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A B S T R A C T

Currently, the crowdsourcing system has serious problems such as single point of failure of the server, leakage
of user privacy, unfair arbitration, etc. By storing the interactions between workers, requesters, and crowd-
sourcing platforms in the form of transactions on the blockchain, these problems can be effectively addressed.
However, the improvement in total computing power on the blockchain is difficult to provide positive feedback
to the efficiency of transaction confirmation, thereby limiting the performance of crowdsourcing systems.
On the other hand, the increasing amount of data in blockchain further increases the difficulty of nodes
participating in consensus, affecting the security of crowdsourcing systems. To address the above problems,
in this paper we design a blockchain architecture based on dynamic state sharding, called DSSBD. Firstly,
we solve the problems caused by cross sharding transactions and reconfiguration in blockchain state sharding
through graph segmentation and relay transactions. Then, we model the optimal block generation problem as
a Markov decision process. By utilizing deep reinforcement learning, we can dynamically adjust the number of
shards, block spacing, and block size. This approach helps improve both the throughput of the blockchain and
the proportion of non-malicious nodes. Security analysis has proven that the proposed DSSBD can effectively
resist attacks such as transaction atomic attacks, double spending attacks, sybil attacks, replay attacks, etc. The
experimental results show that the crowdsourcing system with the proposed DSSBD has better performance in
throughput, latency, balancing, cross-shard transaction proportion, and node reconfiguration proportion, etc.,
while ensuring security.
1. Introduction

Based on cryptography and P2P networks, blockchain technology
has the characteristics of natural tamperability and decentralization.
Blockchain technology is widely used to solve problems such as single
point of failure, privacy disclosure, and unfair arbitration in traditional
crowdsourcing systems (Zhu et al., 2019). For example, in a scenario
where crowdsourcing and blockchain are combined, messages such
as information registration, task release, and task submission in the
crowdsourcing system are transformed to transactions and stored on
the blockchain (Liang et al., 2022; Wang et al., 2022). However, due to
the limitations of consensus mechanisms, there is an upper limit to the
scalability of blockchain, which limits the performance of blockchain-
based crowdsourcing systems. For example, the throughput of Bitcoin is
about 10 transactions per second (Tschorsch and Scheuermann, 2016),
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while the throughput of Ethereum after adjusting the block spacing
can only reach about 30 transactions per second (Buterin et al., 2014),
which makes the throughput of crowdsourcing systems based on these
two blockchain also close to the theoretical upper limit. In contrast,
the throughput of visa servers can reach thousands of transactions
per second (Klarman et al., 2018). From the perspective of security,
decentralization, and scalability, the main problem with traditional
blockchain is that scalability is sacrificed to ensure their security and
decentralization, which makes it difficult to positively feedback the
improvement of blockchain computing power into performance. How-
ever, after the security and decentralization of blockchain reach a
certain level, sacrificing efficiency is not an option. Therefore, plenty
of blockchain scalability technologies have gradually been proposed.
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Blockchain scalability technologies can be roughly divided into
Layer0, Layer1, and Layer2 technologies according to different ap-
plication scopes. Layer0 technology is mainly aimed at improving
the way of data transmission, by reducing the transmission delay
to improve blockchain performance. Layer1 technology, also known
as on-chain scaling technology, achieves blockchain performance im-
provement through on-chain technologies such as consensus protocols,
P2P networks, and data structures, including sharding technology,
Bitcoin-NG, and DAG distributed ledgers. Layer2 technology is also
called off-chain scaling technology, which does not change the basic
protocol of the blockchain, and the security of the system is still
guaranteed by the blockchain itself. It only improves scalability through
off-chain methods such as state channel technology and side chain
technology (Zhou et al., 2020). Whether it is Layer0 or Layer2 tech-
nology, blockchain performance is not optimized from its structure.
Therefore, Layer1 technology has gradually received attention in recent
years. In Layer1 technology, there are mainly three types of techniques:
reducing overhead, vertical scaling, and horizontal scaling. Vertical
scaling mainly involves increasing the resources of nodes to reduce
block interval and increase block size. Horizontal scaling is mainly
achieved by replicating and partitioning data in the blockchain to
improve parallelism. There are obvious theoretical limits to reducing
overhead and vertical scaling. Therefore, improving the scalability of
the blockchain through horizontal scaling has become a research focus,
and sharding technology is the key to it (Nasir et al., 2022). On the
other hand, while improving the scalability of blockchain, how to
balance its security and decentralization is another issue we face. For
the blockchain, full nodes maintain and store the data of the entire
blockchain, allowing them to verify the validity of transactions and
blocks. Therefore, the more full nodes there are in the blockchain,
the more reliable the consensus of the blockchain can be guaranteed,
and the safer the system can operate. However, taking Bitcoin and
Ethereum as examples, the current hard disk space requirement for run-
ning Bitcoin full nodes exceeds 500GB12 This seriously hinders nodes
from becoming full nodes, increases the cost of nodes participating in
transaction consensus, and restricts the decentralization and security
of blockchain. Besides, after security is satisfied, excessive redundant
data can cause a large amount of storage resources to be wasted in
blockchain-based crowdsourcing systems.

For a crowdsourcing system, the entire business process is roughly
illustrated in Fig. 1. The requester first publishes tasks through the
crowdsourcing platform, and the crowd workers sense the tasks and
submit answers through the platform. The submitted answers are then
forwarded to the requester for evaluation, and finally the requester
pays the workers. A blockchain-based crowdsourcing system makes
the entire business process open and transparent. Steps such as task
publishing, evaluation, and payment can be automatically completed
through smart contracts, without relying on the reputation of the
requester, workers, or any third party. However, due to the scalability
limitations of blockchain, there is a certain upper limit on the efficiency
of business processing in blockchain-based crowdsourcing systems. At
the same time, a large amount of redundant and repetitive information
is stored in the underlying blockchain, which actually limits the secu-
rity of the crowdsourcing systems. As mentioned earlier, using state
sharding blockchain technology in the construction of crowdsourcing
systems can solve these problems. Through this technology, we can
ensure both the fairness and transparency of the business process

1 Data source: Jamie Redman, 2022, The size of Bitcoin’s distributed
ledger nears a half terabyte, https://news.bitcoin.com/the-size-of-bitcoins-
distributed-ledger-half-terabyte/ (accessed 22 July 2023), and the requirement
for running Ethereum full nodes exceeds 2TB.

2 Data source: Go-ethereum, 2022, Hardware requirements, https://geth.
ethereum.org/docs/getting-started/hardware-requirements/ (accessed 22 July
2023).
2

Fig. 1. Example of improved scalability of blockchain sharding.

of the crowdsourcing system, improve system efficiency, and reduce
unnecessary information redundancy.

However, in state sharding, dividing the storage space into different
shards will inevitably results in many transactions that need to span
different shards, which are called cross-shard transactions. Due to the
consensus involved in different shards, the verification process of cross-
shard transactions is very difficult. Thereby, ensuring the atomicity of
these cross-shard transactions is extremely important, otherwise the
consensus of the entire blockchain will become chaotic. On the other
hand, the tolerance for malicious nodes or downtime nodes is also
reduced to 1/n of the previous level, and shards with fewer partici-
pating nodes are less resistant to double-spending attacks. To ensure
the long-term security of the blockchain, it is necessary to periodically
reconfigure the nodes. However, excessive node reconfiguration during
the state sharding reconfiguration phase can significantly impact the
stability of the blockchain. Therefore, finding a way to leverage the
benefits of state sharding to enhance blockchain performance while
addressing the challenges it presents is an ongoing issue.

In summary, in order to address the performance limitations of
current blockchain-based crowdsourcing systems, we will face the fol-
lowing four challenges.

• Blockchain faces difficulties in improving scalability.
• The storage space requirements of blockchain nodes are too high,

which restricts the centralization and security of blockchain.
• Improving the scalability of blockchain will reduce its security

and stability.
• How to dynamically adjust the scalability, security, and decen-

tralization of blockchain in order to adapt to the different perfor-
mance requirements of crowdsourcing systems in various scenar-
ios?

https://news.bitcoin.com/the-size-of-bitcoins-distributed-ledger-half-terabyte/
https://news.bitcoin.com/the-size-of-bitcoins-distributed-ledger-half-terabyte/
https://geth.ethereum.org/docs/getting-started/hardware-requirements/
https://geth.ethereum.org/docs/getting-started/hardware-requirements/
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In order to solve the above problems, in this paper, we first use
state sharding technology to improve the scalability and decentral-
ization of the blockchain of the crowdsourcing system. And through
the sharding module, reconfiguration module and security module, the
atomicity of blockchain cross-shard transactions and the security of
the blockchain are guaranteed. Finally, through deep reinforcement
learning, the blockchain achieves an optimal balance among decentral-
ization, security, and scalability, and improves the performance of the
crowdsourcing system.

• We propose a blockchain architecture based on dynamic state
sharding using deep reinforcement learning, called DSSBD, to
solve the problem of performance degradation of the crowd-
sourcing system when the blockchain is in a non-optimal bal-
ance between decentralization, security, and scalability. To the
best of our knowledge, DSSBD is the first architecture that uses
deep reinforcement learning in state sharding blockchain to op-
timize sharding and block generation. By ensuring the security
of blockchain and the effectiveness of transactions, it greatly
improves the performance of blockchain based crowdsourcing
systems.

• We consider load balancing for a blockchain-based crowdsourcing
system during the reconfiguration phase. We utilize a modified
state tree to quickly differentiate transaction types, reducing the
time complexity of querying transaction types to 𝑂(1).

• Through security analysis, we prove that DSSBD can effectively
resist attacks such as transaction atomicity attack, double spend-
ing attack, sybil attack and replay attack. The experimental results
demonstrate that for the blockchain-based crowdsourcing system,
the proposed architecture is superior to the most advanced base-
lines in terms of throughput, transaction delay, cross-shard trans-
action proportion, node reconfiguration proportion, and average
shard transaction load.

The rest of this paper is organized as follows. We present the state-
f-the-art blockchain sharding technologies in Section 2. The system
odel is given in Section 3. We elaborate the design of the proposed
SSBD in Section 4. The security analysis is presented in Section 5. The
erformance evaluation is conducted and the experimental results are
iscussed in Section 6. We conclude this paper in Section 7.

. Related works

In this section, we first review blockchain sharding technologies,
nd then introduce relevant researches on deep reinforcement learning
echnology of blockchain sharding.

.1. Sharding blockchain

Sharding technology is widely used in databases and cloud services.
ith the gradual increase of stored data, in order to optimize the stor-

ge method of each node, the storage efficiency of data is improved by
sing sharding technology. Today, sharding technology is also widely
sed in blockchain to solve scalability problems.

The sharding technology in the blockchain is mainly divided into
hree types, network sharding, transaction sharding and state sharding.
mong them, network sharding is to divide the entire network into
ifferent subnets through a certain organizational method at the level
f network connection, and each subnet processes transactions in the
lockchain in parallel. The transaction sharding is aimed at the trans-
ctions to be verified in the blockchain, and divides these transactions
nto different processing areas through specific rules. For state shard-
ng, it divides the entire blockchain ledger into many sub-ledgers, and
hese sub-ledgers are stored in each shard. Each shard can not only
erify transactions at the same time, but also reduce storage pressure.
n state sharding, a complete ledger can only be formed through the
3

ntire network. Under the current technical conditions, both network
sharding and transaction sharding have relatively ideal methods. There
are still many technical problems in the realization of state sharding,
and there are some technical problems in state sharding (Hashim et al.,
2022).

2.2. State sharding

According to the access rules of nodes, the blockchain can be
divided into two types, permissioned blockchain and permissionless
blockchain. Therefore, the corresponding state sharding blockchain is
also divided into two cases to consider.

For a permissioned blockchain, since its nodes are operated by
identified participants with a certain degree of trust, the security of
the nodes is high, and the accounting rights in the shards are often
in a small number of certain nodes. Therefore, state sharding of per-
missioned blockchains usually does not require reconfiguration after
sharding. For example, Sharper (Amiri et al., 2021) is a state sharding
blockchain based on a permissioned chain. Since it does not need to
consider the reconfiguration of nodes, it adopts a directed acyclic graph
(DAG) (Gao et al., 2020) structure for the ledger, so that the ledger of
each shard chain can store cross-shard transactions.

For non-licensed blockchains, due to the low degree of node trust
(or even no trust), the overall security of the blockchain needs to
be considered during the sharding process, and many mechanisms to
ensure security are added. For example, although Elastico (Luu et al.,
2016) is a transaction shard, its way of establishing an identity and
forming a committee through POW, and then forming an on-shard
consensus through BFT has affected the blockchain architecture of
many transaction shards.

RapidChain (Zamani et al., 2018) is a state-sharded blockchain
architecture that adopts a committee method similar to Elastico for
sharding. In order to reduce the cost of reconfiguration, a limited
Cuckoo Rule is proposed to select active nodes for committee recon-
struction. OmniLedger (Kokoris-Kogias et al., 2018) mainly focuses
on the atomicity of cross-shard transactions after state sharding. It
performs state sharding by constructing the main chain and other sub-
chains, and proposes a hierarchical processing that trusts in different
shards first, and then merges and verifies them. The mechanism (Trust-
but-Verify) ensures the atomicity of cross-shard transactions. Monox-
ide (Wang and Wang, 2019) is a relatively balanced state sharding
technology. It proposes the concept of final atomicity to efficiently pro-
cess cross-shard transactions, and uses the merge mining method called
Chu-ko-nu to improve the security after sharding. BrokerChain (Huang
et al., 2022) addresses the hotspot issues encountered in Monoxide
by utilizing a graph partitioning method. This method converts cross-
shard transactions into intra-shard transactions, effectively resolving
the problem.

2.3. Deep reinforcement learning based sharding

With the improvement of computer computing power, blockchain
technology and machine learning are increasingly being applied to
practical scenarios such as the Industrial Internet of Things, and there
are more and more solutions that combine deep reinforcement learning
and sharding technology to solve blockchain scalability.

Liu et al. (2019) combined industrial IoT devices with blockchain,
proposed the DRLB model, used the DQN algorithm to solve the prob-
lem of limited scalability of blockchain, and proposed a performance
optimization framework for blockchain-based IoT systems. Yun et al.
(2020) proposed a permissioned chain-based sharding blockchain ar-
chitecture DQNSB, mainly analyzing the performance of the model
under the PBFT consensus, and improving the performance of DRLB
by optimizing the DQN model. Yang et al. (2022) used the K-means
algorithm for transaction shard, and used the D-DQN algorithm to

optimize the performance of the system.
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Although the research on the combination of blockchain sharding
and deep reinforcement learning has gradually become popular in re-
cent years, due to the complexity of state sharding, the current research
is based on account sharding. Therefore, combining state sharding with
deep reinforcement learning is the focus of this paper.

3. System model

Considering that blockchain based crowdsourcing systems rely on
the underlying blockchain, we aim to optimize the scalability and
decentralization of blockchain while ensuring security by proposing
a blockchain architecture based on state sharding using deep rein-
forcement learning, thereby improving the performance and security of
blockchain based crowdsourcing systems. The system model is shown
in Fig. 2.

3.1. Types of nodes in DSSBD

To obtain the optimal block generation strategy, we first define
epoch as a fixed clock period. In every epoch, both consensus and node
reconfiguration operations are performed. For blockchain, there are
two types of nodes, namely miner nodes and non miner nodes. In order
to ensure the atomicity and security of transactions between different
shards at the consensus phase, and the stability and consistency of the
blockchain at the reconfiguration phase, we need to encourage some
nodes to maintain the blockchain as non-miner nodes, which can be
further divided into relay nodes and shard nodes.

• Relay-Node(R-Node): Relay-Nodes are generated through smart
contracts by pledging equity. Each R-Node has a relay account.
In order to realize the relay of cross-shard transactions, this
account needs to be divided into multiple sub-accounts and added
to different shards respectively. Other nodes achieve cross-shard
transactions by conducting transactions with the sub-accounts of
relay nodes.

• Shard-Node(S-Node): Shard-Nodes are generated through appli-
cation and election. They do not join any specific state shards,
but form a new shard called S-Shard similar to a committee. S-
Nodes are mainly responsible for planning and reconfiguring the
nodes of each shard in each epoch based on transaction load and
security.

Compared to regular mining nodes, R-Nodes retain the state infor-
ation of multiple shards and reach consensus on each shard. Essen-

ially, it is equivalent to a full node that stores multiple shard state
nformation. If a R-Node stores the state information of all shards, it is
quivalent to a regular full node before sharding. On the other hand,
-nodes not only retain the entire blockchain’s state information in
he S-Shard but also need to reach consensus on the sharding division
or the next epoch. However, in order to become such non-mining
odes, nodes need to stake equity or participate in elections to prevent
alicious behavior.

In particular, if a node wants to become a R-Node for more shards,
t not only needs to pay more resources to store multi-shard state
nformation, but also needs to pay more equity for mortgage. This
pproach effectively prevents the processing of cross-shard transactions
rom being too centralized on individual relay accounts. However, in
rder to encourage nodes to become R-Nodes to process cross-shard
ransactions, maintain system operation, and increase the degree of
ecentralization, part of the transaction fee will be transferred to the
elay account.
4

3.2. Main phases of DSSBD

In each epoch, DSSBD needs to process the interaction information
between the workers and the crowdsourcing system in two phases:
blockchain consensus and node reconfiguration. Then, decisions are
made through deep reinforcement learning. Note that within each
epoch, all legal transactions in the consensus phase will become the
basis for S-Shard to re-shard in the reconfiguration phase. In the
next epoch’s blockchain consensus phase, the proportion of cross-shard
transactions and the transaction load of each shard will be affected by
the results of the previous round of reconfiguration.

• Blockchain Consensus Phase: The consistency of the blockchain
is achieved through two types of consensus nodes, namely the
miner nodes and R-Nodes. They verify transactions and form
consensus to ensure the consistency of the entire network state.
Regardless of whether the consensus protocol is POW or PBFT,
for transactions where the sending and receiving addresses belong
to the same shard, consensus among the consensus nodes within
the shard is sufficient. To handle cross-shard transactions, R-
Nodes are utilized to split the raw transaction into pre-cross-shard
transactions and post-cross-shard transactions. These two sub-
transactions are then forwarded to the respective shards. The
consensus nodes of each shard verify these sub-transactions, form-
ing sub-consensus. Eventually, these sub-consensus are merged
into a complete consensus. This process is necessary since the
state information of the entire blockchain is divided into different
shards. This process is described in detail in Section 4.2.2.

• Node Reconfiguration Phase: It is necessary to reconfigure shards
for all nodes except the S-Nodes at this phase. To improve
the overall efficiency of the blockchain, we have to reduce the
blockchain’s ability against malicious nodes. Therefore, in order
to prevent malicious nodes from gathering in the same shard to
control the entire blockchain, we need to reconfigure the shards
of the nodes. To this end, given the transactions within an epoch,
we let the S-Nodes in the S-Shard reach a consensus based on the
re-partition of the node shard information, which is elaborated
in Section 4. To reduce the cost of reconfiguration, only partial
reconfiguration is performed on active nodes at the end of each
epoch. Through node reconfiguration, we reduce the proportion
of cross-shard transactions and optimize the transaction load of
each shard.

3.3. Security model

This paper considers transaction atomicity attack, double spend
attack, sybil attack and replay attack against DSSBD. These attacks from
the perspective of transaction atomicity and consensus security will
cause malicious nodes to obtain improper benefits by repeating trans-
actions, modifying the state of the blockchain, and even controlling
the network. This behavior undermines the integrity and reliability of
the state of the entire blockchain network. According to the analysis of
Section 5, the architecture proposed in this paper can effectively resist
these attacks.

• Transaction Atomicity : It means that any type of transaction should
be treated as an indivisible unit, either fully executed successfully
or completely rolled back in case of failure, without any partial
execution.

• Consensus Security : It refers to the process in which participating
nodes in each shard reach consensus, which can prevent malicious
behavior and maintain the integrity and consistency of the entire
blockchain network.

In addition, due to the existence of the reconfiguration phase,
stability and consistency are also important security indicators. Within

one epoch, the more participating nodes in the reconfiguration, the
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Fig. 2. Model diagram of a blockchain-based crowdsourcing system.
greater the possibility of multiple states simultaneously due to network
transmission delays and node processing capabilities. This can lead to
forks, resulting in inconsistency and confusion in the entire blockchain
network. With continuous reconfiguration, this confusion and inconsis-
tency will continue to intensify. In this situation, malicious nodes, with
clear intentions, can control the entire blockchain network with a small
amount of computing power.

In order to make the article more clear, In order to make the article
more clear, brief explanations of some important terms mentioned in
this paper are provided in the Table 1.

4. Strategy design of DSSBD

In this section, we illustrate the design of the proposed DSSBD
in details. First, we introduce the static environment and transaction
flow of the state sharding blockchain. Then, we will explain how
to dynamically optimize the state sharding using deep reinforcement
learning.

4.1. Static environment of state sharding blockchain

In order to build an efficient, secure and stable state sharding
blockchain environment for the blockchain-based crowdsourcing sys-
tem, we need to consider the sharding module of newly added nodes,
graph partitioning module, node reconfiguration module, and sharding
security module.

4.1.1. Initial sharding
To avoid a Sybil attack (Zhang and Lee, 2019), any newly joining

node will need to solve a hash puzzle to determine which shard it is
joining. In particular, for account-based blockchain, the shard to which
the account belongs can be quickly determined through the hash value
of the first or last digits of the account address.
5

4.1.2. Graph partitioning
Considering the correlation between transactions, in order to reduce

the number of cross-shard transactions, we use the METIS (Karypis
and Kumar, 1998) algorithm to partition the graph. METIS is a well-
known heuristic graph partitioning tool that can divide the transaction
flow snapshot into non-overlapping parts while considering workload
balancing. In each epoch, we extract the accounts involved in the trans-
action as the vertices of the graph, and the transactions between the
accounts as undirected edges. Since the cost of cross-shard transactions
is mainly related to the number of transactions, the weight of an edge is
expressed as the number of transactions involved in the two accounts in
this epoch. If the account does not have transactions in this epoch, the
graph partition will not be considered to reduce the cost of blockchain
reconfiguration.

Thereby, we define a transaction flow snapshot at epoch 𝑡 by 𝛶 (𝑡) =
{𝑦(𝑡)𝑖,𝑗}, where 𝛶 (𝑡) is a 𝑀 ×𝑀 matrix, and 𝑀 is the number of accounts
involved in all transactions in this epoch. Suppose we are at the epoch
𝑡, if the number of transactions between accounts 𝑖 and 𝑗 in the block
is 𝑥, then the transaction flow snapshot is presented by 𝑦(𝑡)𝑖,𝑗 = 𝑥; if there
is no transaction between 𝑖 and 𝑗, then 𝑦(𝑡)𝑖,𝑗 = 0. For accounts 𝑖 and 𝑗 at
epoch 𝑡, if there are no transactions packaged into blocks, then these
two accounts should not be considered for 𝛶 (𝑡).

4.1.3. Reconfiguration
At the beginning of each epoch, the miner nodes of each shard

reach a consensus on the transactions in the transaction pool according
to the results of the previous epoch reconfiguration, package legal
transactions into blocks and link them into chains. At the same time, the
S-Node in the S-shard reads and records legitimate transactions. After
all transactions in this round are read, S-Node divides the miner nodes
according to the graph division strategy, and the division result will
reach a consensus in S-Shard to form S-Block. S-Blocks will be recorded
in the S-Shard chain and broadcast to other nodes. The miner nodes of
other shards reconfigure according to the content of the S-Block, adjust
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Table 1
Meanings and abbreviations.

Abbreviations Meanings

Vertical Scaling It belongs to the Layer1 scalability method, which
mainly improves the blockchain scalability by
improving parallelism.

Horizontal Scaling It belongs to the Layer1 scalability method, which
mainly improves the blockchain scalability by
increasing the resources of a single node.

R-Node Also called Relay-Node, it is mainly used for the
relay of cross-shard transactions.

S-Node Also called Shard-Node, it mainly used for node
reconfiguration and decision-making.

S-Shard It is a committee formed by all S-Node.

S-Block This is the block that saves the results formed by
S-Shard after consensus on the current blockchain
state.

Pre-Cross-Shard
Transaction

This is the broadcast transaction constructed after
the cross-shard transaction is divided by R-Node.

Post-Cross-Shard
Transaction

This is a transaction constructed and forwarded to
another shard after the cross-shard transaction is
divided by R-Node.

Modified State Tree This is a tree structure that uses the Merkle
Patricia Tree to store state information for each
shard.

Epoch The clock cycle for DSSBD to perform a
blockchain consensus and node reconfiguration,
which is also the cycle for a decision in deep
reinforcement learning.

Episode This is a complete running process in deep
reinforcement learning, starting from the initial
state, through a series of actions, reaching the
termination state or reaching the termination
condition.

the shards, and record the S-Block as the first consensus block in the
current epoch in their own chains.

To ensure the security and stability of the blockchain during the
reconfiguration process and minimize the cost involved, it is crucial to
take into account the number of nodes that require reconfiguration in
each round of epoch 𝛥(𝑡).

4.1.4. Sharding security
Since the sharding strategy tends to divide related nodes into the

same shard, in order to resist the problem of security degradation
caused by sharding, we need to improve security through a method
of merged mining (Wang and Wang, 2019). If all the nodes of the
two shards store all the state information of these two shards, it is
essentially equivalent to merging the two shards into one.

From the perspective of security, for a POW consensus blockchain,
the number of malicious nodes 𝑁𝑝 <

1
2𝑁 that the entire blockchain can

olerate, where 𝑁 is the total number of nodes. Considering the worst
ase, that is, there is no merged mining in the blockchain at all, then
he number of malicious nodes that each shard can tolerate is reduced
o 𝑁𝑝 < 1

2𝐾𝑁 , where 𝐾 represents the number of shards. So from a
ecurity point of view, the maximum number of shards in the worst
ase is 𝐾𝑚𝑎𝑥 < 𝑁

2𝑁𝑝
.

.2. Transaction flow of state sharding blockchain

For the blockchain-based crowdsourcing system, the transfer of
ata is realized through transactions. Therefore, in the state sharding
lockchain, how to deal with intra-shard transactions and cross-shard
ransactions is a very important issue. We need to consider modi-
ying the state tree, cross-shard transaction process, and transaction
onfirmation delay.
6

Fig. 3. Example of modified state tree of shard #3.

4.2.1. Modified state tree
In order to quickly distinguish cross-shard transactions and intra-

shard transactions, we need to modify the state tree and map it to the
local memory’s account-shard dictionary database. Since the maximum
number of shards is 𝐾𝑚𝑎𝑥, the leaf nodes of the state tree need to add
a 𝐾𝑚𝑎𝑥-bit field to indicate the shard to which the account address
belongs. For an R-Node, which retains state information for multiple
shards, there are multiple bits in this field that need to be set to one.

As shown in Fig. 3, it is a case of a Modified State Tree for shard
#3. For accounts in shard #3, the Modified State Tree will retain all
their state information. For accounts not in shard #3, the Modified
State Tree will only retain their shard information and use a regular
pointer to point to these accounts instead of a hash pointer. For relay
accounts, the Modified State Tree retains their shard information, as
well as the account states belonging to this shard. In this way, the
time complexity of checking whether a transaction is a cross-shard
transaction is simplified to 𝑂(1).

If the state tree is not modified and the local account-shard dictio-
nary database is not built, then to determine whether a transaction
is a cross-shard transaction, it is necessary to query the entire path
in the shard’s state tree to determine if the account exists. The time
complexity becomes 𝑂(𝑛), where 𝑛 is the length of the query path in
the shard’s state tree. Additionally, if the transaction is a cross-shard
transaction, it is also necessary to delegate the relay node to query the
state tree of other shards to obtain the shard number it belongs to.

4.2.2. Cross-shard transaction process
For a cross-shard transaction, since the state of the account is

divided into different shards, the consensus process of the transaction
needs to be divided into two steps. A typical cross-shard transaction
case in DSSBD is shown in Fig. 4.

• Create an raw transaction: First create an raw transaction 𝑡𝑥𝑟𝑎𝑤
in the sending account A, the receiving account is 𝐵, the number

of tokens sent is 𝑣, and the relay account 𝐶1. and an appropriate
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transaction lock time 𝐻𝑙𝑜𝑐𝑘 is selected, which is essentially the
number of subsequent blocks. The raw transaction is then sent to
the relay account 𝐶1, which is expressed as follows,

𝑡𝑥𝑟𝑎𝑤 ∶= ⟨⟨𝐵, 𝑣, 𝐶,𝐻𝑙𝑜𝑐𝑘, 𝜂𝑠𝑒𝑛𝑑𝑒𝑟, 𝜂𝑟𝑒𝑙𝑎𝑦⟩, 𝜎𝐴⟩ (1)

where 𝜂𝑠𝑒𝑛𝑑𝑒𝑟 and 𝜂𝑟𝑒𝑙𝑎𝑦 represent the transaction nonce of the
sending account 𝐴 and the sub-account 𝐶1 of relay node 𝐶 in
shard #1, and 𝜎𝐴 represents the signature of the account 𝐴.

• Creates a pre-cross-shard transaction: After the relay node 𝐶
receives the raw transaction, it creates a pre-cross-shard transac-
tion 𝑡𝑥𝑝𝑟𝑒 and broadcasts it to the blockchain network. After the
nodes of each shard receive 𝑡𝑥𝑝𝑟𝑒, they verify the legitimacy of
𝑡𝑥𝑝𝑟𝑒 through signature verification, and calculate the address of
sender 𝐴. After querying and the modified state tree, the nodes of
each shard can obtain the shard sequence of the source address
and destination address, and forward the transaction to shard 1
and shard 2. After verifying that the transaction is legal, the 𝑡𝑥𝑝𝑟𝑒
will be added to the transaction pool of shard 1 where account
𝐴 is located, waiting to be packaged. The representation of the
pre-cross-shard transaction is as follows,

𝑡𝑥𝑝𝑟𝑒 ∶= ⟨⟨𝛺𝑝𝑟𝑒, 𝑡𝑥𝑟𝑎𝑤,𝐻𝑐𝑢𝑟𝑟𝑒𝑛𝑡⟩, 𝜎𝐶 ⟩ (2)

where 𝛺𝑝𝑟𝑒 represents the transaction type is a pre-cross-shard
transaction, 𝐻𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents the current block height, and 𝜎𝐶
represents the signature of the relay account 𝐶1.

• Confirm the pre-cross-shard transaction: After packaging 𝑡𝑥𝑝𝑟𝑒
into blocks, the sender 𝐴 will transfer 𝑣 tokens to the relay
account 𝐶1, and the account 𝐶1 will retain these tokens until
the transaction lock 𝐻𝑙𝑜𝑐𝑘 expires. At the same time, the nonce
of sender 𝐴 will be increased by 1 to avoid replay attacks (Hu
et al., 2019).

• Creates a post-cross-shard transaction: After the 𝑡𝑥𝑝𝑟𝑒 is con-
firmed, the relay node 𝐶 will create a post-cross-shard transaction
𝑡𝑥𝑝𝑜𝑠𝑡, which will be broadcast to shard #2 where the destination
account 𝐵 is located. When the transaction is verified as valid, it
will be added to the transaction pool of shard #2. In particular, it
is necessary to ensure that the balance of the intermediary node
in shard #2 is greater than the token 𝑣. The representation of the
post-cross-shard transaction is as follows,

𝑡𝑥𝑝𝑜𝑠𝑡 ∶= ⟨⟨𝛺𝑝𝑜𝑠𝑡, 𝑡𝑥𝑟𝑎𝑤⟩, 𝜎𝐶 ⟩ (3)

where 𝛺𝑝𝑜𝑠𝑡 represents the transaction type is a post-cross-shard
transaction, 𝜎𝐶 represents the signature of the relay account 𝐶.

• Confirm the post-cross-shard transaction: After the 𝑡𝑥𝑝𝑜𝑠𝑡n is
packaged into the block, if the block height does not exceed the
transaction lock height, the relay account 𝐶2 will transfer 𝑣 tokens
to the receiver 𝐵. At the same time, in order to avoid replay
attacks, the nonce of relay account 𝐶2 will also increase by one.

• Transaction fail process: If the transaction fails, since the 𝑡𝑥𝑝𝑟𝑒
information has been broadcast to the network, shard #2 will
package the 𝑡𝑥𝑝𝑟𝑒 into the block, and the nonce of the relay
account 𝐶2 will also increase by 1, and at the same time, in
shard #2 node will send a failure proof 𝑡𝑥𝑓𝑎𝑖𝑙 to shard #1. The
representation of the failure proof is as follows,

𝑡𝑥𝑓𝑎𝑖𝑙 ∶= ⟨𝑡𝑥𝑟𝑎𝑤, 𝑑𝑒𝑠𝑡,𝐻𝑑𝑒𝑠𝑡, {𝑃𝑑𝑒𝑠𝑡}⟩ (4)

where 𝑑𝑒𝑠𝑡 represents the sequence of the target shard, 𝐻𝑑𝑒𝑠𝑡 rep-
resents the block height of the target shard, and {𝑃𝑑𝑒𝑠𝑡} represents
the path from the root node of the merkle tree to the previous
shard transaction. Once the failed proof is verified by the nodes
of shard #1, it will be packaged into the block of shard #1, and
the locked balance 𝑣 in 𝐶1 will be returned to 𝐴.
7

Fig. 4. Example of cross transaction flow.

4.2.3. Transaction confirmation latency
For intra-shard transactions, its security is jointly guaranteed by all

nodes in the shard through consensus. The transaction confirmation
delay needs to consider the block generation delay 𝑇 ℎ𝑎𝑠ℎ

𝑘 of the block
node through the hash collision, the propagation delay 𝑇 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

𝑘 of the
block broadcast and the verification delay 𝑇 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒

𝑘 of the block, i.e.,

𝑇𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇 ℎ𝑎𝑠ℎ
𝑘 + 𝑇 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

𝑘 + 𝑇 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒
𝑘 (5)

Therefore, for intra-shard transactions, only 𝑇𝐿𝑎𝑡𝑒𝑛𝑐𝑦 needs not to be
greater than the limit delay 𝑇𝐿𝑖𝑚𝑖𝑡 = 𝑇𝐼 , i.e.,

𝑇𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ≤ 𝑇𝐿𝑖𝑚𝑖𝑡 (6)

For a cross-shard transaction, the consensus of the transaction needs
to be divided into two steps and completed in different shards. For
pre-cross-shard transactions and pre-cross-shard transactions divided
by R-Nodes, it is also necessary to consider the block generation delay
𝑇 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡
𝑘 , propagation delay 𝑇 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

𝑘 and verification delay 𝑇 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒
𝑘 in

their respective shards, so that they satisfy the above formula.
From the overall perspective of cross-shard transactions, relay la-

tency also needs to be considered. In DSSBD, the relay of transactions
is completed locally at the relay node, so the relay delay 𝑇 𝑟𝑒𝑙𝑎𝑦

𝑘 can
be ignored. The formula for calculating the confirmation delay of
cross-blockchain transactions is as follows,

𝑇𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 2(𝑇 ℎ𝑎𝑠ℎ
𝑘 + 𝑇 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡

𝑘 + 𝑇 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒
𝑘 ) (7)

Moreover, the DSSBD guarantees the atomicity of transactions
through transaction hash locks 𝐻𝑙𝑜𝑐𝑘. For cross-shard transactions,
the limit delay 𝑇𝐿𝑖𝑚𝑖𝑡 = 𝑇𝐼 × 𝐻𝑙𝑜𝑐𝑘 at this time, where 𝐻𝑙𝑜𝑐𝑘 ∈
{1, 2,… ,𝐻𝑚𝑎𝑥

𝑙𝑜𝑐𝑘}.

4.3. Dynamic optimization of state sharding mechanism

To optimize the performance of the blockchain, it is necessary to
make joint decisions and adjustments on the selection of the number of
shards, block interval and block size. We formulate the joint optimiza-
tion problem as a Markov decision problem consisting of state, action
and value function (Jin et al., 2023). In actual scenarios, the number
of blockchain nodes involved in decision-making increases linearly
with throughput. To avoid the curse of dimensionality, we need to
combine deep neural networks with reinforcement learning, called deep
reinforcement learning. In particular, in order to balance the choice
between exploration and optimization in deep reinforcement learning,
we choose the off-policy method to train the model, and considering
the discreteness of the action space, Double DQN is the most suitable
algorithm.



Journal of Network and Computer Applications 222 (2024) 103785Z. Zhen et al.

m
b
a
r
t

4

o
m
p
s
m
t
a

𝐴

w
M

4

r
I
t
p
l
n
t

w
r
t

i
w
r
i
s
l
r

𝑅

w
f
d
a

𝛯

r

𝑇
c
o
𝑆

𝑆
s
n
e
i
l
d
o
d
t

s
e
t
a

p
𝑄
m
e

𝐴

T
v

𝑄

4.3.1. State space
We use the notation 𝑆(𝑡) to represent the observed state of the

environment at a discrete time epoch 𝑡, where 𝑡 ranges from 1 to 𝑇 .

𝑆(𝑡) = {𝜇(𝑡), 𝜎(𝑡), 𝛶 (𝑡)} (8)

where 𝜇(𝑡) = {𝜇𝑖,𝑗} represents the transmission rate between nodes
𝑖, 𝑗, 𝜎(𝑡) = {𝜎𝑖} represents the computing power of nodes 𝑖, and 𝛶 (𝑡)
represents the snapshot of the current transaction graph, its definition
is detailed in Section 4.1.2.

In the DSSBD model, for the state space, at each epoch 𝑡, we
odel the transaction flow snapshot 𝛶 (𝑡) and the transmission rate 𝜇(𝑡)

etween nodes as a symmetric matrix, and the computing power 𝜎(𝑡) as
diagonal matrix. In order to speed up the training process, we remove

edundant data in the state space, and finally simplify the state space
o𝑀 ∗ 𝑀 size, where 𝑀 is the maximum number of nodes in the epoch.

.3.2. Action space
As mentioned above, in Layer1 blockchain scalability technology,

verhead reduction, horizontal scaling and vertical scaling are the three
ain means. Among them, reducing overhead is not the focus of this
aper, and we do not make decisions on it. However, the number of
harding 𝐾 during horizontal scaling, the block interval time 𝑇𝐼 and
ax block size 𝑆𝐵 during vertical scaling will affect the scalability of

he blockchain. Therefore, the action space when epoch is 𝑡 is expressed
s follows,

(𝑡) = {𝐾(𝑡), 𝑆𝐵(𝑡), 𝑇𝐼 (𝑡)} (9)

here 𝐾(𝑡) ∈ {8, 16,… , 𝐾𝑚𝑎𝑥}, 𝑆𝐵(𝑡) ∈ {10, 20,… , 𝑆𝑚𝑎𝑥
𝐵 }, the unit is

B, 𝑇𝐼 (𝑡) ∈ {4, 8,… , 𝑇𝑚𝑎𝑥
𝐼 }, and its unit is seconds.

.3.3. Value function
In deep reinforcement learning, the agent can directly or indi-

ectly learn the optimal policy by maximizing the long-term reward.
n particular, in the Double DQN algorithm, its long-term reward is
he estimated Q value in different states, and the agent learns the
olicy indirectly by maximizing the Q value. At the same time, when
earning decision-making to improve blockchain performance, it is also
ecessary to meet the basic security and delay constraints. Therefore,
he value function is expressed as the following,

max𝑄(𝑆,𝐴)
𝐿1 ∶ 𝑇𝐿𝑎𝑡𝑒𝑛𝑐𝑦 ≤ 𝑇𝐿𝑖𝑚𝑖𝑡
𝐿2 ∶ 𝐾 ≤ 𝑁

2𝑁𝑝

(10)

here 𝑄(𝑆,𝐴) represents the long-term reward of the system, and 𝑇𝐿𝑖𝑚𝑖𝑡
epresents the transaction limit delay, its value depends on the type of
ransaction.

In order to meet the security and delay constraints, the correspond-
ng penalty is set in the immediate reward function, expressed as (11),
here 𝛯(𝑡) represents the throughput of the blockchain at epoch 𝑡, 𝛹 (𝑡)

epresents the proportion of cross-shard transactions at epoch 𝑡, 𝛷(𝑡)
ndicates the mean square error of the number of transactions in each
hard in this round, which is used to indicate the balance of transaction
oad in each shard. 𝛥(𝑡) represents the number of nodes that need to be
econfigured at epoch 𝑡,

(𝑡) =
{

𝜔𝑇𝛯(𝑡) + 𝜔𝐶𝛹 (𝑡) + 𝜔𝐷𝛷(𝑡) + 𝜔𝑅𝛥(𝑡), 𝐿1, 𝐿2
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(11)

here 𝜔𝑇 , 𝜔𝐶 , 𝜔𝐷, 𝜔𝑅 represents the weight of each parameter, and dif-
erent hyperparameter selections will indicate the agent’s emphasis on
ifferent indicators. But no matter what, 𝜔𝑇 should always be positive
s an incentive, and 𝜔𝐶 , 𝜔𝐷, 𝜔𝑅 should be negative as a penalty.

We define the throughput of the blockchain as

(𝑆𝐵 , 𝐾, 𝑇𝐼 ) =
𝐾(𝑆𝐵∕𝜆) (12)
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𝑇𝐼
where 𝜆 represents the average size of the transaction. Since a cross-
shard transaction will be relayed to another shard, according to the
above definition, a cross-shard transaction will be recalculated twice.
Therefore, after removing redundancy, the actual throughput in a
DSSBD is defined as (13), where 𝑔𝑘 represents the number of cross-
shard transactions in the 𝑘th shard.

𝛯(𝑆𝐵 , 𝐾, 𝑇𝐼 ) =
𝐾(𝑆𝐵∕𝜆)

𝑇𝐼
[1 − 1

2

𝐾
∑

𝑘=1
𝑔𝑘] (13)

And the value function 𝑄 of the DSSBD can be expressed as (14),
where 𝜌 ∈ (0, 1] is the discount factor, which is used to reduce the
influence of historical decisions.

𝑄(𝑆(𝑡), 𝐴(𝑡)) =
[ ∞
∑

𝑡′=𝑡
𝜌𝑡−𝑡

′
𝑅(𝑡)

(

𝑆(𝑡), 𝐴(𝑡)
)

]

(14)

4.3.4. Double DQN learning process
At each epoch 𝑡, the agent observes the state 𝑆(𝑡) of the static envi-

onment of DSSBD, which includes the transmission rate 𝜇(𝑡) between
nodes, computing power 𝜎(𝑡), and a snapshot of the transaction graph
𝛶 (𝑡). Using a greedy algorithm to explore or exploit strategies, the agent
selects an action 𝐴(𝑡) to determine the block size 𝑆𝐵(𝑡), block interval
𝐼 (𝑡), and the number of shards 𝐾(𝑡). After DSSBD executes blockchain
onsensus and reconfigures based on these decisions, the agent re-
bserves the static environment of DSSBD and transitions the state to
(𝑡+ 1). Simultaneously, the agent receives an immediate reward 𝑅(𝑡).

Therefore, in order to deal with high-dimensional system states
(𝑡), we need to use deep neural networks. First, we flatten the state

pace into dimension 1 ×𝑀2 data as input, construct a Q deep neural
etwork with three linear layers, using ReLU as activation function of
ach layer. Specifically, the input layer of the Q deep neural network
s a linear layer of dimension 𝑀2 × 128, the hidden layer is a linear
ayer of dimension 128 × 128, and the output layer is a linear layer of
imension 128 × 𝐼 , where 𝐼 is the number of total actions. Finally, it
utputs a Q-value table of dimension 1 ∗ 𝐼 for the current state. The
ecision is made by selecting the action with the highest Q-value from
his sub-Q-value table.

In addition, in order to deal with high-dimensional states 𝑆(𝑡),
we need to use deep neural networks. As shown in Fig. 5, in the
Double DQN network, we adopt the method of fixed target network and
experience replay (Van Hasselt et al., 2016), improving the stability
of model training. Specifically, through the method of fixed target
network, during the learning process, the weights of the fixed target Q
network are used for policy learning, and the weights of the evaluated
Q network are updated using the learned data. After the 𝐺 step is
executed, the weights of the evaluated Q network are copied. Give
the target Q network and start a new round of the method of fixed
target network. By updating two Q networks, the problem of cumu-
lative learning rewards higher than the actual value in Q-learning is
eliminated (Wang et al., 2020). And through the method of experience
playback to take advantage of off-policy, after each round of epoch, the
agent will track the trajectory in the form of (𝑆(𝑡), 𝐴(𝑡), 𝑅(𝑡), 𝑆(𝑡 + 1))
tore it in the playback space D, and then randomly select multiple
xperiences to train the deep neural network, eliminate the correla-
ion between samples, reduce the variance of parameter updates, and
ccelerate convergence.

Specifically, DSSBD selects experience 𝑑 from the experience replay
ool each time it is trained, uses the 𝑆(𝑡) and 𝐴(𝑡) in 𝑑 to calculate
(𝑆(𝑡), 𝐴(𝑡)) through the Policy 𝑄 Network in Double DQN, and esti-
ate the action 𝐴(𝑡+1) at 𝑆(𝑡+1) through the Policy 𝑄 Network (Wang

t al., 2021),

(𝑡 + 1) = 𝑎𝑟𝑔𝑚𝑎𝑥𝐴𝑄(𝑆(𝑡 + 1), 𝐴)

hen use 𝑅(𝑡) 𝑆(𝑡 + 1) and 𝐴(𝑡 + 1) to calculate the target 𝑄′(𝑆(𝑡), 𝐴(𝑡))
alue at 𝑆(𝑡) through the Target 𝑄′ Network,
′(𝑡) = 𝑅(𝑡) + 𝜌𝑄′(𝑆(𝑡 + 1), 𝐴(𝑡 + 1))
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Fig. 5. Double DQN architecture of DSSBD scheme.
Therefore, in order to make the prediction of Q Network more accu-
rate, we need to reduce the prediction difference between the two Q
networks, then define the loss function 𝑙𝑜𝑠𝑠 as follows,

𝑙𝑜𝑠𝑠 = |𝑄(𝑆(𝑡), 𝐴(𝑡)) −𝑄′(𝑆(𝑡), 𝐴(𝑡))|

Through this training method, DSSBD can finally dynamically select
and adjust the number of shards, block interval time and block size
in different states.

5. Security analysis

In this section, we will discuss DSSBD’s defense against transaction
atomic attacks, double spend attacks, sybil attacks, replay attacks, etc.,
in blockchain from the perspective of security analysis.

5.1. Transaction atomic attack resistance

The atomicity of intra-shard transactions is naturally guaranteed by
the blockchain. For cross-shard transactions, since the DSSBD intro-
duces relay nodes, the atomicity of transactions is naturally affected by
relay nodes. If a malicious node becomes a relay node, it can seize the
tokens of the sending account. However, as mentioned in Section 4.1.4,
due to the existence of the hash transaction time lock, the relay node
can only temporarily retain the tokens of the sending node within the
valid time. If the malicious relay node does not conduct post-cross-
shard transactions or conducts illegal post-cross-shard transactions, the
shard where the receiving node is located will send a proof of the
failed transaction to the shard where the sending node is located, and
eventually form a malicious relay node to return tokens The consensus
for sending nodes ensures the atomicity of cross-shard transactions.

5.2. Double spend attack resistance

Double-spending attack refers to the sender using the same digital
currency to conduct multiple transactions to obtain services repeatedly.
For the DSSBD, it is based on the account address model, so the
intra-shard double-spend attack initiated by the sender will not affect
the DSSBD. However, due to the introduction of the relay node, the
malicious node sender can create a intra-shard transaction 𝑡𝑥𝑖𝑛𝑡𝑟𝑎 when
the relay node creates a pre-cross transaction 𝑡𝑥 . In order to achieve
9

𝑝𝑟𝑒
double spending, the sending account nonce of the two transactions
must be the same. Considering the nonce counting mechanism, these
two transactions cannot be verified as legal at the same time. Therefore,
if the pre-cross transaction 𝑡𝑥𝑝𝑟𝑒 is not included in the block, the
post-cross transaction 𝑡𝑥𝑝𝑜𝑠𝑡 will not be created.

5.3. Sybil attack resistance

A Sybil attack refers to malicious nodes manipulating and control-
ling the blockchain by using multiple accounts or blockchain nodes.
For example, in the POW consensus protocol, the attacker needs to
occupy more than 51% of the computing power to affect the consensus
of the blockchain. In the PBFT consensus protocol, an attacker can
affect the consensus of the blockchain by forging multiple accounts.
But for the DSSBD, although due to sharding, the security of the
blockchain decreases proportionally due to the increase in the number
of shards. However, through the initial sharding strategy mentioned
in Section 4.1.1 and the combined mining method mentioned in Sec-
tion 4.1.4, the blockchain can be prevented from being affected by a
small number of malicious nodes and the consensus is controlled.

5.4. Replay attack resistance

A replay attack means that after receiving a transaction 𝑡𝑥1, the
attacker modifies the timestamp data, obtains a new transaction 𝑡𝑥2
and broadcasts it again, so as to repeatedly obtain the transfer. For the
DSSBD, whether it is a relay node or a receiving node, after verifying
intra-shard and cross-shard transactions, the counting mechanism will
increase the legal transaction nonce of the account by one. In this way,
malicious nodes can avoid multiple transfers through replay attacks.

5.5. Other attack resistance

Generally speaking, a blockchain can be divided into data layer,
network layer, consensus layer, contract layer and application layer
from bottom to top according to user perception. Compared with the
traditional blockchain, DSSBD mainly optimizes the structure of the
consensus layer. Therefore, for attacks on the data layer, such as
collision attacks, its security is still guaranteed by cryptographic tools.
For the attack method aimed at the network layer, such as man-in-
the-middle attack, its security is still based on the P2P network. As for
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Table 2
Security comparison of mainstream state sharding blockchain architectures.

DSSBD Monoxide Brockerchain

Transaction Atomic Attack ✓ ✓ ✓

Double Spend Attack ✓ ✓ ✓

Sybil Attack ✓ ✓ ✓

Replay Attack ✓ ✓ ✓

Table 3
Simulation parameters.

Symbol Parameter Value

𝐾max Maximum number of shards, 32

𝑆max
𝐵 Maximum block size, 40 MB

𝑇max
𝐼 Maximum block interval, 12 s

𝑀 Maximum number of nodes in each epoch, 2500

𝑁 The number of transactions arriving per second, 2000

𝜆 Average Transaction size, 200B

𝜖 Exploration probability of Double DQN, 0.99

𝑅 Replay memory buffer size, 1000

𝜌 Discount factor, 0.9

𝑙𝑟 Learning rate, 0.01

𝐵 Batch size, 32

𝐸𝑚𝑎𝑥
𝑝 Maximum epoch per episode, 100

𝐸 Maximum episode, 100

attacks against the contract layer and the application layer, its security
is not the focus of this paper.

In summary, as shown in the Table 2,compared to the current main-
stream state sharding blockchain architectures Monoxide and Brocker-
chain, although the implementation methods are different, DSSBD also
has the ability to resist the main attack methods at the consensus layer.

6. Performance evaluation

In this section, we verify the performance of the proposed DSSBD.
Specifically, in order to simulate the blockchain based on the ac-
count model, we built a simulator of DSSBD on the basis of the
blockchain model, called Blocksim (Faria and Correia, 2019). Block-
sim is a simulator that allows users to customize and expand blocks,
transactions, ledgers and network modules. In addition, on the dataset,
we use the Block and Transaction dataset of XBlock-ETH (Zheng et al.,
2020), which records the transaction data of Ethereum from the gen-
esis block. We build the model based on Pytorch1.12 and Python
3.7, use NetworkX and METIS to divide the graph, and deploy it to
Intel(R) Xeon(R) Bronze 3204, NVIDIA GeForce RTX 3090, Ubuntu
20.04 servers. The parameters of the DSSBD simulator are shown in
the Table 3, and different initial parameters can be set for different
application scenarios.

Among them, the episode refers to a complete running process in
deep reinforcement learning, starting from the initial state and reaching
the terminal state or meeting the termination condition through a series
of actions and decisions. In each episode, the agent learns by interacting
with the environment and continuously adjusts its strategy based on the
feedback from the environment (reward or punishment), where each
interaction with the environment corresponds to one epoch in DSSBD.

6.1. Experimental setup

In order to simplify the model, we assume that all nodes are located
in Ireland, Tokyo and Ohio, and set the computing power and transmis-
sion rate between nodes in order to fit the actual test situation (Faria
and Correia, 2019). Considering that the rate of message transmission
10

in real life has a strong correlation with the region between nodes,
Table 4
Transmission rate between regions.

Tokyo Ireland Ohio

Tokyo 80 Mbps 32 Mbps 16 Mbps
Ireland 32 Mbps 90 Mbps 48 Mbps
Ohio 16 Mbps 48 Mbps 100 Mbps

we select the basic value of the transmission rate from the Table 4
according to the region where the node is located, and simulate net-
work fluctuations through normal distribution. In addition, we assume
that the state of the node’s computing power is low, medium, high, and
very high, corresponding to the values of the set {10, 20, 30, 40} GHz,
espectively [29].

.2. Experimental indicators

In order to verify the superiority of DSSBD performance, we will
elect the following indicators for illustration.

• Throughput : Throughput is the most direct indicator of the scal-
ability of a blockchain architecture. It refers to the number of
transactions or amount of data that a blockchain can process
within a unit of time. It is typically measured in transactions per
second (TPS).

• Confirmation Latency : Confirmation latency is another important
indicator of the scalability of blockchain architecture. It refers
to the time interval from when a transaction is submitted to
the blockchain to when the transaction is confirmed and written
into the blockchain. It can measure the transaction speed of the
blockchain in seconds.

• Percentage of Cross-shard Transactions: In sharded blockchains, the
cost of processing cross-shard transactions is higher than that of
intra-shard transactions. Therefore, the proportion of cross-shard
transactions directly affects the throughput and confirmation la-
tency. In general, reducing this proportion improves the efficiency
of the blockchain.

• Percentage of Nodes Reconfigurated: In sharded blockchains, each
reconfiguration implies the rebuilding of the state for the nodes.
Therefore, reducing the proportion of nodes undergoing reconfig-
uration not only reduces the cost of rebuilding for the nodes but
also ensures the consistency and stability of the blockchain.

• Load Balancing : In sharded blockchains, load balancing means a
high degree of parallelism and decentralization. In this paper, we
use the mean square deviation of transaction quantities in each
shard to represent transaction load. The smaller the value, the
more balanced the load.

6.3. Experimental results

In the proposed DSSBD, transactions between nodes are modeled as
data flow snapshots. Blockchain state sharding is implemented using
VRF, METIS, and relay transactions. The number of shards, block size,
and block interval are combined in Double DQN training. Simulation
results demonstrate the performance of our architecture.

6.3.1. Performance experimental evaluation of long-term reward conver-
gence of state sharding mechanism in DSSBD

The Fig. 6 shows the convergence process of the state sharding
mechanism in DSSBD, reflecting the relationship between long-term
reward and training time. We can observe that the long-term reward
keeps increasing as the training epoch increases. In the early training,
the long-term reward value of the mechanism increased very quickly,
accompanied by shocks. This is because the strategy of the mechanism
has a lot of exploration of the environment in the early stage, so
the change of the long-term reward value of the model will be more
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Fig. 6. Long-term reward convergence process of state sharding mechanism in DSSBD.
Fig. 7. Long-term reward process of state sharding mechanism in DSSBD with fix
different actions.

sensitive. After about 20 times, the long-term reward value of the
mechanism changes suddenly and slowly. This is because in the greedy
algorithm, as the number of training increases, the mechanism reduces
the probability of exploring the environment and is more inclined to use
the existing Strategy. After about 70 times of training, the mechanism
scheme reached the convergence state, and the long-term reward was
stable at about 9730. At this time, Double DQN has learned the optimal
strategy to maximize the action state value function. Therefore, it can
prove the effectiveness of the state sharding mechanism in DSSBD in
the set scenario.

6.3.2. Experimental evaluation of state sharding mechanism in DSSBD with
fixed actions

In order to illustrate the importance of various actions to the
strategy, we fixed the number of state shards in the state sharding
mechanism of DSSBD to 16, the block generation interval to 8 s, and
the block size to 20 MB, and carried out policy learning in the same
environment. As shown in Fig. 7, no matter which action is fixed,
compared with the state sharding mechanism of DSSBD, the mechanism
of fixed action can reach the convergence state faster, but the long-
term reward value after convergence is smaller than that of the state
sharding mechanism of DSSBD.

This is because too few shards, too small a block size, and too
high a block interval will lead to a decrease in blockchain throughput.
Increasing the number of shards, increasing the block size and reduc-
ing the block interval can effectively improve the throughput of the
blockchain. However, too many shards will increase the proportion of
reconfiguration nodes and the proportion of cross-shard transactions.
A too short block interval will increase the probability of forks in the
blockchain and increase the instability of the blockchain. At the same
11
Fig. 8. Performance comparison of DSSBD with different actions fixed.

time, an excessively large block size will also increase the cost of block
transmission in the network and increase the propagation delay of
transactions. Therefore, after one action is fixed, each fixed scheme can
also maximize the long-term reward value under the influence of the
other two actions and reach the convergence state. However, compared
with the state sharding mechanism of DSSBD, due to the reduction
of the dimension of the action space, the long-term reward value of
each fixed scheme after convergence will be limited to the upper limit,
and the optimal strategy has not been learned. At the same time, it
is also the reduction in the dimension of the action space that leads
to a corresponding reduction in the state space of each fixed scheme,
thereby reducing the learning cost and reaching the convergence state
faster.

Observed from the results shown in Fig. 8, the DSSBD with fixed
shards has better results, while the performance of the scheme with
fixed block size is closest to the DSSBD, which is due to the excessively
large block size. It will lead to an increase in block propagation delay,
which will lead to smaller blocks reaching consensus and invalidating
large blocks. A too small block size will lead to insufficient blockchain
throughput. In our experiments, the fixed block size is 20 MB, which
happens to be the suboptimal choice. However, the DSSBD is still
superior to it in parameters such as throughput, confirmation delay,
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Fig. 9. Long-term reward process of state-of-the-art state sharding mechanisms.

load, and the proportion of reconfigured nodes. The throughput of the
scheme with fixed block interval is most affected, and the optimization
range is significant, which shows that reducing the block interval is the
simplest and most direct means to improve blockchain scalability.

6.3.3. Experimental evaluation of the performance of the state-of-the-art
state sharding mechanism

Monoxide is currently the most advanced blockchain state sharding
mechanism, which simultaneously improves the scalability, decentral-
ization and security of the blockchain through state sharding. Based
on Monoxide, Brockerchain adds the reconfiguration steps of shards,
which solves the problem of hot accounts and has better performance.
However, the Monoxide and Brockerchain algorithms always have only
a single decision for the environment. In order to illustrate the superi-
ority of the state sharding mechanism of DSSBD, we experimented with
two groups of action decisions with the best performance for Monoxide
and Brockerchain. The group 𝛼 selection action is the number of shards
6, the block generation interval of 8 s, and the block size of 20 MB.
he group 𝛽 selection action is the number of shards 32, the block

generation interval of 4 s, and the block size of 40 MB.
As shown in Fig. 9, at the beginning, due to a lot of exploration in

the early stage of decision-making of the state sharding mechanism of
DSSBD, and even bad decisions may be made, the long-term reward
value of the state sharding mechanism of DSSBD did not increase
significantly compared with Monoxide and Brockerchain. But after
convergence, the long-term reward of the state sharding mechanism
of DSSBD floats around 9730, while the long-term reward values of
Monoxide and Brockerchain in group 𝛼 are about 3220 and 6925, and
the long-term reward values of Monoxide and Brockerchain in group
𝛽 are about 5904 and 9350, through policy learning, we made the
state sharding mechanism of DSSBD’s long-term reward achieve better
results.

We compare the average performance of DSSBD after convergence
with the two-group average performance of architectures with Monox-
ide and Brockerchain. As shown in Fig. 10, in terms of throughput,
DSSBD increased by 110.1% and 50.5% compared with the two groups
of architectures with Monoxide, and increased by 25.8% and 2.2%
compared with the two groups of architectures with Brockerchain. In
terms of the proportion of cross-shard transactions, DSSBD decreased
by 8.87% and 11.1% compared with the two groups of architectures
with Monoxide, respectively, and increased by 3.33% and decreased
by 2.72% compared with the two groups of architectures with Brocker-
chain. In terms of the proportion of the number of reconfigured nodes,
since architectures with Monoxide does not have a reconfiguration
phase, no comparison is made. The proportions of the two groups of
Brokerchains decreased by 2.4% and remained basically the same. In
terms of transaction load balancing, the average mean square error of
each shard transaction of DSSBD is significantly improved compared
12
Table 5
Transaction confirmation delays of different schemes.

Scheme Confirm Delay

Monoxide 𝛼 124.05 s
Monoxide 𝛽 77.46 s
Brockerchain 𝛼 92.91 s
Brockerchain 𝛽 64.54 s
DSSBD 63.72 s

with the group 𝛼, and the performance of architectures with Monoxide
and Brockerchain is basically the same compared with the group 𝛽.

Compared to the two groups of Monoxide, DSSBD has significant
advantages in terms of throughput and the percentage of cross-shard
transactions. DSSBD achieves this by continuously optimizing the pro-
portion of cross-shard transactions through reconfiguration. In shard-
ing blockchain architectures, reducing cross-shard transactions is cru-
cial for improving throughput. In comparison to Brockerchain, DSSBD
shows slight improvements in all indicators for group 𝛽. This is be-
cause, while Brockerchain also optimizes the proportion of cross-shard
transactions during reconfiguration, DSSBD further enhances all in-
dicators through deep reinforcement learning and dynamic selection
strategies. Regarding group 𝛼 of Brockerchain, DSSBD has weaker
cross-shard transaction proportions but significant advantages in other
performance aspects. This is because, although group 𝛼 chooses fewer
shards to reduce the possibility of cross-shard transactions, its through-
put is limited by the number of shards, resulting in lower performance.

The Table 5 shows the transaction confirmation delay in each
scheme. The average transaction confirmation delay of DSSBD is re-
duced by 60.33 s and 13.74 s compared to the previous comparison,
and compared with the two groups of architectures with Brockerchain,
it is reduced by 29.19 s and 0.82 s respectively.

Regardless of the architecture, the confirmation latency of group
𝛽 is lower compared to group 𝛼. This is because group 𝛽 has higher
throughput and processing efficiency. However, DSSBD has the lowest
confirmation latency. However, DSSBD has the lowest confirmation
latency due to its lower proportion of cross-shard transactions. The time
required to process cross-shard transactions in a blockchain is signifi-
cantly higher than that of intra-shard transactions. DSSBD achieves this
by maintaining a lower proportion of cross-shard transactions while
still achieving the highest throughput.

In general, the DSSBD scheme is significantly better than the two
groups of Monoxide in terms of throughput, the proportion of cross-
shard transactions, the transaction load of each shard, and the transac-
tion confirmation delay. Although the proportion of cross-shard trans-
actions in DSSBD is slightly lower than that of the Brockerchain 𝛼
architecture, it outperforms Brockerchain 𝛼 in terms of throughput,
proportion of reconfiguration nodes, shard transaction load, and trans-
action confirmation delay. Compared with the architecture with Brock-
erchain 𝛽, DSSBD is similar in terms of the number of reconfiguration
nodes, shard transaction load, and transaction confirmation perfor-
mance, but it is superior to it in terms of throughput and the number
of cross-shard transactions. In short, the experiments prove that the
performance of the DSSBD scheme compared with the current optimal
baseline can improve the scalability of the blockchain while taking into
account multiple performance indicators.

7. Conclusion

In this paper, in order to address the problem of the performance
and security of blockchain based crowdsourcing systems being con-
strained by the underlying blockchain, we propose a dynamic state
sharding blockchain architecture, called DSSBD, using deep reinforce-
ment learning. To the best of our knowledge, we are the first one to use
deep reinforcement learning to intelligently optimize the state sharding

blockchain in terms of shard count, block interval, and maximum block
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Fig. 10. Performance comparison of state-of-the-art architectures.
size, which greatly improves the scalability of blockchain. Security
analysis proves that the DSSBD can effectively resist transaction atom-
icity attack, double spend attack, sybil attack, replay attack and so
on. The experimental results show that the proposed DSSBD has better
performance in throughput, latency, balancing, cross-shard transaction
proportion, and node reconfiguration proportion, etc., while ensuring
security.

In our future work, in order to break through the efficiency bottle-
neck of the POW consensus protocol, we will consider integrating POS
consensus mechanism and dynamically selecting high trust validators
in S-Shard. We will also consider combining on chain and off chain
scalability technologies to jointly improve the scalability of blockchain.
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