1
𝑓𝑗 (𝜃 + 𝑏)

𝑠𝑡. 𝑏 ∼ 𝑁(0, 𝜎2𝐼𝑑 ),

𝑓𝑗 (𝜃) =
1
𝑛𝑖

𝑛𝑖
∑

𝑖=1
𝐿(𝑥𝑘𝑖 , 𝑦

𝑘
𝑖 ; 𝜃).

(1)

ere, 𝐿(.) is the loss function of the training error; argmin𝜃 ensures the
dded noise and the model size are minimized, which means the re-
uired privacy budget, computational resources, storage resources, and
andwidth are minimized. The list of main symbols used throughout
his paper is summarized in Table 2.

.2. The proposed scheme implementation

Federated learning in resource-constrained CPS faces two main
hallenges. Firstly, devices in CPS often lack sufficient resources to
omplete complex tasks through federated learning, posing a risk of
ser privacy disclosure during the process. Secondly, while the com-
ination of local differential privacy and federated learning effectively
rotects users’ privacy, it also introduces new challenges. The added
oise is proportional to the model size, which is inversely proportional
o the model accuracy. Modern deep learning neural networks, which
ay contain millions of model parameters, can be very large. Conse-

uently, huge deep neural networks might suffer from the performance
eterioration in model accuracy caused by ‘‘Privacy Budget Explosion’’.

In addressing the aforementioned problems, Wang et al. [25] found
hat a client’s participation in federated training is somehow related
o the alignment of the client and server model update directions.
ere, the model update direction refers to the change in model pa-

ameters from the original to the updated model when performing
n update. If this change is positive, it signifies a positive direction;
therwise, it is considered a negative direction. Additionally, they
stablished a threshold, such that if a client’s model update direction
ligns with the server’s update direction, then a counter is incremented.
hen the accumulated count surpasses the threshold, the client is

ermitted to engage in federated training; otherwise, participation
5

s denied. Furthermore, experimental results from [25] demonstrated p
he effectiveness of determining a client’s participation in federated
raining based on the alignment of the client and server model update
irections.

Considering the potential drawback of directly discarding clients in
he method proposed by Wang et al. [25], which may result in the loss
f model parameters contributing to convergence, we take a different
erspective on this issue and attempt to find a solution. While they
etermined a client’s participation in federated training based solely
n the model update direction, our solution enhances this approach
y refining the retention or discarding of model parameters according
o the model update direction. This refined approach offers a more
ophisticated consideration, allowing us to maintain model parameters
hat contribute to convergence, expedite the convergence process of
odel training, and improve accuracy. Next, we introduce the proposed

ed-MPS scheme in details, which comprises three modules: model
arameter selection, model aggregation, and local optimization and
oise injection. The flowchart of Fed-MPS scheme is shown in Fig. 2
nd Algorithm 1 gives its pseudocode. In Algorithm 1, the server is
rimarily responsible for initializing the model, collecting the model
arameters from the selected 𝑘 clients, and averaging the collected
odels. For the selected clients, the local model is trained by perform-

ng stochastic gradient descent as shown on Line 5 of Algorithm 1. Line
calculates the update direction between the model parameters and

he server model. Line 9 calculates the correlation between the model
arameters and the server updates. Line 11 indicates the noise added
o the final model, which is then uploaded to the server.

Model Parameter Selection. From the above analysis, we know that
e only need to compare the model update direction between the

lients and server. Thereby, we need to define the update direction first
efore further analysis. We use the following equation to calculate the
pdate direction

𝐭 =
‖𝑈𝑝𝑑𝑎𝑡𝑒𝑡+1 − 𝑈𝑝𝑑𝑎𝑡𝑒𝑡‖

‖𝑈𝑝𝑑𝑎𝑡𝑒𝑡‖
. (2)

ere, 𝑈𝑝𝑑𝑎𝑡𝑒𝑡+1 and 𝑈𝑝𝑑𝑎𝑡𝑒𝑡 denote the updates in the (𝑡 + 1)th round
nd 𝑡th round respectively, and ‖.‖ denotes the L2 norm throughout this
aper. By Eq. (2), we can calculate the update directions of the local
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Algorithm 1 The Pseudocode of the Fed-MPS Scheme
Require: the dataset of client 𝑖 𝐷𝑖, the number of local client 𝑛, the

local mini-batch size 𝐵, the number of local epochs 𝐸, and the
learning rate 𝜂.
nsure: the global model 𝜃
ocalUpdate:
1: receive 𝜃𝑡+1 from server;
2: for each local client 𝑖 ∈ 𝑘 in parallel do
3: for each local epoch 𝑠 = 0, 1...𝐸 do
4: for each batch 𝑏 ∈ 𝐵 do
5: 𝜃𝑡,𝑠+1𝑖 ← 𝜃𝑡,𝑠𝑖 − 𝜂𝑔𝑡,𝑠𝑖 ;
6: end for
7: end for
8: calculate the update direction of each model parameter according

to Equation (2);
9: compute r(u,𝐮𝐬) according to Equation (3);

10: according to whether r(u, 𝐮𝐬) are 1s, 0s, or 1s and 0s to decide
whether the parameters are retained;

11: upload 𝜃′𝑡𝑖 after adding noise 𝑏𝑡,𝑠𝑖 ∼ 𝑁(0, 𝜎2𝐼𝑑 );
12: end for
ServerUpdate:
1: initialize model 𝜃0;
2: send 𝜃0 to all clients;
3: for each round 𝑡 = 1, 2, ...𝑇 do
4: randomly select 𝑘 (𝑘 < 𝑛) local clients;
5: collect all models 𝜃𝑡 from selected clients;
6: aggregate all models by 𝜃𝑡+1 ← 1

𝑘
∑𝑘−1
𝑖=0 𝜃

′𝑡
𝑖 with the ‘0’ padding

method;
7: Send 𝜃𝑡+1 to all client;
8: end for

and server model parameters. Further, we need to determine whether
the update directions of the local and server model parameters are
consistent.

To this end, we define the following function 𝑟(.) to assess the
consistency of the update directions of the local and server model
parameters.

Definition 1. Let 𝐮𝑖 denote the update direction of the 𝑖th local model,
and 𝐮𝐬 denote the last update direction of the server. Thereby, the
correlation of model update direction between the client and server can
be measured using the following equation:

𝑟(𝐮𝑖,𝐮𝐬) = I
(

𝑠𝑔𝑛(𝐮𝑖) = 𝑠𝑔𝑛(𝐮𝐬)
)

. (3)

Here, I(.) represents the vector based indicator function that maps any
input into a binary vector under a certain condition.

Then, we explain how to calculate 𝑟(.) in details. To be more specific,
let 𝐮𝑖 take the form of 𝐮𝑖 =

(

𝑢𝑖1, 𝑢
𝑖
2,… , 𝑢𝑖𝑚

)

, where 𝑢𝑖𝑗 represents the up-
ate of the 𝑖th local model in the 𝑗th dimension. Then, the 𝑠𝑔𝑛 function,
enoted by 𝑠𝑔𝑛(.), transforms every element 𝑢𝑗𝑖 of a 𝑚-dimension vector
𝑖 into 1, 0 or −1 by

𝑔𝑛(𝑢𝑖𝑗 ) =

⎧

⎪

⎨

⎪

⎩

1 𝑢𝑖𝑗 > 0,
0 𝑢𝑖𝑗 = 0,

−1 𝑢𝑖𝑗 < 0.

(4)

Following that, let 𝑆𝑖 =
∑𝑚
𝑗=1 𝑠𝑔𝑛(𝑢

𝑖
𝑗 ), and the process of converting

the 𝑛-dimensional parameters to 1, 0, or −1 using the above 𝑠𝑔𝑛
function with a pre-determined threshold 𝑡ℎ𝑟𝑒𝑠 can expressed by

𝑠𝑔𝑛(𝐮𝑖) =
⎧

⎪

⎨

⎪

1 𝑆𝑖 > 𝑡ℎ𝑟𝑒𝑠,
0 𝑆𝑖 = 𝑡ℎ𝑟𝑒𝑠, (5)
6

⎩

−1 𝑆𝑖 < 𝑡ℎ𝑟𝑒𝑠.
By observing Eqs. (3), (4) and (5), we know that 𝑟(𝐮,𝐮𝐬) takes the
form of a 𝑛-dimension vector that consists of 1s and 0s. Furthermore, let
𝐮𝑖,𝑡+1 and 𝐮𝑡𝐬 denote the update of the 𝑘th local model’s parameters at
the (𝑡+1)th round and that of the server at the 𝑡th round, respectively.
According to three possibilities of the update direction consistency, we
summarize the value of 𝑟(𝐮𝑖,𝐮𝐬) by

𝑟
(

𝐮𝑖,𝑡+1,𝐮𝑡𝐬

)

= I
(

𝑠𝑔𝑛(𝐮𝑖,𝑡+1) = 𝑠𝑔𝑛(𝐮𝑡𝐬)
)

=

⎧

⎪

⎨

⎪

⎩

𝟏1×𝑚 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦,
𝟎1×𝑚 𝐼𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦,
𝐫1×𝑚, 𝑟 ∈ {0, 1} 𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦.

(6)

Here, 𝟏1×𝑚, 𝟎1×𝑚 and 𝐫1×𝑚 denote the vector that consists of 𝑛 1s, 0s and
s, respectively.

According to Eq. (6), we can make the appropriate decisions on
odel parameter selection as follows. For the consistency case, all
arameters of the 𝑖th model should be uploaded; for the inconsistency
ase, the 𝑖th model should be discarded; for the partially consistency
ase, only those parameters of the 𝑖th model with the same model
pdate direction as that of the server will be uploaded.

Overall, during the 𝑡th round of local training, the client first
alculates the update direction of local and server model parameters
sing Eq. (2), to determine the value of 𝑠𝑔𝑛(.) for model parameter
by Eqs. (3), (4) and (5). Next, it assesses the consistency between
ach local and server model parameter 𝑖 using Eq. (6) to retain the pa-
ameters with consistent directions and discard those with inconsistent
irections.
Model Aggregation. First, the server randomly initializes the model

eights at the beginning with the total number of 𝑛 local clients.
hen, in the 𝑟th round of communication, the server randomly selects
(𝑘 < 𝑛) clients for local training. The individual selection of model

arameters by each local client results in heterogeneous models of the
lients.

As shown in Fig. 2, the model parameters marked by yellow solid
ircles in step 2 are the selected ones for training, maintaining distinct
arameters at their respective model positions. For the server-side
ggregation, we adopt the ‘0’ padding method. To be specific, for
ositions in the model lacking parameters, we default the values at
hose model positions to zero and aggregate the values by averaging
hem with other model parameters. We aggregate the model in this
anner and send the aggregated model to each client.
Local Optimization and Noise Injection. For each client, it uses its

wn private dataset for local model training. After the local training
s completed, the update direction of the local model is calculated, so
s the correlation between the update direction of the local model and
hat of the server. Only selected model parameters will be sent to the
erver for model aggregation. Before uploading the model, a certain
mount of Gaussian noise 𝑏, 𝑏 ∼ 𝑁(0, 𝜎2𝐼𝑑 ), will be added to the model
o provide privacy protection. The rigorous theoretical analysis on the
roposed scheme Fed-MPS is provided in Section 4, where Theorem 1
roves that Fed-MPS satisfies (𝜖, 𝛿) −𝐷𝑃 , while Theorem 2 guarantees
hat Fed-MPS converges to the global optimum.

. Theoretical analysis

In this section, we conduct comprehensive privacy analysis and con-
ergence analysis on the proposed Fed-MPS scheme. We prove that the
roposed Fed-MPS scheme achieves (𝜖, 𝛿) −𝐷𝑃 , where 𝜖 = 7𝑞2𝐼𝑖𝜏𝛼𝑂𝐺2

𝐵2𝜎2
+

𝑙𝑜𝑔(1∕𝛿)
𝛼−1 denotes the privacy budget, while the convergence analysis

indicates that this scheme can converge to the global optimum with
a convergence ratio of 𝑂

( 1
𝑇 2

)

within 𝑇 rounds of federated learning.
We also analyze the communication overhead of the proposed scheme.
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4.1. Privacy analysis

We first discuss the end-to-end privacy guarantees, which refers to
the privacy guarantee from client to server and it should be satisfied
by each client. The assumptions and lemmas required for the privacy
analysis are given in the following.

Assumption 1 (Bounded Gradient). The loss function 𝑙(𝑖)(𝑥, 𝑧) has 𝐺∕
√

𝑑-
ounded gradients, i.e., for any data sample 𝑧 from 𝐷𝑖, we have
[

∇𝑙𝑖(𝑥, 𝑧)
]

𝑗
|

|

|

≤ 𝐺∕
√

𝑑 for all 𝑥 ∈ 𝑅𝑑 , 𝑗 ∈ [𝑑] and 𝑖 ∈ [𝑛].

emma 1 (RDP Composition [53]). If 𝑀1 satisfies (𝛼, 𝜌1) −𝑅𝐷𝑃 and 𝑀2

atisfies (𝛼, 𝜌2) − 𝑅𝐷𝑃 , then their composition 𝑀1◦𝑀2 satisfies
(

𝛼, 𝜌1 +

2

)

− 𝑅𝐷𝑃 .

emma 2 (Gaussian Mechanism [53]). Let ℎ ∶ 𝐷 → 𝑅𝑑 be a vector-
alued function over datasets. The Gaussian mechanism𝑀 = ℎ(𝐷)+ 𝑏 with
∼ 𝑁(0, 𝜎2𝐼𝑑 ) satisfies

(

𝛼, 𝛼𝜙2(ℎ)∕2𝜎2
)

− 𝑅𝐷𝑃 , where 𝜙(ℎ) is the 𝐿2

ensitivity of ℎ defined by 𝜙(ℎ) = 𝑠𝑢𝑝𝐷,𝐷′
|

|

|

|

|

|

ℎ(𝐷) − ℎ(𝐷′)||
|

|

|

|

with 𝐷, 𝐷′ being
wo neighboring datasets in 𝐷.

emma 3 (RDP to DP Conversion [54]). If𝑀 satisfies
(

𝛼, 𝜌
)

−𝑅𝐷𝑃 , then

t also satisfies
(

𝜌 + 𝑙𝑜𝑔(1∕𝛿)
𝛼−1 , 𝛿

)

−𝐷𝑃 .

For a Gaussian mechanism 𝑀 and any 𝑚-datapoints dataset 𝐷, we
define 𝑀 ◦ 𝑆𝑈𝐵𝑆𝐴𝑀𝑃𝐿𝐸 as applying 𝑀 on the subsampled dataset
as input, where 𝐵 datapoints are subsampled without replacement from
the dataset with 𝑞 = 𝐵∕𝑚 as the sampling ratio. By this definition, we
introduce Lemma 4 that ensures the RDP for subsampling.

Lemma 4 (RDP for Subsampling Mechanism [54,55]). If 𝑀 satisfies
(

𝛼, 𝜌(𝛼)
)

− 𝑅𝐷𝑃 with respect to the subsampled dataset for all integers
𝛼 ≥ 2, then the new randomized mechanism 𝑀 ◦ 𝑆𝑈𝐵𝑆𝐴𝑀𝑃𝐿𝐸 satisfies
(

𝛼, 𝜌′(𝛼)
)

− 𝑅𝐷𝑃 with respect to 𝐷, where

𝜌′(𝛼) ≤ 1
𝛼 − 1

𝑙𝑜𝑔
(

1 + 𝑞2
(

𝛼
2

)

min
{

4(𝑒𝜌(2) − 1)
}

+
𝛼
∑

𝑗=3
𝑞2
(

𝛼
𝑗

)

2𝑒(𝑗−1)𝜌(𝑗)
)

.

(7)

f 𝜎′2 = 𝜎2∕𝜙2(ℎ) and 𝛼 ≤ (2∕3)𝜎2𝑙𝑜𝑔
(

1∕𝑞𝛼(1 + 𝜎′2)
)

+ 1, then 𝑀◦

𝑈𝐵𝑆𝐴𝑀𝑃𝐿𝐸 satisfies
(

𝛼, 3.5𝑞2𝜙2(ℎ)𝛼∕𝜎2
)

− 𝑅𝐷𝑃 .

Let 𝑞 = 𝐵∕𝑚 denote the data sampling rate, 𝜏 denote the number of
ocal iterations, 𝐼𝑖 represent the number of rounds agent 𝑖 participated,
denote the privacy budget of RDP, 𝜎2 denote the variance of Gaussian
istribution, 𝛿 represent the failure probability in differential privacy,
𝑖,𝑡 denote the optimization rate of agent 𝑖 at 𝑡th round iteration,
nd 𝑂 denote the average optimization rate over 𝑇 federated learning
ounds. We then introduce Theorem 1 that guarantees the privacy of
he proposed Fed-MPS scheme.

heorem 1 (Privacy Guarantee). Assume that at each iteration small
atches 𝜉𝑡,𝑠𝑖 are sampled without replacement. Under Assumption 1, if 𝜎′2 =
2𝐵2∕2𝑂𝐺2 ≥ 0.7, then Fed-MPS achieves (𝜖, 𝛿) −𝐷𝑃 for agent 𝑖, where

=
7𝑞2𝐼𝑖𝜏𝛼𝑂𝐺2

𝐵2𝜎2
+
𝑙𝑜𝑔(1∕𝛿)
𝛼 − 1

(8)

for any 𝛼 ≤ (2∕3)𝜎2𝑙𝑜𝑔
(

1∕𝑞𝛼(1 + 𝜎′2)
)

+ 1 and 𝛿 ∈ (0, 1).

roof. In our differential privacy mechanism for Fed-MPS, the privacy
uarantee provided by Gaussian noise is amplified by the model param-
ter selection. To analyze the end-to-end privacy, we need to analyze
7

he sensitivity in Algorithm 1 at line 14.
Let 𝑔𝑡,𝑠𝑖 and 𝑏𝑡,𝑠𝑖 denote the model gradient and the added Gaussian
oise of agent 𝑖 after the 𝑡th round of compression, respectively. Then,
e analyze the sensitivity of 𝑔𝑡,𝑠𝑖 and then calculate the privacy guaran-

ee after adding noise 𝑏𝑡,𝑠𝑖 for agent 𝑖, given that any two neighboring
ata sets 𝜉𝑡,𝑠𝑖 and 𝜉′𝑡,𝑠𝑖 have the same size 𝐵 but differ in one data sample
e.g., 𝑧 ∈ 𝜉𝑡,𝑠𝑖 and 𝑧′ ∈ 𝜉′𝑡,𝑠𝑖 ). Since in Fed-MPS, the model parameters
re passed through a model parameter selection algorithm to obtain the
inal model parameters, the optimization rate of each agent is different
t different iteration rounds. Thus, the 𝐿2 sensitivity can be expressed
s follows under Assumption 1 with 2𝑜𝑖,𝑡𝐺2∕𝐵2 as a bound

2
𝑖,𝑡 = max

‖

‖

‖

‖

𝑔𝑡,𝑠𝑖 −
[

▿𝑓𝑖(𝜃
𝑡,𝑠
𝑖 , 𝜖

𝑡,𝑠
𝑖 )

]‖

‖

‖

‖

2

= max
‖

‖

‖

‖

(1∕𝐵)
[

▿𝑙(𝜃𝑡,𝑠𝑖 , 𝑧) − ▿𝑙(𝜃𝑡,𝑠𝑖 , 𝑧
′)
]‖

‖

‖

‖

2
. (9)

We find that the sensitivity of 𝑔𝑡,𝑠𝑖 is proportional to the optimization
ate, which reduces the privacy loss according to Lemma 2. In each
ocal iteration of Algorithm 1, a small batch 𝜉𝑡,𝑠𝑖 of subsampling satisfies
𝛼, 𝛼

)

−𝑅𝐷𝑃 , 𝛼 = 𝑜𝑖,𝑡𝐺2∕𝐵2𝜎2. Furthermore, Lemma 4 guarantees that
y subsampling 𝑀◦ SUBSAMPLE satisfies

(

𝛼, 3.5𝑞2𝜙2(ℎ)𝛼∕𝜎2
)

− 𝑅𝐷𝑃 .
hus, we derive Theorem 1 according to Lemmas 1 to 4.

From Theorem 1, it can be deduced that given a fixed value of 𝛿, 𝜖
s computed numerically by searching an optimal 𝛼 that minimizes 𝜖.

e notice that the noise size 𝜎 is proportional to 𝑂. This implies that
he size of Gaussian noise can be reduced when the compression ratio
s less than 1, thus improving the model accuracy.

.2. Convergence analysis

We then give the convergence analysis, and calculate the com-
unication overhead as well. For the convenience of illustration, we

ssume that the size of the local data of all clients is the same, for any
, 𝑗 ∈ 𝐾, 𝐷𝑖 = 𝐷𝑗 , and 𝑁 clients are selected to train locally for 𝐸
ounds each time. Similarly, the assumptions to support the proof of
ur convergence analysis are given as follows.

ssumption 2. L-smooth: ∀𝑥, 𝑦, 𝐹 (𝑦) ≤ 𝐹 (𝑥)+(𝑦−𝑥)𝑇▿𝐹 (𝑥)+ 𝐿
2
|

|

|

|

|

|

𝑦−𝑥||
|

|

|

|

2
.

Assumption 3. 𝜇-strongly convex: ∀𝑥, 𝑦, 𝐹 (𝑦) ≥ 𝐹 (𝑥) + (𝑦 − 𝑥)𝑇▿𝐹 (𝑥)
𝜇
2
|

|

|

|

|

|

𝑦 − 𝑥||
|

|

|

|

2
.

ssumption 4. Bounded gradient and bounded variance of gradient:
[

|

|

|

|

|

|

▿𝐹
(

𝑥𝑘[𝑡], 𝜉𝑘[𝑡]
)

− ▿𝐹
(

𝑥𝑘[𝑡]
)

|

|

|

|

|

|

2
]

≤ 𝜎2 and 𝐸
[

|

|

|

|

|

|

▿𝐹
(

𝑥𝑘[𝑡], 𝜉𝑘[𝑡]
)

|

|

|

|

|

|

]

𝐺2.

heorem 2 (Convergence Analysis). When the above three assumptions
old, let 𝐾 = 𝐿∕𝜇, 𝛾 = 𝑚𝑎𝑥{8𝐾,𝐸}, and the learning rate 𝜂 = 2

𝜇(𝛾+𝑡) ,

here 𝐿 is the L-smooth, 𝜇 is 𝜇-strongly convex, 𝐸 is the number of local
raining rounds, and 𝑡 is the number of global training rounds. If the error
hreshold in Fed-MPS satisfies the following inequality:

𝑡ℎ[𝑡
]

≤ 𝜂2𝑡 = 4
𝜇2(𝛾 + 𝑡)2

∼ 𝑂( 1
𝑡2
), 𝐸

[

𝑒𝑖
]

= 0, ∀𝑖 ∈ 𝐾. (10)

Then, all local clients participating in training in Fed-MPS satisfy:

𝐸
[

𝐹
(

𝑥[𝑇 ]
)

− 𝐹
(

𝑥∗
)

]

≤ 𝐾
𝛾 + 𝑇 − 1

(

2𝐵
𝜇

+
𝜇𝛾
2

[

|

|

|

|

|

|

𝑥[1] − 𝑥∗||
|

|

|

|

2
])

. (11)

where 𝐵 =
∑𝑁
𝑖=1

𝜎2𝑖
𝑁2 + 6𝐿𝛤 + 8(𝐸 − 1)𝐺2 + 𝐸

[

|

|

|

|

|

|

𝑒𝑡ℎ||
|

|

|

|

2
]

.

roof. By the 𝐿 − 𝑠𝑚𝑜𝑜𝑡ℎ assumption, we can get the following
nequality:
[

𝐹
(

𝑥[𝑡]
)

]

− 𝐹 (𝑥∗) ≤ 𝐿𝐸
[

|

|

|

|𝑥[𝑡] − 𝑥∗||||
2
]

. (12)

2 || ||
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In Fed-MPS, the uplink errors from different users are not independent.
To solve this problem, we constrain the error term of the uplink as
follows:

𝐸
[

|

|

|

|

|

|

𝑥∗[𝑡] − 𝑥[𝑡]||
|

|

|

|

2
]

= 𝐸
[

|

|

|

|

|

|

𝑒[𝑡] ∥2
]

= 1
𝑁2

𝐸
[

|

|

|

|

|

|

𝑁
∑

𝑖=1
𝑒𝑖[𝑡]||

|

|

|

|

2
]

≤ 𝑒𝑡ℎ
[

𝑡
]

. (13)

We can also obtain the following inequality:
[

|

|

|

|

|

|

𝑥[𝑡 + 1] − 𝑥∗||
|

|

|

|

2
]

≤ (1 − 𝜂𝑡𝜇)𝐸
[

|

|

|

|

|

|

𝑥[𝑡] − 𝑥∗||
|

|

|

|

2
]

+ 𝑒𝑡ℎ
[

𝑡
]

+ 𝜂2𝑡

[ 𝑁
∑

𝑖=1

𝜎2𝑖
𝑁2

+ 6𝐿𝛤 + 8(𝐸 − 1)𝐺2
]

.
(14)

Let 𝛥𝑡 = 𝐸
[

|

|

|

|

|

|

𝑥[𝑡 + 1] − 𝑥∗||
|

|

|

|

2
]

, if the error threshold of Fed-MPS

atisfies 𝑒𝑡ℎ[𝑡] ≤ 𝜂2𝑡 , then we obtain

𝑡+1 ≤ (1 − 𝜂𝑡𝜇)𝛥𝑡 + 𝜂2𝑡 𝐵. (15)

here 𝐵 =
∑𝑁
𝑖=1

𝜎2𝑖
𝑁2 + 6𝐿𝛤 + 8(𝐸 − 1)𝐺2 + 𝐸

[

‖𝑒𝑡ℎ‖2
]

.
Given the learning rate 𝜂𝑡 = 𝛽

𝑡+𝛾 , where 𝛽 ≥ 1
𝜇 , 𝛾 ≥ 0, 𝜂1 ≤

𝑖𝑛
{

1∕𝜇, 1∕4𝐿
}

= 1∕4𝐿, 𝜂𝑡 ≤ 2𝜂𝑡+𝐸 , there is 𝛥𝑡 ≤ 𝑣
𝛾+𝑡 such that the

ollowing inequality holds

𝑡+1 ≤
(

1 − 𝜂𝑡𝜇
)

𝛥𝑡 + 𝜂2𝑡 𝐵 =
(

1 −
𝛽𝜇
𝑡 + 𝛾

)

𝑣
𝑡 + 𝛾

+
𝛽2𝐵

(𝑡 + 𝛾)2

≤ 𝑣
𝑡 + 𝛾 + 1

.
(16)

By substituting 𝛥𝑡 into the above inequality and let 𝑡 = 𝑇 , we then
prove Theorem 2.

Theorem 2 guarantees the convergence of the proposed Fed-MPS
scheme. Following that, the communication overhead can be calculated
as follows. Specifically, we give the total amount of communication
data for the federated average algorithm by

𝐶(𝐹𝑒𝑑𝐴𝑣𝑔) = 𝑇 ||
|

𝜃||
|

. (17)

Let 𝜓𝑖 denote the optimization rate in round 𝑖. Thus, the total
amount of communication data for the proposed Fed-MPS can be
calculated by

𝐶(𝐹𝑒𝑑−𝑀𝑃𝑆) =
𝑇
∑

𝑖=1

|

|

|

𝜃𝑖
|

|

|

=
𝑇
∑

𝑖=1

1
𝜓𝑖

|

|

|

𝜃||
|

. (18)

Let 𝛹 denote the average optimization rate over the entire training
rocess. Thus, we obtain ∑𝑇

𝑖=1
1
𝜓𝑖
|

|

|

𝜃||
|

= 𝑇
𝛹
|

|

|

𝜃||
|

, then Theorem 3 is derived.

heorem 3 (Communication Overhead). Assume that the number of fed-
rated learning global training rounds is 𝑇 . The compression rate of each
ound is different because the local client optimize the model by parameter
elected algorithm individually. Let the optimization rate of the local model
n round 𝑖 as 𝜓𝑖 =

|𝜃|
|𝜃𝑖|
, where 𝜃 is the model before optimization and 𝜃𝑖 is

he model after compression. The communication overhead of Fed-MPS is
( 𝑇𝛹

|

|

|

𝜃||
|

) for any agent 𝑖.

Since the communication cost of Fed-MPS is 𝑜( 𝑇𝛹
|

|

|

𝜃||
|

) for any agent

, we can deduce that its computational complexity is inversely propor-
ional to 𝛹 . The larger the value of 𝛹 , the smaller its computational
omplexity. The communication overhead for the baseline solution is
( 𝑇
|𝜃| ), which means that Fed-MPS’s communication overhead is only 1

𝛹
of other methods, i.e., pFEDLA [26] and G-FML [24].

5. Performance evaluation

We assess the performance of our Fed-MPS scheme in comparison to
the baseline algorithms CMFL [25], LDP-Fed [42], pFEDLA [26], and G-
FML [24] using benchmark datasets Mnist, Cifar10, and FashionMNIST.
8

The experiments were conducted on a computer running Windows 10,
equipped with a 12th generation Core i7 processor capable of reaching
speeds up to 4.70 GHz, and an RTX3060 GPU. Our Fed-MPS scheme
was implemented in Python, and the experimental setup is detailed as
follows.

5.1. Experiment setup

Baselines. CMFL [25] provides clients with feedback information re-
garding the global trend of model updating. Each client checks whether
its update aligns with this global trend and is relevant enough for
model improvement. By avoiding uploading irrelevant updates to the
server, CMFL can substantially reduce communication overhead while
still guaranteeing learning convergence. LDP-Fed [42] provides a for-
mal guarantee of differential privacy for the repeated collection of
model training parameters in the federated training of large-scale neu-
ral networks over multiple individual participants’ private datasets.
Additionally, LDP-Fed implements a suite of selection and filtering
techniques for perturbing and sharing selected parameter updates with
the parameter server. pFEDLA [26] uses a dedicated hypernetwork for
each client on the server side, which is trained to identify the mutual
contribution factors at the layer level. At the same time, a parame-
terized mechanism is introduced to update the layer-wise aggregation
weights, gradually exploiting the inter-user similarity and achieving
accurate model personalization. G-FML [24] employs a simple yet
effective grouping mechanism to adaptively partition the clients into
multiple groups. This mechanism ensures that each group is formed
by the clients with similar data distribution, enabling the group-wise
meta-model to achieve personalization. Thereby, it can be generalized
to a highly heterogeneous environment.

Datasets. The experiments were conducted using the FashionM-
NIST, Mnist, and Cifar10 benchmark datasets. The FashionMNIST
dataset includes images from 10 categories, with a total of 60,000
samples in the training dataset and 10,000 samples in the test dataset.
The Cifar10 dataset comprises images from 10 categories, totaling
50,000 images and corresponding labels. The Mnist dataset consists
of handwritten digital images, with 60,000 images and labels in the
training set and 10,000 images and labels in the test set.

Local Models. For the FashionMNIST dataset, we utilized a CNN
model comprising two 5 ∗ 5 convolutional layers. The first convolu-
tional layer consists of 32 filters, followed by a second convolutional
layer with 32 filters. Each convolutional layer is succeeded by a 2 ∗ 2
pooling layer and a Relu activation function. Additionally, a dropout
layer was incorporated to prevent overfitting. The model also includes
a hidden layer with a 1024-dimensional input and a 512-dimensional
output, as well as an output layer with a 512-dimensional input and
a 10-dimensional output. For the Mnist dataset, we employed a CNN
model with two 5 ∗ 5 convolutional layers. The first convolutional layer
is equipped with 10 filters, followed by a second convolutional layer
with 10 filters. Similar to the FashionMNIST model, each convolutional
layer is followed by a 2 ∗ 2 pooling layer and a Relu activation
function. A dropout layer was also included to prevent overfitting. Two
fully-connected layers were incorporated, with the first having a 320-
dimensional input and a 50-dimensional output, and the second having
a 50-dimensional input and a 10-dimensional output. For the Cifar10
dataset, we also utilized a CNN model with two 5 ∗ 5 convolutional
layers. The first convolutional layer contains 6 filters, followed by a
second convolutional layer with 16 filters. Each of these convolutional
layers is succeeded by a 2 ∗ 2 pooling layer and a Relu activation
function. The model includes three fully connected layers, with the first
having 256 ∗ 2 ∗ 2 dimensional inputs and 128 dimensional output, the
second having 128-dimensional input and 256-dimensional output, and
the last having 256-dimensional input and 10-dimensional output.

Training Parameters Configuration. In the experiment, there are
100 agent clients, with 10 out of 100 agents randomly selected in

each training round to conduct local training on the FashionMNIST,
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Fig. 3. Training (a) accuracy and (b) loss of Fed-MPS and baselines on FashionMNIST in 100 rounds.
Mnist, and Cifar10 datasets. For the FashionMNIST dataset, each client
agent is allocated a training sample consisting of 600 samples and
a test sample containing 100 samples. Regarding the Mnist dataset,
each client agent is assigned a training set of 600 images and labels,
along with a test set of 100 images and labels. As for the Cifar10
dataset, each client agent is provided with a training set containing
500 images and labels, as well as a test set containing 100 images and
labels. All approaches ensure local differential privacy by incorporating
Gaussian noise, with the parameters 𝜖 and 𝛿 initially set to 0.6 and
1e−3, respectively, for the model accuracy test. Subsequently, different
privacy budgets will be applied for the subsequent model accuracy
tests. It is important to note that the experiment is repeated 10 times
on all datasets, and the experimental results are presented based on the
median values. In each experiment, the local training is executed in 50
rounds, while the global training is conducted over 100 rounds. The
performance metrics mentioned above are taken into consideration for
the effectiveness of experimental comparisons.

5.2. Experiment result

Model Accuracy under a Fixed Privacy Budget. We first conduct
experiments to evaluate the performance of the proposed scheme under
a fixed privacy budget 𝜖. We let 𝜖 = 0.6, and the experimental results
are shown in Figs. 3, 4, and 5.

Fig. 3 illustrates the accuracy and loss of the Fed-MPS, CMFL,
LDP-Fed, pFEDLA, and G-FML schemes during 100 rounds of training
on the FashionMNIST benchmark dataset. In terms of accuracy, our
scheme achieves convergence after approximately 50 training rounds,
maintaining relatively stable accuracy thereafter. We observe that our
Fed-MPS scheme consistently outperforms CMFL and LDP-FED after
the 30th round of training, with our scheme being 4% and 6% more
accurate than CMFL and LDP-FED, respectively, after 50 rounds of
training. While our scheme exhibits slightly lower accuracy than the
pFEDLA scheme and higher accuracy than the G-FML scheme at the
30th round, after 50 rounds, our scheme’s accuracy is approximately
4% higher than pFEDLA and 3% higher than G-FML. Clearly, our
scheme demonstrates superior accuracy performance on the Fashion-
MNIST dataset compared to other baselines. Regarding training loss,
we observe that all methods generally converge after approximately
50 training rounds, with the training loss remaining within a certain
range thereafter. However, the training loss of the Fed-MPS scheme is
consistently lower than the other two compared schemes throughout
the 100 rounds of federated training, and the loss of the CMFL scheme
is also smaller than the training loss of the LDP-Fed scheme. Further-
more, our scheme exhibits better performance in training loss on the
9

FashionMNIST dataset compared to the pFEDLA and G-FML schemes,
as expected. This is attributed to the parameter selection module, which
retains only model parameters with the same update directions as the
global model.

Fig. 4 showcases the accuracy and training loss of the Fed-MPS,
CMFL, LDP-Fed, pFEDLA, and G-FML schemes over 100 rounds of
training on the CIFAR10 benchmark dataset. In terms of accuracy, it is
evident that the Fed-MPS scheme consistently outperforms the LDP-Fed
scheme in accuracy throughout the training process. Additionally, our
scheme displays fluctuations compared to CMFL and initially exhibits
slightly lower accuracy than CMFL until the 30th round. However, after
the 30th round, our scheme surpasses CMFL in accuracy, outperforming
CMFL and LDP-Fed by 5% and 7%, respectively. After 50 rounds of
training, our scheme achieves an improvement of approximately 1%
in accuracy over pFEDLA and 2% over G-FML, indicating superior
accuracy performance on the CIFAR10 dataset compared to the baseline
schemes. Although our scheme initially exhibits slightly lower accuracy
compared to other methods in the first 20 rounds, it surpasses them in
accuracy after 20 rounds. Notably, the maximum accuracy of 42.6%
is achieved in the 48th round of training. Regarding training loss,
the training loss of the Fed-MPS scheme is marginally lower than
that of CMFL after 18 rounds, while the training loss of the LDP-
Fed scheme is slightly higher than that of CMFL and Fed-MPS until
25 rounds, and slightly lower than that of CMFL and Fed-MPS after
25 rounds. Furthermore, the performance of Fed-MPS in training loss
also surpasses the state-of-the-art federated algorithms pFEDLA and
G-FML. While the training loss of G-FML fluctuates the most, our
scheme maintains relatively stable training loss throughout the entire
training process, consistently outperforming other baseline methods.
This underscores the effectiveness of our scheme in training on the
CIFAR10 dataset, stemming from the model selection that reduces the
model size and ultimately improves accuracy, demonstrating superior
training outcomes compared to baseline approaches.

Fig. 5 demonstrates the accuracy and loss of the Fed-MPS, CMFL,
LDP-Fed, pFEDLA, and G-FML schemes over 100 rounds of training
on the MNIST benchmark dataset. In terms of accuracy, our scheme
achieves convergence after approximately 50 training rounds, with
the accuracy remaining relatively stable thereafter. Additionally, the
maximum accuracy of 89.8% is attained in the 49th round of training.
Our proposed Fed-MPS scheme exhibits higher accuracy compared to
the LDP-Fed scheme after the 10th round of training. While there are
fluctuations between our scheme and CMFL before the 35th round,
our scheme’s accuracy surpasses CMFL’s after the 35th round. After 50
rounds of training, our scheme’s accuracy outperforms CMFL and LDP-
Fed by 5% and 8%, respectively. Furthermore, our scheme achieves
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Fig. 4. Training (a) accuracy and (b) loss of Fed-MPS and baselines on CIFAR10 in 100 rounds.
Fig. 5. Training (a) accuracy and (b) loss of Fed-MPS and baselines on MNIST in 100 rounds.
higher accuracy on the MNIST dataset compared to the latest federated
algorithms pFEDLA and G-FML. In the 50th round of training, our
scheme achieves a accuracy that is 3% higher than G-FML and 2%
higher than pFEDLA. Although our scheme initially exhibits lower
accuracy than CMFL and LDP-Fed in the first 20 rounds, it consistently
outperforms other baseline methods in accuracy after the initial 20
rounds. The model parameter selection in our scheme undoubtedly fa-
cilitates the training process and improves accuracy. Regarding training
loss, we observe that all approaches generally converge after around
50 training rounds, with the training loss remaining within a certain
range thereafter. The training loss of the Fed-MPS scheme is similar
to that of CMFL throughout the 50 rounds of federated training and is
smaller than that of the LDP-Fed scheme. Our scheme exhibits lower
training losses on the MNIST dataset compared to both pFEDLA and G-
FML. Furthermore, throughout the entire training process, our scheme
demonstrates greater stability with less training loss compared to G-
FML and pFEDLA. As a result, our Fed-MPS scheme showcases superior
performance in loss and accuracy on the MNIST dataset compared to
other baseline methods, attributed to the model selection module of our
scheme.

Table 3 compares the accuracy of the Fed-MPS, CMFL, LDP-Fed,
pFEDLA, and G-FML schemes on the FashionMNIST, MNIST, and CI-
FAR10 datasets over 30, 50, and 100 rounds of training, while Table 4
presents the training loss comparisons under the same settings. Ev-
idently, the accuracy of the Fed-MPS scheme surpasses that of the
10
baselines on all three datasets, while the training loss of Fed-MPS is
marginally lower. Figs. 6(a) and 6(b) depict histograms with variance of
accuracy and loss of the Fed-MPS, CMFL, LDP-Fed, pFEDLA, and G-FML
schemes on the FashionMNIST, MNIST, and CIFAR10 datasets after 100
rounds of training. As anticipated, the proposed Fed-MPS outperforms
all baseline schemes in both accuracy and loss.

Model Accuracy under Different Privacy Budgets. We conducted
experiments with varying privacy budget values from [0.2, 1.0] to com-
pare the performance of Fed-MPS, LDP-Fed, and pFEDLA on the MNIST
and CIFAR10 datasets. The experimental results are presented in
Figs. 7(a) and 7(b). It is evident that our Fed-MPS scheme outperforms
LDP-Fed and pFEDLA under different privacy budgets on both datasets.
The performance of pFEDLA is superior to LDP-Fed, as LDP-Fed relies
on local differential privacy to protect privacy without considering
the impact of differential privacy noise on model accuracy, resulting
in lower accuracy due to the addition of excessive noise. In contrast,
our Fed-MPS scheme, through the model selection algorithm, selects
parameters conducive to accuracy, ultimately reducing the model size.
Consequently, less noise is added under the same privacy strength,
thereby improving the accuracy. This explains why our scheme out-
performs LDP-Fed and pFEDLA in accuracy under different privacy
budgets. It is noticeable from the figures that as the privacy budget
increases, the accuracy of the schemes improves. This is because a
smaller privacy budget (more added noise) leads to lower accuracy.
The experimental results depicted in Figs. 7(a) and 7(b) indicate that
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Table 3
Comparison of accuracy (%) between Fed-MPS and baselines in the 30th, 50th, and 100th rounds.
Dataset Round Fed-MPS CMFL LDP-Fed pFEDLA G-FML

FashionMNIST
30th 71.3 ± 1.23 69.3 ± 1.34 65.8 ± 1.18 71.6 ± 0.84 69.7 ± 1.19
50th 74.2 ± 0.34 70.0 ± 0.47 68.4 ± 0.29 72.3 ± 0.74 71.2 ± 0.17
100th 74.5 ± 0.23 70.2 ± 0.24 68.1 ± 0.53 72.2 ± 0.54 71.4 ± 0.47

MNIST
30th 79.0 ± 0.86 80.7 ± 1.35 76.9 ± 0.91 76.5 ± 1.21 75.3 ± 1.37
50th 89.1 ± 0.54 84.5 ± 0.64 81.6 ± 0.48 86.8 ± 0.29 85.7 ± 0.78
100th 89.7 ± 0.41 84.2 ± 0.67 81.3 ± 0.31 86.6 ± 0.62 85.8 ± 0.26

CIFAR10
30th 36.8 ± 0.71 36.8 ± 0.86 30.2 ± 1.11 36.9 ± 0.96 35.7 ± 0.92
50th 41.9 ± 0.41 36.9 ± 0.48 34.7 ± 0.25 40.7 ± 0.78 40.3 ± 0.36
100th 42.2 ± 0.39 37.2 ± 0.27 35.0 ± 0.30 41.1 ± 0.47 40.9 ± 0.35
Table 4
Comparison of training loss (%) between Fed-MPS and baselines in the 30th, 50th, and 100th rounds.
Dataset Round Fed-MPS CMFL LDP-Fed pFEDLA G-FML

FashionMNIST
30th 1.31 ± 0.095 1.53 ± 0.153 1.73 ± 0.147 1.60 ± 0.161 1.57 ± 0.171
50th 1.51 ± 0.024 1.58 ± 0.031 1.92 ± 0.022 1.55 ± 0.026 1.59 ± 0.024
100th 1.53 ± 0.013 1.63 ± 0.011 1.95 ± 0.027 1.57 ± 0.032 1.56 ± 0.013

MNIST
30th 0.62 ± 0.053 0.62 ± 0.067 0.74 ± 0.073 0.63 ± 0.062 0.61 ± 0.059
50th 0.49 ± 0.019 0.55 ± 0.023 0.72 ± 0.018 0.52 ± 0.017 0.54 ± 0.021
100th 0.50 ± 0.013 0.57 ± 0.016 0.70 ± 0.014 0.54 ± 0.023 0.55 ± 0.032

CIFAR10
30th 1.86 ± 0.134 1.94 ± 0.121 1.89 ± 0.135 1.98 ± 0.119 2.81 ± 0.145
50th 1.96 ± 0.024 2.30 ± 0.023 1.88 ± 0.022 2.12 ± 0.015 2.64 ± 0.056
100th 1.95 ± 0.021 2.27 ± 0.019 1.85 ± 0.017 2.10 ± 0.026 2.58 ± 0.032
Fig. 6. Histogram with variance of accuracy and loss of Fed-MPS and baselines.
our Fed-MPS scheme achieves a smaller privacy budget compared to
LDP-Fed and pFEDLA, demonstrating the effectiveness of Fed-MPS in
reducing the privacy budget.

Results Analysis. The experimental results above demonstrate that
the proposed Fed-MPS scheme, whether with a fixed or non-fixed
privacy budget, outperforms the baseline strategies CMFL, LDP-Fed,
pFEDLA, and G-FML in terms of accuracy and loss across various
datasets. This is attributed to the model parameter selection algorithm
based on update direction consistency that we have adopted, along
with its corresponding model aggregation algorithm. This also fully
illustrates that reducing the model scale to the parameter level can
ensure model accuracy while reducing the training and uploading of
model parameters, thereby addressing the issue of model training under
resource-constrained conditions in CPS.

6. Conclusions

In this paper, we propose a Fed-MPS scheme that utilizes local dif-
ferential privacy to address potential constraints in computational and
storage resources in CPS. This scheme, with its distributed learning and
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reduced communication overhead, effectively addresses the limitations
in computational and storage resources in CPS, while ensuring data
privacy and security. Specifically, Fed-MPS employs a model parameter
selection algorithm to select the optimal parameters to participate in
subsequent training. This model parameter selection algorithm can
choose the model parameters whose update directions are consistent
with that of the server in the previous update. Then, Gaussian noise is
added to the optimized model before uploading it for privacy enhance-
ment. Since the model parameters are compressed through parameter
selection, adding noise on this basis can protect client users’ privacy
while reducing the privacy budget. Furthermore, uploading such a
model can reduce the communication overhead. Through rigorous
privacy analysis and convergence analysis, we prove that the proposed
scheme satisfies (𝜖, 𝛿) −𝐷𝑃 and converges to the global optimum with
a convergence ratio of 𝑂( 1

𝑇 2 ) within 𝑇 rounds of federated learning.
Extensive experiments are conducted on prominent benchmark datasets
FashionMNIST, Mnist, and Cifar10. The experimental results demon-
strate that compared with baselines, the proposed Fed-MPS scheme can
provide higher accuracy for CPS under resource constraints. Although
our Fed-MPS scheme can effectively reduce the parameters of model
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Fig. 7. The accuracy comparison under different privacy budgets on MNIST and CIFAR10.
training, the heterogeneity of the data itself can cause model bias.
Privacy protection based on this may lower the reliability of the model.
This requires the study of personalized federated learning schemes for
data heterogeneity, and the design of corresponding privacy protection,
which will be our future research direction.
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