
Information Fusion 102 (2024) 102046

A
1

A
v
X
a

b

R
c

d

A

K
M
I
S
M

1

s
i
t
r
a
t
s
o
e
a
h
a

a
p
f
S

h
R

Contents lists available at ScienceDirect

Information Fusion

journal homepage: www.elsevier.com/locate/inffus

multi-modal spatial–temporal model for accurate motion forecasting with
isual fusion
iaoding Wang a,b, Jianmin Liu a,b, Hui Lin a,b,∗, Sahil Garg c,∗, Mubarak Alrashoud d

College of Computer and Cyber Security, Fujian Normal University, No. 8 Xuefu South Road, Fuzhou, 350117, Fujian, China
Engineering Research Center of Cyber Security and Education Informatization, Fujian Province University, No. 8 Xuefu South
oad, Fuzhou, 350117, Fujian, China
Electrical Engineering Department, École de technologie supérieure, Montreal, QC, H3C 1K3, Canada
Department of Software Engineering (SWE), College of Computer and Information Sciences (CCIS), King Saud University, Riyadh, 11543, Saudi Arabia

R T I C L E I N F O

eywords:
otion forecasting

ntelligent transportation
patial–temporal cross attention
ulti-source visual fusion

A B S T R A C T

The multi-source visual information from ring cameras and stereo cameras provides a direct observation of the
road, traffic conditions, and vehicle behavior. However, relying solely on visual information may not provide
a complete environmental understanding. It is crucial for intelligent transportation systems to effectively
utilize multi-source, multi-modal data to accurately predict the future motion trajectory of vehicles accurately.
Therefore, this paper presents a new model for predicting multi-modal trajectories by integrating multi-source
visual feature. A spatial–temporal cross attention fusion module is developed to capture the spatiotemporal
interactions among vehicles, while leveraging the road’s geographic structure to improve prediction accuracy.
The experimental results on the realistic dataset Argoverse 2 demonstrate that, in comparison to other methods,
ours improves the metrics of minADE (Minimum Average Displacement Error), minFDE (Minimum Final
Displacement Error), and MR (Miss Rate) by 1.08%, 3.15%, and 2.14% , respectively, in unimodal prediction.
In multimodal prediction, the improvements are 5.47%, 4.46%, and 6.50%. Our method effectively captures
the temporal and spatial characteristics of vehicle movement trajectories, making it suitable for autonomous
driving applications.
. Introduction

With the popularization of artificial intelligence technology, fields
uch as autonomous driving, intelligent transportation, robotic control,
nternet of things (IoT) and intelligent logistics are thriving [1]. In in-
elligent transportation, there are several main tasks, including obstacle
ecognition [2], demand forecasting [3], traffic flow prediction [4,5],
nd trajectory prediction, etc. Accurately predicting the motion trajec-
ory of moving objects is an important issue in order to ensure traffic
afety and efficiency [6,7]. To achieve this goal, visual information is
ften fused with other sensor data, such as lidar, to provide additional
nvironmental information. These data often have different modalities
nd can comprehensively describe the traffic situation more compre-
ensively. Various sensors are used to collect data in the environment,
s shown in Fig. 1.

For example, a panoramic camera with multiple lenses, such as
ring camera, can capture a 360-degree field of view, providing a

anoramic image that covers a wider range. There are many manu-
acturers whose lenses meet the requirements, such as Hikvision or
ony. A stereoscopic camera, such as Karmin3 and SceneScan Pro,
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composed of two lenses simulates the binocular vision of human eyes,
enabling more accurate acquisition of three-dimensional structure and
distance information. These multi-source visual information is often
fused and understood together with point cloud information from
LiDAR, such as VLP-32C, and time-series data from other sensors, in
order to further represent rich traffic information. Multi-source visual
fusion and understanding (MSVFU) aims to transform data sensed from
the environment into raw models of perceptual content and then build
a broader understanding of the world.

In fields like smart logistics, accurate trajectory prediction plays
a crucial role in achieving objectives such as intelligent route plan-
ning and optimizing logistics and transportation operations. Similarly,
in autonomous driving and robot control, predicting the trajectories
of other vehicles, pedestrians, and obstacles by deep learning [8] is
essential for ensuring safe and efficient navigation [9] and control
decisions. Consequently, the development of trajectory prediction tasks
holds substantial application value and societal importance. This paper
focuses on trajectory prediction methods in autonomous driving. Due to
vailable online 6 October 2023
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Fig. 1. Various sensors collect multi-source and multimodal data.

the high uncertainty of vehicle driving, it is common practice to predict
multiple trajectories, and this paper is no exception.

In autonomous driving, the future trajectory of a vehicle is often
influenced by three main factors: the road structure, the vehicle’s
historical movement trajectory, and the movement trajectories of other
vehicles in its vicinity. The road structure sets limits on the vehicle’s
movement range, assuming it stays within the road boundaries. By
analyzing the vehicle’s historical movement trajectory, we can infer
its driving intentions, such as going straight, turning, or changing
lanes. Similarly, the movement trajectories of surrounding vehicles also
impact the vehicle’s trajectory, such as lane changes to avoid collisions
or staying in place due to traffic congestion.

However, visual data is not always reliable. In scenarios such as
nighttime, rainy weather, or heavy smog, the image quality captured by
cameras can significantly deteriorate. Additionally, sudden changes in
light intensity can temporarily blind the camera, such as when exiting
a tunnel. These are currently unresolved issues in the field of vision.
Furthermore, current trajectory prediction methods, such as [10–12],
have certain limitations in modeling the spatial–temporal relationship
and fail to fully exploit the potential spatial–temporal dependencies
present in multimodal trajectory data. Moreover, another mothod [13]
overlooks the constraints imposed by road geographical structures
on vehicle trajectories, leading to subpar prediction performance. To
tackle these challenges, this paper presents a novel multimodal spatial–
temporal trajectory prediction model that incorporates multi-source
visual fusion. The proposed method incorporates a cross-attention mod-
ule to comprehensively model the spatial–temporal features and inter-
action relationships of vehicles’ trajectories. Additionally, it integrates
road geographical structures to enhance trajectory prediction accuracy.
The key contributions of this paper are summarized as follows:

• A end-to-end trajectory prediction model has been proposed,
which first embeds multi-source data and utilizes attention mech-
anism for fusion to explore latent trajectory features. Specifically,
different embedding methods are applied to data from differ-
ent sources, and deep fusion is achieved through cross-attention
mechanism. By considering the positional relationship between
vehicles at different time steps, a spatio-temporal graph is con-
structed to avoid the loss of temporal information and fully
exploit the potential spatial dependencies in trajectory data.

• A Geographical Road Gating mechanism (GR Gating) is proposed,
which utilizes a limited number of parameters to constrain the
predicted trajectory coordinates within the road boundaries. This
mechanism ensures that the predicted trajectory remains within
the road, leading to more accurate predictions.
2

Table 1
Comparison of Trajectory Prediction Methods.

Method HD-Map Contrast

Kalman filter
[14,15]

– They are used for trajectory prediction of
low-speed moving targets.

Markov chain
model [16]

– The prediction accuracy depends on the quality of
the sample data. the computation of the state
transition matrix is large and not suitable for
real-time prediction.

RNN [17]
LSTM [18–21]

– The short-term task prediction accuracy has
improved, but performs poorly in long-term
prediction tasks.

Cart-pred [13] – It introduces crystal graph convolutional neural
network to model the interaction between vehicle
trajectories in mapless scenarios.

VectorNet [10] ✓ It integrates vectorized scene information and
dynamic traffic participant information to achieve
behavior prediction, and a simple prediction
baseline is provided.

LANEGCN [22] ✓ LaneGCN considers the multi-order interaction of
map nodes, and lane graph convolution is
proposed.

LaPred [23]
LaneRCNN [12]

✓ They aggregate the interaction information
between vehicles based on road topology
information.

TNT [11]
DenseTNT [24]

✓ They predict through target-driven approach,
which is inclined to predict driving intentions
firstly.

mmTransform
[25]

✓ It stacks multiple Transformers to model lanes,
trajectories, and interaction relationships
separately.

HOME [26]
GoHome [27]

✓ They encode history and local context and decode
to output heatmaps.

GANet [28] ✓ GANet proposes a goal area of interest operator to
effectively extract semantic lane features in goal
areas.

TPCN [29] ✓ TPCN converts trajectory position points and maps
into point clouds for calculation.

• Extensive experiments were conducted on the publicly available
Argoverse 2 motion forecasting dataset, demonstrating that the
trajectory prediction method proposed in this paper has advanced
performance.

The remainder of this paper is structured as follows. Section 2 provides
an overview of the related works in the field. The system model and
problem statement are presented in Section 3. The implementation
details of the proposed model are elaborated upon in Section 4. The
experimental methods and analysis are discussed in Section 5. Finally,
Section 6 concludes this paper.

2. Related works

In recent years, there has been a surge of research and develop-
ment efforts in the field of trajectory prediction, encompassing both
academia and industry, which is shown in Table 1. These approaches
can be broadly classified into two categories based on the data utilized:
research methods based on historical trajectory data and research
methods that incorporate high-precision maps.

Research methods based on historical trajectory data. They can
be further divided into two main categories: those based on dynamic
analysis models and mathematical statistics, and those based on deep
learning.

In the realm of dynamic analysis models and mathematical statistics,
trajectory prediction methods such as Kalman filter or Bayesian filter
are commonly employed to predict trajectories, primarily for low-speed
moving targets. For instance, Houenou et al. [14] utilize models that
consider the instantaneous path of vehicles, road shape, and vehicle
maneuverability to perform short-term trajectory prediction. Abbas
MT et al. [15] employ multimodal Kalman filters to handle a wider
range of possible trajectory scenarios. In order to accommodate the
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requirements of trajectory prediction in nonlinear systems, Markov
chain models have been introduced. However, the predictive accuracy
of such models heavily relies on the quality of the sample data and
necessitates high-quality data support. Additionally, the computation
of state transition probability matrices is computationally intensive,
rendering it unsuitable for real-time prediction.

Deep learning has significantly advanced trajectory prediction, par-
ticularly with the utilization of recurrent neural networks (RNNs), as
demonstrated by Min et al. [17]. However, RNNs have shown limita-
tions in long-term prediction tasks. To address this, Altché et al. [18]
and others introduce the long short-term memory (LSTM) neural net-
work, which has demonstrated success in predicting future longitudinal
and lateral trajectories of vehicles on highways. Deo et al. [19] further
improve the LSTM model by incorporating convolutional social pooling
layers to more robustly capture the mutual dependencies of vehicle mo-
tion. Furthermore, Pecher et al. [16] improve the accuracy of trajectory
prediction by increasing the complexity of both Markov models and
neural network models. LSTM is widely used in trajectory prediction
within deep learning techniques due to its strong performance in
handling sequence data. However, it still has limitations in capturing
spatial interactions between vehicles and incorporating semantic data.
To address this, Mercat et al. [20] propose a prediction model that
combines the LSTM encoding-decoding structure with a multi-head
attention mechanism. Notably, they intentionally excluded the use of
map information to explore how to predict the movement trajectories of
other vehicles in the absence of high-precision maps. Another approach,
CRAT-Pred [30], draws inspiration from materials science and employs
crystal graph convolutional neural networks to model the interaction
relationships between vehicle trajectories in scenarios where maps are
not available.

Research methods for fusion of HD Maps. Research methods
for integrating high definition maps have gained prominence in re-
cent years, thanks to the ongoing advancements in high definition
map technology. Advanced methods for integrating high definition
maps often involve merging map information into a graph structure
to enable a unified modeling approach. One such method is Vector-
Net [10], which treats road segments and vehicles as equal nodes
and constructs a global interaction graph for trajectory prediction.
LaneGCN [22], on the other hand, considers multi-level interactions
among map nodes and propagates the vehicle trajectories features
over the traffic network, incorporating attention mechanisms for data
fusion between vehicle nodes and lane graphs to capture complex
topological structure features. Other methods, such as LaPred [23]
and LaneRCNN [12], aggregate interaction information among vehicles
based on road topology, but this approach may result in reduced inter-
pretability of vehicle interaction relationship modeling. In addition, the
mmTransformer [25] stacks three Transformer modules to model the
map, historical trajectories, and interaction information, respectively.
And it proposes a region-based training strategy to emphasize the local
environment of vehicles. TNT [11] introduces a trajectory prediction
framework based on end points, sampling anchor points evenly along
road centerlines, and predicting an offset as an end point. The trajectory
is then completed by filling points according to the end point, followed
by scoring and filtering. Densetnt [24] avoids the heuristic selection of
end points by employing an anchor-free method. GANet [28] enhances
future interaction information by designing a small-scale information
fusion near the end point. HOME [26] encodes historical and local
context, decodes output heatmaps using metric metrics, and employs a
fully connected layer for trajectory sampling, ultimately decoding the
final position of the trajectory. These mentioned methods primarily fo-
cus on trajectory prediction by employing various decoding techniques.
In contrast to these approaches, our method places emphasis on the
3

fusion of multi-source and multi-modal data.
Table 2
Explanation of Abbreviations.

Abbreviation Explanation

ADE Average Displacement Error
FDE Final Displacement Error
HD Maps high precision maps or high definition maps
LiDAR laser imaging, detection, and ranging
MR Miss Rate
MSVFU Multi-source Visual Fusion and Understanding

3. Problem definition

In the field of autonomous driving, vehicle trajectory prediction
involves predicting the future motion trajectory of a vehicle based on
its historical movement track and MSVFU information of surrounding
environment. In this task, the driving route of an autonomous vehicle
is influenced by factors such as the road layout and the presence of
other moving entities like pedestrians, bicycles, and other autonomous
vehicles. The inputs for trajectory prediction typically include the
vehicle’s historical track data and a high definition map that provides
semantic information.

The historical track, denoted as 𝐽ℎ𝑖𝑠 = 𝐽𝑇 , 𝐽𝑇−1,… , 𝐽1, represents
he sequence of the past 𝑇 time steps of the autonomous vehicle’s
istorical tracks. Each 𝐽𝑡 (𝐽𝑡 = {𝑃 ,𝐻, 𝑉 , 𝑡𝑠}) consists of four-tuples that
escribe the position and state of the autonomous vehicle. In particular,
= {𝑥, 𝑦} represents the current location coordinates of the vehicle.

t is important to note that, in our experiments, we utilize relative
osition displacement with respect to the prediction point, rather than
bsolute coordinates. We take the current position coordinates as the
rigin, and calculate the displacement between the positions at other
oments and the current moment. Then two displacement distances 𝑥

nd 𝑦 were normalized separately. 𝐻 represents the current direction
f the vehicle, indicating its heading or orientation. 𝑉 = (𝑉𝑥, 𝑉𝑦)

represents the instantaneous velocity of the vehicle along the X and
Y directions. The 𝑡𝑠 represents the timestamp of the current moment,
providing temporal information about the data.

The semantic information of the high definition map refers to the
map representation of the current scene surrounding the vehicle. It
includes details such as the position coordinates of the road’s center
line, identification of intersections, lane directions, and the presence of
traffic lights. This semantic information is denoted as 𝑀 . Therefore, the
task of trajectory prediction can be formulated as learning a mapping
function 𝑓 that takes into account the historical track information of the
target vehicle and other moving agents in the scenario. This function
aims to predict a set of possible trajectories for the target vehicle within
a specific time horizon of 𝑁 time steps. These predicted trajectories
consist of 𝑘 sequences. The function 𝑓 can be expressed as:

𝐽𝑘
𝑝𝑟𝑒𝑑 = 𝑓 (𝐽ℎ𝑖𝑠,𝑀) = {𝐽𝑘

𝑡+1,… , 𝐽𝑘
𝑡+𝑁} (1)

where 𝐽ℎ𝑖𝑠 represents the historical track information, 𝑀 represents
the high definition map semantic information, 𝑘 denotes the number of
predicted multimodal trajectories, 𝑝𝑟𝑒 indicates the predicted time step.
The goal of the model is to obtain more accurate trajectory sequences,
that is, to minimize the difference between the predicted trajectory
𝐽𝑘
𝑝𝑟𝑒𝑑 and the ground truth.

An explanation of some of the abbreviations that appear in the
article is shown in the following Table 2. And the definitions of the
symbols used are explained as Table 3.

4. Proposed model

How to achieve MSVFU in a large amount of data, and fully ex-
plore the spatiotemporal characteristics of vehicle trajectories, is a key
consideration factor for traffic trajectory prediction models. This article
presents a trajectory prediction model that incorporates a spatial–
temporal cross attention mechanism. The model comprises three main
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Fig. 2. The diagram of proposal framework. (It includes three parts: encoder, interaction module, and decoder. (a) Encoder. It encodes the tracks and maps separately and integrates
the features through feature fusion. (b) Interaction module. It extracts the spatial–temporal interaction behavior between vehicles’ tracks using cross-attention and outputs through
a gating mechanism. (c) Decoder. It uses a linear residual layer to generate multi-modal tracks.).
Table 3
Explanation of Symbols.

Symbol Explanation

𝐽ℎ𝑖𝑠 Historical trajectories of the vehicle
P Position of the vehicle, which is consists of location coordinates (x, y)
V Velocity of the vehicle
H Heading of the vehicle
ts Timestamp of moment
M Semantic information of the map
N Time steps to prediction
k Number of predicted multimodal trajectories
𝜎 Non-linear activation function
𝛥𝑖,𝑗 The euclidean distance between node 𝑖 and 𝑗
⨂ Matrix multiplication

components: the input encoder module, the spatial–temporal interac-
tion module, and the trajectory decoder module.

Encoder encodes the tracks and maps separately and integrates
the features through feature fusion. The tracks and maps are pro-
cessed individually to capture their respective information. The features
extracted from both sources are then fused together to create a com-
prehensive representation. Interaction module focuses on extracting
the spatial–temporal interaction behavior between vehicles’ tracks.
It accomplishes this by employing a spatial–temporal cross attention
mechanism, which enables the model to attend to relevant information
from different tracks. The outputs of the interaction module are further
refined through a gating mechanism. The decoder utilizes a linear resid-
ual layer to generate multi-modal tracks. It takes the refined outputs
from the interaction module and predicts multiple possible trajectories
for the vehicles. The linear residual layer helps in capturing the residual
information and refining the predictions. The schematic diagram of
the model’s structure is depicted in Fig. 2. Next, we will provide a
comprehensive explanation of the functioning of each module.

4.1. Encoder

The function of the encoder is to separately encode and embed the
historical trajectory sequence of the vehicle and the high-precision map
information. By separately encoding and embedding the historical tra-
jectory sequence and the high-precision map information, the encoder
module enables the model to capture the distinctive characteristics of
4

each data source. This facilitates the subsequent stages of the trajectory
prediction model to effectively utilize the encoded information for
generating accurate and context-aware predictions.

Trajectory Encoder. To embed the trajectory sequence features of
vehicles, a stacked LSTM network layer is utilized, which could be
represented by Eq. (2). Each historical trajectory of an agent, denoted as
𝐽ℎ𝑖𝑠 = {𝐽𝑇 , 𝐽𝑇−1,… , 𝐽1}, is composed of quadruples 𝐽𝑡 = {𝑃 ,𝐻, 𝑉 , 𝑡𝑠}
representing position coordinates, vehicle heading, instantaneous ve-
locity, and timestamp at different time slices. The network parameters
for embedding all trajectories are shared, resulting in a feature vector
𝐻𝑛

𝑡 for each agent node.

𝐻𝑛
𝑡 = 𝐿𝑆𝑇𝑀(𝐽 𝑛

ℎ𝑖𝑠), (2)

HD Map Encoder. The high definition map encompasses a wealth
of semantic information, including lane positions, lane adjacency re-
lationships, and intersection identification. To capture the adjacency
relationships between lanes, four directed graphs are constructed de-
noted as 𝐺(𝑉 , 𝑠𝑢𝑐, 𝑝𝑟𝑒, 𝑙𝑒𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡), where 𝑉 represents the node of
center point of the lane. These graphs represent the lane node topology
structure and are characterized by four types of edge connections: pre-
decessor (pre), successor (suc), left neighbor (left), and right neighbor
(right).

The LaneGCN (lane graph convolution) method was employed to
aggregate node information. Given the uncertainty and low-order na-
ture of the left and right neighbors, the convolution operation is
performed only once. To account for the road’s continuity in preceding
and succeeding nodes, dilated convolution is introduced to expand
the receptive field in the lane direction. The convolution operation is
repeated 𝑘 times to effectively capture long-range dependencies along
the lane direction. The LaneGCN formula can be expressed as follows:

𝑌 = 𝑋𝑊0 +
∑

𝑖∈𝑙𝑒𝑓 𝑡,𝑟𝑖𝑔ℎ𝑡
𝐴𝑖𝑋𝑊𝑖 +

𝐾
∑

𝑘=1
(𝐴𝑘

𝑝𝑟𝑒𝑋𝑊𝑝𝑟𝑒,𝑘 + 𝐴𝑘
𝑠𝑢𝑐𝑋𝑊𝑠𝑢𝑐,𝑘), (3)

Where 𝑋 represents node features; 𝐴𝑖 represents the adjacency matrix
for type 𝑖 relationships; 𝐴𝑘

𝑝𝑟𝑒 represents the 𝑘th power of the matrix
𝐴𝑝𝑟𝑒; 𝑊 is a trainable parameter; 𝐾 represents the order of dilation
convolution. Please note that inflation only occurs in predecessors and
successors.

Fusion Net. Taking inspiration from the LaneGCN [22], a more
general attention mechanism was employed for feature fusion. This
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feature fusion aimed to propagate vehicle features through interactions
with lanes, including vehicle-lane, lane-lane, lane-vehicle and vehicle-
vehicle interactions. The ultimate goal was to achieve comprehensive
feature fusion among vehicles. LaneGCN is employed specifically for
lane-lane feature fusion. On the other hand, attention fusion is utilized
for the fusion of vehicle-lane, lane-vehicle, and vehicle-vehicle features.

In the interaction between vehicles and roads, considering that our
trajectory prediction task is in seconds, we introduce the concept of
interaction range, as vehicles do not affect the traffic environment
beyond 1 kilometer within a few seconds. The interaction ranges for
vehicle-lane, lane-vehicle, and vehicle-vehicle are set to 10 m, 10 m,
and 100 m, respectively, indicating that we will only consider the
vehicle nodes and lane nodes within the interaction range. At each
moment, the vehicle nodes and the surrounding lane nodes form an
interaction graph. The formula (4) indicates that the features of a node
at the next time step need to aggregate its own current information, the
information from neighboring lane nodes, and the positional differences
in their interaction information. For example, for vehicle node 𝑖, we
can aggregate the features from its context lane node 𝑗, according to
the following Eq. (4).

𝑦𝑖 = 𝑥𝑖𝑊0 +
∑

𝑗
𝜎(𝑐𝑜𝑛𝑐𝑎𝑡(𝑥𝑖, 𝛥𝑖,𝑗 , 𝑥𝑗 )𝑊1)𝑊2, (4)

where 𝑥𝑖 is the feature of the 𝑖th node. 𝑊0,𝑊1,𝑊2 is the trainable pa-
rameter. Specifically, 𝑊0 represents how much of the original features
are retained. The concat operation causes a change in dimension, and
𝑊1 parameter restores the feature dimension, and 𝑊2 represents the
attention for each interaction node. 𝛥𝑖,𝑗 is the euclidean distance be-
tween node 𝑖 and node 𝑗. Only nodes with 𝛥 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 are considered,
and the thresholds for vehicle-lane, lane-vehicle and vehicle-vehicle are
set to 10, 10, and 100 meters respectively. And 𝜎 is the operation of
normalization and non-linear activation function.

During the propagation process, both lane information and vehicle
information were fully integrated and transmitted. This integration
allowed for the effective combination of features from both sources,
enabling a more holistic understanding of the interactions between
vehicles and lanes.

4.2. Interaction module

4.2.1. Spatial attention module
In trajectory prediction tasks, it is essential to take into account

the diverse interaction relationships between vehicles and others. To
effectively capture and extract spatial dependencies among neighbor-
ing vehicles, spatial attention mechanisms are employed. The spatial
attention mechanism calculates attention weights between different
vehicles. These weights are then used to adjust the importance of
each vehicle’s information, better reflecting the relationships between
them. By incorporating this mechanism, the model can more accurately
predict the motion trajectories of each vehicle, resulting in improved
overall prediction performance.

The interaction relationship between vehicles in the environment
can be effectively represented by constructing a spatiotemporal graph,
denoted as 𝐺(𝑉 ,𝐸,𝐴) and shown in Fig. 3. 𝑉 comprises various en-
tities such as vehicles and pedestrians, with each intelligent agent
represented as a node. 𝐸 indicates whether there exists an interaction
between different intelligent agents. The interaction is determined
based on the Euclidean distance between the agents’ coordinate po-
sitions. If the distance is below a certain threshold, it signifies an
interaction between the two vehicles or intelligent agents.

Spatial attention mechanism performs solely on interacting vehicles,
rather than considering all vehicles. This approach reduces the number
of parameters and enhances computational efficiency. Each subgraph
assumes an interaction between all vehicles within it, resulting in the
construction of a bidirectional fully connected graph. As time pro-
gresses, the positions of intelligent agents change, leading to variations
5

Fig. 3. Spatial interaction graph.

in their interaction relationships. This process generates a sequence of
spatial graphs that exhibit potential temporal relationships.

The spatial attention module employs graph convolutional network
to effectively model the spatial relationships between vehicles. The
computation method of graph convolutional network can be described
as follows:

𝐻 (1+1) = 𝜎(𝐷̃− 1
2 𝐴̃𝐷̃− 1

2 𝐻 (1)𝑊 (1)) (5)

where 𝐴̃ = 𝐴 + 𝐼𝑁 , 𝐴, 𝐼𝑁 are the adjacency and identity matrix. 𝐷̃
is the degree matrix of 𝐴̃. 𝑊 is a parameter used for training. The
spatial attention module stacks multiple layers of GCN to explore multi-
level interactions between vehicles.𝐿𝑔 denotes the layer of GCN and we
set the parameter to 2. Non-linear activation function ReLU is used to
connect each layer of GCN.

4.2.2. Temporal attention module
In the context of trajectory prediction for autonomous vehicles,

existing methods primarily focus on considering the spatial structure of
the lane and the spatial relationships between vehicles. However, they
often lack a comprehensive modeling of temporal sequence features.
When the speeds of vehicles are similar, the relative spatial positions
tend to change less, leading to approximately or even identical graph
structures. However, different time periods in trajectories may exhibit
distinct features. For instance, traffic flow and driving speed can sig-
nificantly differ during peak and off-peak periods, resulting in distinct
characteristics observed in trajectories.

To alleviate this issue, we proposes the incorporation of a tempo-
ral attention module, aiming to enhance the contextual information
and facilitate a comprehensive understanding of trajectory behavior,
ultimately leading to improved prediction accuracy. By integrating
temporal attention, the model can dynamically focus on the trajectory
information from different time periods and make predictions based on
their temporal significance. The vehicle features obtained from the up-
per layer are passed through a multi-head attention layer for dynamic
encoding. This approach enhances the effectiveness and accuracy of the
model while mitigating the risk of gradient vanishing or exploding.

The temporal attention mechanism, as shown in Fig. 4, takes as
input a sequence of trajectories 𝑥 = (𝑥1,… , 𝑥𝑛). The temporal attention
mechanism calculates the correlation between each moment 𝑥𝑖 and
any other moment, and utilizes the temporal relevance to perform
feature fusion. Finally, it outputs the attention-based result sequence
𝑧 = (𝑧1,… , 𝑧𝑛). Each 𝑧𝑖 can be calculated using the following Eq. (6):

𝑧𝑖 =
𝑛
∑

𝑗=1
𝛼𝑖,𝑗 (𝑥𝑗𝑊 𝑉 ), (6)

where 𝛼𝑖,𝑗 denotes the attention coefficient between different moments,
its calculation process can be described as Eq. (7):

𝛼𝑖,𝑗 =
exp(𝑒𝑖,𝑗 )

∑𝑛
𝑘=1 exp(𝑒𝑖,𝑘)

, (7)

and 𝑒 can be obtained by Eq. (8).
𝑖,𝑗
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𝑒𝑖,𝑗 =
(𝑥𝑖𝑊 𝑄)(𝑥𝑗𝑊 𝐾 )𝑇

√

𝑑𝑘
, (8)

here 𝑊 𝑄,𝑊 𝐾 ,𝑊 𝑉 are the three sets of trainable parameters.
At this moment, the output sequence 𝑧 of the attention module takes

nto account the features from other arbitrary time steps and performs
ttention aggregation, enabling the capture of more comprehensive
emporal features.

According to the model architecture diagram, it incorporates spatial–
emporal cross attention to obtain two sets of spatiotemporal feature
equences, which 𝐹𝑠𝑡 = 𝐹𝑡(𝐹𝑠(𝑋)) and 𝐹𝑡𝑠 = 𝐹𝑠(𝐹𝑡(𝑋)) are respectively
epresented as spatial-first and temporal-first features. The spatiotem-
oral interaction module takes these features as input and produces the
usion feature as the final output.

.2.3. Geographical road gating
Designing gating parameters: By introducing the concept of macro-

copic connectivity, it becomes possible to derive the adjacency matrix,
enoted as 𝐴, for the road network.

𝑖,𝑗 =

{

1, if lane i, j exists interaction,
0, else.

(9)

The element 𝐴𝑖,𝑗 in the adjacency matrix indicates a connection
etween lane 𝑖 and lane 𝑗. This connection is not limited to a specific
elationship such as successor, predecessor, left, or right lane.

To quantitatively measure the strength of the association between
wo nodes, the parameter matrix 𝑊𝑡𝑜𝑝𝑦 is introduced, where 𝑊 ∈ R𝑁∗𝑁 .

Here, 𝑁 represents the number of lanes in the road network. Each
element 𝑊𝑖,𝑗 in the matrix represents the possibility or possibility of
transitioning from lane 𝑖 to lane 𝑗. We expect

𝑊𝑖,𝑗 =

{

≥ 0, if 𝐴𝑖,𝑗 = 1,
0, otherwise.

(10)

Then, we employed a Rectified Linear Unit (ReLU) activation func-
tion and utilized the lane connection relationship matrix 𝐴 as a mask.
This means that during the computation, only the elements in the
feature matrix that correspond to the connected lanes in the adjacency
matrix 𝐴 are considered. This helps to restrict the model’s atten-
tion to the relevant lanes and improves the efficiency of information
6

s

propagation.

𝑊 = 𝑅𝑒𝐿𝑈 (𝑊0) ⋅ 𝐴 (11)

where 𝑊0 is the parameter matrix of the gating mechanism, and symbol
⋅ refers to element-wise multiplication.

Design of gating function: The gating vector 𝑔 = 𝐺(𝑊 𝑦′), where
𝐺 is a mapping function and 𝑦̂ is the result of spatiotemporal attention

odule. Since 𝑊 directly reflects the strength of association between
wo lanes, where larger values indicate stronger associations. In order
o ensure that the output of 𝑔 is in the range [0,1], we define the 𝐺
unction as a sigmoid function.

= 𝐺(𝑥) = 1
1 + 𝑒−𝑥

(12)

Therefore, by using 𝑔 to correct the result of spatiotemporal atten-
ion module, we obtain 𝑦, the output result of the interaction module.

𝑦 = 𝑦̂ ⋅ 𝑔 (13)

here 𝑦̂ is the result of spatiotemporal attention module, and symbol
refers to element-wise multiplication. The gating mechanism is used

o constrain trajectories in order to limit the variation trend of the
rajectory.

.3. Decoder

In real-world scenarios, vehicles exhibit diverse driving intentions.
or instance, at an intersection, vehicles have the option to go straight,
urn left, turn right, or make a U-turn. These choices lead to distinct
rajectories and multiple potential destinations. Moreover, vehicles
raveling towards the same destination may take different paths and
hange lanes at various positions, resulting in different sequences of
rajectories. To address the challenge of multimodal trajectory sequence
rediction, the spatiotemporal features of each vehicle are simultane-
usly fed into multiple residual linear layers. These layers generate
ultiple prediction results, allowing for the representation of different
ossible outcomes.

By employing Eq. (14), the encoded spatiotemporal features of
rajectories are decoded to generate multimodal predicted trajectory
equences. The network architecture comprises multiple linear layers,



Information Fusion 102 (2024) 102046X. Wang et al.

w
p

I
t

5

5

i
o
M
e
w
b

w
s
f
o
t
S
t

i
d
b
a
h
t
d

5

L
a
2
s
d
c

t
o
t
E
p
r
i

p
d
(
i
d
e
m

normalization layers, and non-linear activation layers. Each residual
connection connects the input and the intermediate output of the
model.

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑦𝐹𝑢𝑠𝑖𝑜𝑛) (14)

Indeed, the residual structure in neural networks facilitates the learning
of nonlinear transformations across multiple layers. This structure helps
to alleviate the issues of gradient vanishing and exploding, enhances
the expressive power of neural networks.

4.4. Loss function

The proposed end-to-end model in this paper utilizes the Smooth-
L1 loss function, which is a regression loss function. In comparison
to commonly used loss functions like Mean Absolute Error (MAE) and
Mean Squared Error (MSE), the Smooth-L1 loss function offers stronger
robustness and computational efficiency for regression models. It also
provides better handling of outliers in the dataset. The expression for
the Smooth-L1 loss function is as follows:

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑥) =

{

1
2𝑥

2, if |𝑥| < 1,
|𝑥| − 1

2 , otherwise.
(15)

here 𝑥 refers to the Euclidean distance error (‖𝑝 − 𝑝∗‖) between the
redicted value 𝑝 and the true value 𝑝∗ at a specific moment.

Therefore, the loss function of the entire model is defined as follows:

loss = 1
𝑇

𝑇
∑

𝑡=1
Smooth𝐿1

(

𝑝 − 𝑝∗
)

(16)

n Eq. (16), 𝑇 represents the each moment of each position in the
rajectory sequence.

. Experimental results and analysis

.1. Dataset

Argoverse 1 motion forecasting [31] is a large-scale motion forecast-
ng dataset with high-definition maps and sensor data,which consists
f 324,557 real-world driving scenarios collected in Pittsburgh and
iami. Each scenario is 5 s long, for training and validation, while

ach test scenario presents only 2 s to the model, and another 3 s are
ithheld for the leaderboard evaluation. Each scenario contains the 2D,
irds-eye-view centroid of each tracked object sampled at 10 Hz.

Argoverse 2 motion forecasting [32] consists of 250,000 scenes,
ith 224,896 scenes used for training and validation. Each scene is

ampled at a frequency of 10 Hz, with a time length of 11 s (110
rames), and includes 2D positions, bird’s-eye view center points, and
rientations of tracked objects. During the experiment, we utilized
he historical trajectories from the preceding 5 s to train the model.
ubsequently, we employed this trained model to predict the future
rajectories for the subsequent 6 s.

Compared to the Argoverse 1 motion forecasting dataset, the scenes
n Argoverse 2 are approximately twice as long and more diverse. The
ataset includes some complex social interaction behaviors, such as
uses crossing multi-lane intersections, vehicles yielding to pedestrians
t crosswalks, and cyclists sharing crowded city streets. These behaviors
ighlight unusual situations in terms of kinematics and social interac-
ions, especially the behaviors exhibited by actors related to vehicle
7

ecision-making processes.
.2. Parameter settings and evaluation metrics

The experiment was conducted on a server running Ubuntu 20.04
TS. The server was equipped with an NVIDIA GeForce RTX 3090 GPU
nd 96 GB of RAM. For training purposes, we utilized the PyTorch
.0 deep learning framework. The model training employed a batch
ize of 4 and the neural network consisted of 64 hidden units. The
efault vehicle interaction range was set to 100 m. The training process
onsisted of 72 epochs.

The Argoverse 1 and 2 test datasets only contain historical data from
he previous 2 s and 5 s, respectively. Therefore, to evaluate and obtain
nline test results, it is necessary to submit the model’s predicted future
rajectory results to the Eval AI platform (website1) and (website2).
valAI is an open-source platform for large-scale evaluation and com-
arison of machine learning (ML) and artificial intelligence (AI) algo-
ithms. It is used for experimental evaluation of various conferences,
ncluding CVPR and ICCV.

This article evaluates the experimental results fundamental basic
rediction parameters and evaluation metrics, focusing on two pre-
iction results: unimodal prediction (K=1) and multi-modal prediction
K=6). During the prediction process, the data from the preceding 5 s
s utilized to forecast the subsequent 6 s of motion trajectory. The stan-
ard evaluation metrics encompass the minimum average displacement
rror (minADEk), minimum final displacement error (minFDEk), and
iss rate (MRk). The specific details of each metric are as follows:

(1) Average Displacement Error (ADE)
The minimum average displacement error (minADEk) metric
represents the average Euclidean distance between the predicted
value and the ground truth at each point during the prediction
phase. It quantifies the average accuracy of the predicted tra-
jectory within the prediction time T. The formula for ADE is as
follows:

𝐴𝐷𝐸 = 1
𝑛

𝑛
∑

𝑖=1

√

(

𝑦𝑖 − 𝑦𝑖
)2 +

(

𝑥𝑖 − 𝑥𝑖
)2 (17)

In the equation, (𝑥𝑖, 𝑦𝑖) represents the position coordinates of
the predicted trajectory, (𝑥𝑖, 𝑦𝑖) represents the position coor-
dinates of the actual trajectory, and 𝑛 represents the number
of samples within the predicted time period, which is 60 in
this paper. When predicting multimodal trajectories, multiple
trajectories correspond to multiple average displacement errors.
This paper adopts the minimum average displacement error as
the evaluation criterion.

(2) Final Displacement Error (FDE)
The final displacement error (minFDEk) metric represents the
Euclidean distance between the predicted trajectory value and
the true value at the last moment of the prediction phase. It
quantifies the accuracy of the predicted trajectory at the final
time step of the prediction period.

𝐹𝐷𝐸 = 1
𝑚

𝑚
∑

𝑘=1

√

(

𝑦𝑘𝑛 − 𝑦𝑘𝑛
)2

+
(

𝑥𝑘𝑛 − 𝑥𝑘𝑛
)2

(18)

Among them, 𝑚 represents the total number of trajectories, and
this article takes either 1 or 6; 𝑘 represents the 𝑘th trajectory;
(𝑥𝑘𝑛 , 𝑦𝑘𝑛) represents the endpoint coordinate of the predicted tra-
jectory; (𝑥𝑘𝑛 , 𝑦𝑘𝑛) represents the endpoint coordinate of the actual
trajectory.

(3) Miss Rate (MR)
The miss rate (MRk) metric represents the proportion of failed
predictions when the distance between the predicted trajectory
and all true trajectories exceeds a certain threshold. In this study,
the threshold size is set at 2.0 m. It measures the percentage of
predictions that do not meet the specified accuracy criteria.

(4) Brier Minimum Final Displacement Error (brier-minFDE)
Brier-minFDE is similar to minFDE. It adds a penalty term, (1.0−
𝑝)2, to the L2 distance error towards the endpoints, which 𝑝
corresponds to the predicted probabilities of the best predicted

trajectory.

https://eval.ai/web/challenges/challenge-page/454/leaderboard/1279
https://eval.ai/web/challenges/challenge-page/1719/leaderboard/4098
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Fig. 5. Visualization of prediction results on Argoverse 1.
Table 4
Results on the Argoverse 1 Test Set.
Method minADE

(k = 1)
minFDE
(k = 1)

MR
(k = 1)

minADE
(k = 6)

minFDE
(k = 6)

MR
(k = 6)

brier-
minFDE
(k = 6)

LaneRCNN [12] 1.685 3.692 0.569 0.904 1.453 0.123 2.147
TNT [11] 2.174 4.959 0.710 0.910 1.446 0.166 2.140
DenseTNT [24] 1.703 3.696 0.599 0.911 1.381 0.103 2.076
LaneGCN [22] 1.706 3.779 0.591 0.868 1.364 0.163 2.059
mmTransformer
[25]

1.774 4.003 0.618 0.844 1.338 0.154 2.033

GOHOME [27] 1.689 3.647 0.572 0.943 1.450 0.105 1.983
HOME [26] 1.73 3.73 0.584 0.94 1.45 0.102 –
Ours 1.714 3.6091 0.5574 0.8274 1.3297 0.107 2.012
Table 5
Results on the Argoverse 2 Test Set.
Method minADE

(k = 1)
minFDE
(k = 1)

MR
(k = 1)

minADE
(k = 6)

minFDE
(k = 6)

MR
(k = 6)

brier-
minFDE
(k = 6)

ConsVehocity
[21]

7.7215 17.4607 0.8973 – – – 18.1552

LSTM-ED [21] 6.0257 16.8254 0.9389 1.6572 3.7231 0.5787 4.8773
CradPred [13] 4.9376 13.3025 0.9229 1.2088 2.8206 0.425 3.6843
furtherAI [33] 4.10 10.26 0.90 2.60 6.10 0.67 6.81
Narsis [33] 4.63 12.85 0.94 1.25 2.85 0.44 3.72
Ours 4.5798 12.4447 0.9199 1.1816 2.7228 0.4114 3.582
5.3. Experimental results

The comparison results will be listed as follows for analysis and
evaluation. Table 4 shows the test results on Argoverse 1.1, while
Table 5 shows the test results on Argoverse 2.

To assess the predictive performance of the model, we visually
present the multimodal prediction results, as depicted in Figs. 5 and
6. In the figure, the orange rectangles represent the focused vehicles,
while the light rectangles represent other vehicles. The burnt orange
line represents the historical trajectory, the red line represents the
ground truth, and the dark green line represents the multimodal pre-
dicted trajectory. This figure showcases real-life situations in different
scenarios, such as traffic congestion, turning, lane changing, oncoming
traffic, straight road driving, and intersection driving. It provides a
visual representation of the model’s ability to accurately predict and
handle complex driving scenarios.
8

According to the experimental results, the trajectory prediction
model proposed in this paper demonstrates accurate predictions of
vehicle trajectories in various scenarios, such as straight driving, in-
tersection turning, and traffic congestion. In these scenarios, at least
one predicted trajectory completely overlaps with the real trajectory,
indicating the model’s capability to predict the uncertainty of ve-
hicle driving intentions through spatiotemporal interactions between
vehicles. This approach enables accurate trajectory prediction. By ob-
serving Fig. 6(a) traffic congestion and Fig. 6(d) straight driving at
intersections, it is evident that the predicted trajectories have differ-
ent lengths. On straight roads without traffic congestion, the vehicle
tend to have higher speed, resulting in longer predicted trajectories.
Conversely, on congested roads, the slower movement of vehicles leads
to shorter predicted trajectories. This demonstrates that the model
proposed in this paper can accurately predict the trajectory of a vehicle
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Fig. 6. Visualization of prediction results on Argoverse 2.((a) It displays the trajectory of vehicles during traffic congestion. (b) It shows the trajectory of vehicles during encounters.
(c) It demonstrates the lane-changing behavior of vehicles. (d) Vehicles proceeding straight at intersections. (e) Vehicles making turns at intersections. (f) Motorcycles making turns
at intersections.).
l

by predicting its driving speed. Additionally, by analyzing Fig. 6(c)
and Fig. 6(e), it can be observed that the model can accurately predict
future behaviors such as lane changes and turns. In Fig. 6(b), the orien-
tation of the vehicle indicates that it has made the appropriate choice
to avoid oncoming traffic, demonstrating that the model can effectively
capture the interaction between vehicles and make correct decisions.
Furthermore, upon examining the final Fig. 6(f), it is evident that the
model is not only applicable to predicting vehicle trajectories but also
to other traffic participants, such as motorcyclists or pedestrians.

5.4. Experimental analysis

There are more methods implemented in the Argoverse 1 dataset as
shown in Figs. 7(a) and 7(b). LaneGCN [22] proposes the LaneConv
method to model the interaction between lanes and vehicles. Our
method borrows the LaneConv operation and introduces spatio-tempora
cross-attention mechanism and gate mechanism to further extract fea-
tures and control outputs, thus achieving better performance. TNT [11]
and DenseTNT [24] adopt target-driven decoding, where the selection
of targets relies on heuristic knowledge, and the early trajectory feature
modeling is not as sufficient as the LaneConv method. Thanks to
the spatio-temporal modeling of the cross-attention mechanism, our
method achieves better performance. Home [26] and GoHome [27] use
heatmaps to predict target positions. Due to the lane-level heatmaps,
the prediction results focus more on the range rather than the fine-
grained position. LaneRCNN [12] uses global information when dealing
with the interaction between lanes and vehicles, which introduces some
noise, especially in multi-modal prediction, leading to performance
degradation caused by accumulated errors. Similarly, the region train-
ing strategy of mmTransformer [25] does not consider the surrounding
environment features during feature extraction modeling. To avoid this
problem, we only consider the local environment within the influence
range of the vehicles.

In order to further analyze the effectiveness of the method in this
study, we compare the performance of various models under different
indicators, as shown in Figs. 7(c) and 7(d). Based on the results, it can
9

be observed that the method proposed in this paper performs better
than other mainstream methods in trajectory prediction tasks. Com-
pared with the constant velocity [21] baseline method, the minADE
and minFDE indicators in the single-modal prediction of this paper’s
method have improved by 40.69% and 28.73% respectively. However,
in single-modal prediction, the miss rate has increased by 2.52%, shown
in subgraph 7(c). This may be because the neural network may get
stuck in a local optimum during single-modal prediction. In contrast,
in multi-modal prediction tasks, due to the simultaneous operation of
multiple neural networks, it is not easy to get stuck in a local optimum,
resulting in a significant decrease in the miss rate.

In comparison, prediction methods based on deep learning perform
more ideally. Compared with the LSTM-ED method [21], the pro-
posed method in this paper has improved the performance on various
indicators in single-modal prediction tasks by 24.00%, 26.04%, and
2.02% respectively, and in multi-modal prediction tasks by 28.70%,
26.87%, and 28.91% respectively. The LSTM method only considers the
temporal features of trajectories, while ignoring the spatial interaction
effects between trajectories, thus resulting in lower prediction accuracy
compared to the method proposed in this paper.

Compared to the CradPred [13], the proposed method has im-
proved the performance on single-modal prediction by 7.25%, 6.45%,
and 0.33% for different metrics, and on multi-modal prediction by
2.25%, 3.47%, and 3.20% for different metrics. Similar to the Crad-
Pred method, the method in this paper also considers the tempo-
ral sequence features among trajectories and introduces self-attention
and graph networks to capture the spatial interaction relationships
among trajectories, resulting in higher prediction accuracy compared
to LSTM-based methods. However, this method further improves the
prediction accuracy by incorporating map data and cross-attention to
model spatial–temporal features, reducing the loss of different spatial–
temporal domain features and enhancing the effectiveness of modeling
long-term spatial–temporal features. The data for the Narsis and Fur-
therAI methods is sourced from the Eval AI leaderboard [33], but
specific details are not provided. Therefore, no further analysis is
conducted and it is only used for comparison with the performance of
the model in this paper.
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Fig. 7. Improvement in experimental results.
Table 6
Ablation Experiment Results on Argoverse 1 Test set.
Method minADE

(k = 1)
minFDE
(k = 1)

MR
(k = 1)

minADE
(k = 6)

minFDE
(k = 6)

MR
(k = 6)

b-minFDE
(k = 6)

/o ST 1.8572 3.8655 0.5626 0.8327 1.3489 0.1232 2.1127
/o TS 1.8631 3.8729 0.5793 0.8384 1.3672 0.1198 2.1038
/o RG 1.9724 4.0172 0.5673 0.8431 1.4271 0.1211 2.1781
Ours 1.714 3.6091 0.5574 0.8274 1.3297 0.107 2.012
Table 7
Ablation Experiment Results on Argoverse 2 Test set.
Method minADE

(k = 1)
minFDE
(k = 1)

MR
(k = 1)

minADE
(k = 6)

minFDE
(k = 6)

MR
(k = 6)

b-minFDE
(k = 6)

w/o ST 4.6912 12.7944 0.9216 1.2298 2.9944 0.4437 3.9690
w/o TS 4.7589 13.0096 0.9234 1.3535 3.2653 0.4516 4.4205
w/o GR 4.8943 13.2969 0.9387 1.2523 2.9128 0.4397 3.7813
Ours 4.5798 12.4447 0.9199 1.1816 2.7228 0.4114 3.582
5.5. Ablation experiment

To ensure the effectiveness of the proposed model, this paper con-
ducted ablative experiments to analyze the model. These experiments
removed the spatial–temporal (ST) attention branch, temporal–spatial
(TS) attention branch, and the Geographical Road Gating (GR) module
to evaluate the effectiveness of the spatiotemporal interaction module.
The experiments were also conducted on the test set, and the Eval AI
platform provided the results at Table 6 and Table 7:

Similarly, in order to further analyze the impact of each mod-
ule of the model on its performance, we compared the ablation re-
sults on the two datasets, as shown in Fig. 8, which illustrates the
mean and variance magnitudes on two datasets. It shows that after
removing the spatial–temporal attention branch (ST) and the temporal–
spatial attention branch (TS) respectively, the model’s performance in
both unimodal and multimodal prediction tasks is reduced to varying
10
degrees. Specifically, after removing the temporal–spatial attention
branch, the performance of the unimodal prediction task decreased
by 2.43%, 2.81%, and 0.18% for each metric, and the performance
of the multimodal task decreased by 4.08%, 9.98%, and 7.85% for
each metric. Similarly, after removing the spatial–temporal attention
branch, the performance of the unimodal prediction task decreased by
3.91%, 4.54%, and 0.38%, and the performance of the multimodal
task decreased by 14.55%, 19.95%, and 9.77% for each metric. This
indicates that these two branches play an important role in extract-
ing spatiotemporal features for trajectory information, validating the
effectiveness of the modules.

Whether it is the space–time attention branch or the time-space
attention branch, both are exploring the changing trends of the trajec-
tory’s future position at a certain moment. However, different orders
may result in the loss of different information, which has been verified
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Fig. 8. Improvement in ablation experimental results.
in the erasure experiment, manifested as varying degrees of perfor-
mance decline. Therefore, integrating both orders can supplement some
spatiotemporal information, reduce information loss, and thus improve
the accuracy of prediction.

Furthermore, when the gating module (GR) is removed, the model’s
performance in unimodal prediction is reduced by 6.87%, 6.85%, and
2.04% for each metric, and the performance in multimodal prediction
also decreases to varying degrees, by 5.98%, 6.98%, and 6.88% for
each metric. The fused features can include fine-grained spatiotemporal
characteristics, but vehicles travel on a macroscopic lane. Therefore, by
utilizing the macroscopic road structure to constrain the output results,
it is possible to avoid some unrealistic prediction scenarios, such as
surmount or break the path.

Therefore, the experimental results fully demonstrate the indispens-
ability of the sub-modules and the overall spatial–temporal interaction
module in trajectory prediction tasks.

6. Conclusion

This paper proposes a new spatiotemporal trajectory prediction
model that integrates and represents multimodal data from multiple
sources of visual data and other sensors, thereby exploring the compre-
hensive value of the multimodal data. Employing the MSVFU technique
enhances both the precision and dependability of trajectory prediction.
The model is based on graph neural networks and spatial–temporal
cross attention mechanisms, combined with high-precision map infor-
mation, to extract and analyze the spatiotemporal features inherent
in data that integrates visual information and semantic content. It
utilizes a road gating mechanism to constrain the output results within
the road network and finally predicts possible multimodal driving
trajectories in the future using a residual network. Extensive testing
was conducted on the publicly available real-world dataset Argoverse
2, and the results show that the proposed model achieves good perfor-
mance. However, the current methods overly rely on high-definition
maps, which are costly and time-consuming to collect and may not be
available in some areas. Furthermore, target-driven methods primarily
focus on predicting the vehicle’s driving intention, which offers higher
interpretability. Therefore, we will consider target-driven or map-free
trajectory prediction methods.
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