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volume has brought pressure and challenges to the end of logistics and distribution, and the emergence
of crowdsourcing logistics It provides a new path for alleviating the current logistics and transportation
dilemma. The Digital Twin (DT) can virtualize and learn the data of the physical space, and introduce DT
into the crowdsourcing logistics. It can iteratively update the crowdsourcing logistics participant strategy by
constructing a virtual space, so as to change the corresponding strategy in time. Considering the situation
of crowdsourcing logistics workers signing contracts with platforms and colluding with platforms, this paper
constructs a four-party evolutionary game model of temporary workers, contract workers, blockchain-based
crowdsourcing platforms and task requester, and analyzes the evolution using replication dynamics method
stabilization strategy. In the virtual scene of DT, multi-agent reinforcement learning is used to predict the
evolution result of the current strategy, and a reward and punishment strategy is given to prevent workers from
free-riding and platform false reporting. The simulation results show that the analyzed evolutionary stability
strategy can make the crowdsourcing logistics system run continuously and healthily, and the participants can
adjust the strategy correctly according to the prediction results of virtual crowdsourcing logistics.

1. Introduction and traditional logistics operation models. After outsourcing companies

know the user’s business requirements, they will find the most suitable

With the rapid development of computer applications and Internet
technology, a large amount of data is generated every second, and we
have entered the era of big data. There have been many online data
transaction systems in recent years (Jung et al., 2017). Crowdsourcing
data trading is a new data trading paradigm that combines mobile
crowdsensing. It uses crowds to collect data and solves the scarcity of
sales data sources. Crowdsourcing is a new data acquisition mode that
combines the idea of crowdsourcing and the perception capability of
mobile devices, and it is a form of the Internet of Things (IoT) (Lu et al.,
2021). The IoT will provide larger, more complex and more compre-
hensive perception services through crowdsourcing perception systems,
affecting all aspects of life such as disaster monitoring, traffic man-
agement, public safety, logistics management, and social services (Chi
et al., 2021; Li et al., 2016; Liu et al., 2020; Cai et al., 2021, 2018; Hong
et al.,, 2021; Pu et al., 2021). In this context, some scholars propose
crowdsourcing logistics to optimize logistics management. Crowdsourc-
ing logistics is a new type of industry that combines Internet technology
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solution according to user needs. After finding the corresponding In-
ternet agency, the outsourcing company will assign the corresponding
logistics work to the corresponding operation department to serve users
to meet their needs.

There are three main stakeholders in a crowdsourcing logistics
system, namely task publishers, platforms, and crowdsourcing workers.
First, the task publisher publishes the description of the task through
the platform to recruit suitable crowdsourcing workers to complete the
task. After receiving the task, the workers who are selected by the plat-
form will be given the task. After receiving the task, the workers will
go to the designated location to complete the task. Finally, the worker
uploads the delivery report to the platform, and if the data meets
the requirements through the platform review, the platform sends the
delivery result to the requester. In the event that all three parties are
honest, the posted task will be successfully completed through the
above process.
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Fig. 1. Architecture of a crowdsourcing logistics systeml applications.

However, in reality, task requesters, platforms, and crowdsourc-
ing workers, who are stakeholders of crowdsourcing systems, are all
individuals with bounded rationality, so they all have selfish char-
acteristics. Crowdsourcing workers, as the main performers of tasks
in the crowdsourcing system, need to consume resources to com-
plete specific sensing tasks, so it is necessary to carry out appropriate
incentives. Due to their selfish nature, they always expect higher re-
wards with less effort, which leads to overtime of package delivery
in crowdsourcing logistics systems, a phenomenon known as free-
riding (Zhang and van der Schaar, 2011). The task requester needs to
recruit crowdworkers through the platform to complete the task, and
pay the crowdsourcing workers who complete the task as an incentive.
However, due to the selfish nature of task requesters, they may falsely
report the delivery result after receiving the package within the agreed
time, thereby reducing payment and producing false reports (Swan,
2015). This will discourage crowdsourcing workers from participat-
ing in tasks and is not conducive to the sustainable development of
the platform. As a third-party platform in the crowdsourcing system,
the platform will issue tasks to requesters, accept delivery reports
from crowdsourcing workers, and review and integrate crowdsourcing
workers’ reports. Platforms and crowdsourcing workers may collude,
i.e. platforms lower the standards of monitoring, allowing for looser
package delivery times and benefit from requesters. Such collusion will
reduce the efficiency of the crowdsourcing logistics system and hinder
the sustainable development of the crowdsourcing system.

Greaves describes a digital twin (DT) as an information mirror
model (Xie et al.,, 2023), a digital replica of a physical entity. It
enables seamless data transfer by connecting the physical and virtual
worlds (Saddik, 2018), allowing virtual entities to coexist with physical
entities. DT technology highlights two important characteristics. First,
each definition emphasizes the connection between the physical model
and the corresponding virtual model or virtual counterpart. Second,
connections are established by using sensors to generate real-time
data (Negria et al., 2017; Chhetri et al., 2004). As shown in Fig. 1,
because of the real-time nature of DT, it can help crowdsourcing par-
ticipants to understand the development results of the current strategy
in time, so that participants can timely discover the risks that may
occur in the system in the future, effectively guide them to choose to
change the strategy, and promote the crowdsourcing system’s healthy
development.

The main contributions of this paper include four aspects:

(1) On the basis of the existing three-party evolutionary game (Li
et al., 2022), in order to make the game model more consistent
with the characteristics of the real crowdsourcing logistics sys-
tem, we subdivides the crowdsourced workers and establishes a
four-party evolutionary game model of temporary workers, con-
tract workers, task requesters and blockchain-based platforms,
and analyze their strategy evolution results.
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(2) Taking into account the collusion between crowdsourcing work-
ers and the platform and the situation that crowdsourcing work-
ers will sign contracts with the platform, and using replication
dynamics to analyze the stability of the strategic equilibrium
point in MCS.

(3) A crowdsourcing logistics framework based on DT and evolu-
tionary game is proposed, and blockchain performance is added
to the game model to make the prediction results in the DT
virtual space more realistic.

(4) The model is simulated in DT virtual space using multi-agent
reinforcement learning, and the current strategy development
trend of each participant in the crowdsourcing logistics system
is predicted, and its effectiveness is verified.

2. Related work

In the past few years, DT have attracted the attention of scholars,
who have applied DT to various scenarios for optimization. Zhao et al.
(2023) proposed a hierarchical routing scheme in a software-defined
vehicle network based on DT to overcome weaknesses in the vehicle
network, simulation results showed that the model achieved significant
improvements in performance. In order to overcome the difficulties
of existing SDVN in building and applying new solutions, Zhao et al.
(2020) introduced a new network architecture IDT-SDVN to take ad-
vantage of SDVN, and demonstrated the effectiveness of the proposed
method through experiments. Zhao et al. (2022) proposed a DT-assisted
storage strategy for satellite ground networks, obtained the optimal
satellite through a genetic algorithm, and introduced a DT-assisted
inter-satellite routing scheme to improve transmission quality.

As a disruptive technology, many scholars applied blockchain tech-
nology to scenarios such as the IoT and big data (Wang et al., 2020;
Zhang et al., 2020; Wang et al., 2021; Zhang et al., 2021). Some
scholars also use theoretical analysis to optimize data collection in
IoT, like Sangoleye et al. (2021) use contract theory to motivate data
collection of social IoT nodes and jointly optimize the interests of all
participants. Recently, some scholars have combined traditional game
theory with blockchain to solve problems in crowdsourcing scenarios.
Huang et al. (2021) proposed a crowdsourcing data trading system
based on Stackelberg game and blockchain, using blockchain as a
data transaction middleman, using Stackelberg game to manage the
selection of data providers, and using watermarking technology to
protect data copyright. Hu et al. (2020) proposed a blockchain-based
MCS framework, using blockchain technology to protect privacy, and
proposed a three-stage Stackelbreg game-assisted incentive mechanism.
Zhang et al. (2019) utilize a dedicated blockchain with a consortium
chain to provide decentralized, real, and transparent services for ve-
hicle group sensing, and use Stackelbreg game to solve the scheduling
problem of sensing tasks. In order to prevent transaction data in crowd-
sourcing scenarios, Zhu et al. (2020) designed a blockchain consensus
algorithm and designed an incentive mechanism based on game theory
to motivate candidate nodes, and gave honest verification results. Feng
et al. (2018) used blockchain to build a decentralized platform in the
wireless IoT crowdsourcing system, and designed a non-cooperative
game model to analyze the competitive situation between sensors. In
the drone-assisted mobile crowdsensing scenario, Xie et al. (2021) pro-
posed a new crowdsensing framework based on blockchain, and used
Stackelberg game to encourage drones to participate in block creation
and provide high-quality services. Different from the above literature,
this paper uses a four-party evolutionary game to prevent free-riding
and false reporting among crowdsourcing logistics participants, and
adds DT to analyze the evolution results of the participants’ strategies
in real time.

In recent years, there have been many studies using evolutionary
game theory to optimize crowdsourcing systems, which mainly provide
solutions to problems such as sensing cost, data quality, optimal price
determination and incentives (Dasari et al., 2020). For example, Wang
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et al. (2018) proposed an evolutionary game model to predict the evo-
lutionary trend of mobile crowdsourcing systems and used K-anonymity
to protect the information of crowdsourcing workers. Chi et al. (2021)
proposed an incentive mechanism based on multi-strategy repeated
games to guide workers’ strategy choices, and used evolutionary game
theory and the Wright-Fisher model to analyze the participants’ strate-
gies. Shao et al. (2019) proposed an evolutionary game model and
income selection method based on non-cooperative evolutionary game
theory to solve the problem of evolutionary stable equilibrium. Li et al.
(2022) modeled a three-party evolutionary game model among task
issuers, platforms and crowds, and provided strategies to avoid free
riding and false reports by analyzing the stability of evolutionary game
strategies. On this basis, this paper divides the crowdsourcing workers
into temporary workers and contract workers, uses a blockchain-based
platform, and considers the situation of crowdsourcing workers col-
luding with the platform to build a four-party evolutionary game
model.

3. System model

Evolutionary games break the assumption of complete rationality
in traditional games, which is similar to the concept of survival of
the fittest in biology. Since crowdsourcing system participants can-
not be perfectly rational, it is more reasonable to use evolutionary
games to model crowdsourcing participants. In this section, in order
to simulate the decision-making evolution process of the participants
of the crowdsourcing logistics system in the virtual space of DT, we
subdivide the crowdsourcing logistics workers, and construct the rela-
tionship between temporary workers, contract workers, platforms and
task requesters. The four-party evolutionary game model maps each
real-world crowdsourcing participant to the players participating in the
evolutionary game in the DT virtual space.

3.1. Model building

Let W, be the set of temporary workers, W; = {w;;, wy,, ..., wy;, ...,
w;,}, W, be the set of contract workers, W, = {wy,;,wyy, ..., Wy, ...,
wy,}, W is the set of all crowdsourcing workers, W = W, n W),. Define
¢ ={91,02 - s @,,} and Q = {q1. 43, ... 4}, ..., q,} as the set of
tasks and task publishers. After completing task ¢,, the crowdsourcing
worker w;; or wy, delivery report will be reviewed by the platform and
uploaded to the task publisher g;. If the crowdworker pays more to
deliver the item within the stipulated time, it will pass the platform’s
review, and if it cannot be delivered, the crowdworker may collude
with the platform. Both the crowdsourcing worker and the platform can
be rewarded if the crowdsourcing worker and the platform jointly fake
the logistics of the package to the requester. This phenomenon is very
common in reality, and it is also in line with the selfish characteristics
of the players. The disadvantage of collusion is that it will bring
reputation damage.

To use evolutionary games to simulate players’ strategy choices, we
assume that temporary workers, contract workers, platforms, and task
issuers have two strategies: honest and fraud, and the probabilities of
players choosing the honest strategy are x, y, z, and r, respectively.
Obviously, the probabilities of choosing a fraudulent strategy are 1 —x,
l1-y,1—z,and 1 —r. x, y, z, r € (0,1), respectively. For temporary and
contract workers, the integrity strategy is to deliver the package within
the stipulated time, while the fraud strategy is to delay delivery (the
free-rider phenomenon). The honest strategy of the task requester is to
give real rewards, while the non-fraud strategy is to give low rewards
or even no rewards (false reporting). The platform’s integrity strategy
is to strictly review the logistics process of the package, which means
that there is no collusion between the crowdsourcing workers and the
platform, and the fraud strategy is to collude with the crowdsourcing
workers to maximize their own interests.
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3.2. Payoff matrix

In crowdsourcing logistics, task requesters, platforms, and crowd-
sourcing workers participate in logistics tasks to earn revenue. In this
paper, it is assumed that u;; and u,,; are the earnings of the crowdworker
wy; or wy,;, respectively, O;. is the earnings of the task requester g;
after the crowdsourcing workers w;; and wj,; complete the logistics task
@i, and P, is the payment made by the requester to the crowdworker
and the platform delivery fee. We use 4 to represent the proportion of
the distribution task remuneration received by crowdsourcing workers,
0 < 4 <1, and u to represent the remuneration ratio of temporary
workers, 0 < u < 0.5, then uAP, represents the remuneration re-
ceived by temporary workers after completing the logistics task, 1 — u
represents the remuneration ratio of contract workers, (1 — w)AP; is
the remuneration received by contract workers after completing the
logistics task, and 1 — 4 represents the remuneration ratio received
by the platform, (1 — A)P; is remuneration received by the platform
after completing the logistics task. M, represents the monitoring cost
of the platform, and C, represents the performance of the platform
running the blockchain. Cy; is the cost for the crowdsourcing workers to
deliver the package in time, and C;; is the cost for the crowdsourcing
workers to deliver the package late, C;;, > C;;. As bounded rational
individuals with selfish characteristics, crowdsourcing workers tend to
choose deceptive strategies to maximize their benefits, namely the free-
rider phenomenon. To avoid this, rewards and penalties are added to
the game model. If the crowdsourcing workers deliver the logistics
in time, they will receive the corresponding reputation reward R. If
the delivery is not completed within the agreed time, there are two
situations:

(1) When collusion occurs, crowdsourcing workers need to pay B,
to the platform to seek collusion, which means crowdfunding
incurs collusion cost B,. At this time, the platform will generate a
collusion cost C,, for falsifying logistics reports, so Cj,,—C; > B+
tR > C,; can be obtained. To encourage participants to choose
a credible strategy, we will give the crowdsourcing workers and
platform reputation penalty .S if collusion occurs. Let ¢ be the
reward-penalty ratio of crowdsourcing workers, then the plat-
form’s reward-penalty ratio is 1 — . Let v be the reward-penalty
ratio of temporary workers among crowdsourcing workers, then
the reward-penalty ratio of contract workers is 1 — v.

(2) If the crowdsourcing worker does not collude with the platform
or the platform rejects the crowdsourcing worker’s colluding
request, the task requester knows the correct logistics informa-
tion, the revenue of both the task requester and the platform
is 0, while the revenue of the crowdsourcing worker is —Cj;.
When crowdsourced workers complete logistics tasks and submit
delivery reports, requesters may choose untrusted strategies to
maximize their benefits, leading to false reporting problems. To
avoid this, after the requester chooses the untrusted policy, the
requester is penalized S,. Therefore, we give the correspond-
ing return matrix, as shown in Table 1, and the definitions of
parameters in the model are given in Table 2.

4. Evolutionary game stability strategy analysis

Let U, be the expected revenue of temporary workers for timely
delivery, and U,_, be the expected revenue of delayed delivery. Then,
the expected return of temporary workers and the replication dynamics
equation of the strategy are as follows:

U, =[1-»z(1 —u)+ulrAP; + (z — yz — 1)Cp; + VIR, &b
U_.=0-2rulP,— (1 —z)vtS — (1 - z)B, — C,
F(x) =dx/dt = x(1 — x){[u+ (1 — y)(1 —u)]zrAP, + vtR @

- (14+z-y2)Cpi + (1 = 2)(vtS + B)) + C};, }
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Table 1
Payoff matrix.
Temporary worker Requester
Honest r Fraud 1 —r
Honest y Fraud 1 -y Honest y Fraud 1 -y
Honest x uAP, + vtR — Cy; AP, —2C;; + vtR vtR - Cy; vtR - 2C,;
(I —w)AP, + (1 —v)tR - Cy; -C;; (1-v)R-Cy -Cy;
(=P, =M, -C,+(1-nDR  (1-=HP,-M,~C,+(1-0R -M,-C,+(1-nR -M,-C,+(1-nR
Honest = 0 — P, +R, 0 - P +R, o -s, o -s,
Fraud 1 —x -C;; -C;; -C;; -C;;
AP, + (1 - 0)R - 2Cp,; -C, (1-0)XR-2Cy, -C,
(-)P-M,~C,+(1-DR 0 -M,-C,+(1-nR 0
0 -P+R 0 0 -3 0
Platform )~ hir R S 4
Honest x uAP, + vtR - Cy; uAP, + vtR - Cy; VIR = Cy; VIR = Cy,
(1 —wAP, +(1 - )R - Cy, (1-wiP,—(1=0)tS—C,—B,  (1-v)R—Cy, —(1=v)S—C,; - B,
(1-HP,-C,~(1-1S (1-HP,~(1-NS-C,~C,+B, —(1-1S-C, -(1-nS-C,—C,+B,
0 - P +R, O -P+R, -4, o -s, 0 -S,-4,
Fraud 1 -z Fraud 1-x uAP, —vtS - C; — B, uAP, —vtS - C; — B, —utS - C; - B, —utS - C; - B,
(1 —wAP, +(1 - V)R - C, (1-wiP,—(1=0)iS—=C,—B, (1-0v)R—Cy (1-v)tS—=C, - B,
(1-)P,~(1-)S~C,~C,+B, (1-A)P,—(1-1)S-2C,;~C,+2B, ~(1-0S~C,~C,+B,  —(1—-0)tS-2C, —C,+2B,
O - P +R, -4, O\ - P+ R, -24, 0 -S,-4, 0 -5,-24,
Table 2
Definition of model parameters.
Parameter Description
P, Reward of requester to crowdsourcing workers and platforms
Cp: Cost of crowdsourcing workers to transport timely
Cy Cost of crowdsourcing workers to delay transport
M, Cost of platform supervision
C, Cost of running blockchain (blockchain performance)
B, Cost of crowdsourcing workers colluding with platform
R Rewards for crowdsourcing workers and platform
N Penalties for crowdsourcing workers and platform
C, Cost of platform colluding with crowdsourcing worker
g Benefits to the requester after the transport is completed
A, Losses caused by requester after logistical delays
R, Rewards given to requester
S, Penalty given to requester
A Proportion of the delivery task remuneration received by crowdsourcing workers
u Proportion of the delivery task remuneration received by temporary workers
t Reward-penalty ratio of crowdsourcing workers

<

Reward-penalty ratio of temporary workers

Similarly, let U, be the expected benefit of timely delivery by
contract workers, and U,_, be the expected benefit of delayed deliv-
ery. Then the expected return of contract workers and the replication
dynamic equation of the strategy are as follows:

Uyz [(1=x)zu+ (1 +w]rAP, + (z — xz = 1)Cy;
1—0)R,
+(1 - 3)
U= A=-2r(1—wip -1 -z)1-0v)yS
-(1-2)B,-Cy,

F(y) =dy/dt = y(1 — ){[(1 —w) + (1 — y)ulzriP;
+ (1 -=0)tR—(1+z—x2)Cy; (©)]
+ -2 -vtS+B1+Cy, }

According to the payoff matrix, the expected payoffs for the plat-
form to choose the honest strategy and the fraudulent strategy and
the replication dynamic equation can be expressed as the following
equation:

U, = (xr+yr—xyr)(1 = )P,
+x+y—xy[-M,-C,+ (1 -nR], ®)
U_,= RQA-HP-(1-1S

+Q2-x—- (B, -Cy)—C,,

F(z)=dz/dt = z(1 — 2){(x+ y —xy — Dr(l — )P,
- Q2-x-y(B,-Cy)
+ (x+y—xy[-M,+(1-0R]
—(x+y—-xy—-1DC,+(1-0S},

©

Let U, and U,_, denote the expected return of the task requester
choosing the honest strategy and the fraud strategy, respectively. Sim-
ilar to before, the expected revenue of the task requester and the
replication dynamic equation can be obtained separately:

U= (xz=xyz+yz=z+1)(O) =P, +R)
-Q2-x-y-2A4,, -
Ui, = (z=xyz+yz—z+1(0] =5,
—Q2-x=-y1-2A,,
F(r)y=dr/dt
/ (8)

=r(l-rxz-xyz+yz—z+ DR, + S5, - F),

According to the replication dynamic equation of each game subject,
the Jacobian matrix of the replication dynamic system is obtained as

0F(x)/ox O0F(x)/dy O0F(x)/oz 0F(x)/or
J= OF(y)/ox 0F(y)/oy O0F(y)/dz 0F(y)/or )
“|oF(z)/ox 0F(2)/dy 0F(z)/dz 0F(z)/or|
0F(r)/ox O0F(r)/dy 0F(r)/oz O0F(r)/or
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Table 3
Eigenvalues of Jacobian matrix.
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Equilibrium point Eigenvalue 4, 4,, 43, 44

E(1,1,1,1)
E(1,1,0,1)
E@©,1,1,1)

Cpyi = Cy —uAP, — ViR, Cpy = C;y — (1 —wAP, = (1 = )t R M, — (1= 1)(S + R), P, = R, - S,
Cpi = Cy = vI(R+ ) = B,.Cpy; — Cy = (1 = 0)(R+ S) — B,,(1 - 1)(S + R)—~ M,. P, — R, - S,
AP, + VIR = Cp + €. 2Cy = Cpy = AP, — (1 = 0)IR. M, — (1L = 1)(S + R) + B, —~ C,. P, = R, — S,

Let F(x) = 0, F(y) = 0, F(z) = 0, F(r) = 0, we can get that
the equation has 2* or 16 equilibrium solutions of pure strategies,
which are (0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1), (0,1,0,0), (0,1,0,1),
(0,1,1,0), (0,1,1,1), (1,0,0,0), (1,0,0,1), (1,0,1,0), (1,1,0,0), (1,0,1,1),
1,1,0,1), (1,1,1,0), (1,1,1,1). The equilibrium point is brought into the
Jacobian matrix, the eigenvalues of each equilibrium point are obtained
in turn, and the positive and negative values are judged, and then the
stability and stability conditions of the equilibrium point are judged.
This paper mainly analyzes the stability of the equilibrium point under
the condition that the crowdsourcing logistics system can develop
healthily and continuously, namely (1,1,1,1), (1,1,0,1), (0,1,1,1), the
corresponding eigenvalues can be obtained in Table 3. To make them
stable points, their eigenvalues must all be less than 0, that is, they
must satisfy P, — R, -, < 0, which means that the combination of the
task requester’s reward and punishment is greater than the perceived
payment to the crowdsourcing logistics system, and the remaining
conditions discussed separately below:

(1) The stable point (1,1,1,1) indicates that temporary workers,
contract workers, platforms and task issuers all adopt honest
strategies, and the stable condition is C;; — C;; — uAP, — vtR < 0,
Cpi—Ci—(1=w)AP,— (1= v)tR < 0, M, —(1-1)(S+R) < 0. At this
time, the cost saved by crowdsourcing workers by choosing to
delay delivery is less than the sum of the reward and punishment
obtained from the task requester, and the monitoring cost of the
platform is greater than the sum of the reward and punishment
obtained. This situation achieves the purpose of incentivizing all
participants to choose a credible strategy, and the crowdsourcing
system can continue to operate stably.
The stable point (1,1,0,1) indicates that temporary workers,
contract workers, and task issuers all adopt an honest strategy,
while the platform adopts a fraud strategy. The stable condition
is Cpy —C,; —vt(R+S) =B, <0, Cpy —Cp; — (1 = )t(R+ 5) —
B, <0, (1-0(S+R)— M, < 0. At this time, the cost saved
by crowdsourcing workers by choosing to delay delivery is less
than the sum of the rewards and penalties they get and the cost
of collusion with the platform, and the monitoring cost of the
platform is less than the sum of the rewards and penalties they
get. In this case, the crowdworkers always complete the delivery
within the stipulated time, the platform chooses not to monitor
the data to save costs, and the package of the task requester can
also be delivered on time.

(3) The stable point (0,1,1,1) indicates that contract workers, plat-
forms, and task issuers all adopt honest strategies, while tempo-
rary workers adopt fraudulent strategies. The stable condition
is uAP, + VIR — Cp + C; < 0, 2Cy; — C — (1 — AP, — (1 —
VIR < 0, M, — (1 = 1)(S + R) + B, = C,; < 0. At this time,
the cost saved by the temporary worker overtime delivery is
greater than the sum of the reward and the reward obtained
from the task requester, and the cost saved by the contract
worker by choosing to delay delivery is less than the sum of
the reward and the cost of collusion with the platform, and
the monitoring cost of the platform is less than the sum of the
rewards and penalties earned, and the worker’s collusion cost
is less than the platform’s collusion cost. In this case, although
temporary workers choose fraudulent strategies, the platform
can still choose contract workers to deliver packages to task
issuers at the specified time, ensuring the healthy operation of
the crowdsourcing logistics system.

(2

—

5. Multi-agent reforcment learning

Reinforcement learning can handle incomplete information in dy-
namic environments and search for optimal policies for agents. As a
learning algorithm that does not require its environment model and can
be used online, the Q-learning algorithm is very suitable for incomplete
information games. In this paper, multi-agent reinforcement learning
is used in the DT virtual space to simulate the evolutionary trend of
the current crowdsourcing logistics system participant strategies and to
verify the analyzed evolutionary stable strategies. As shown in Fig. 2,
the crowdsourcing logistics system in the real space transmits the
current policy state to the DT virtual space, models the crowdsourcing
logistics participants as players in an evolutionary game, and maps
them to multi-agent reinforcement learning agents in the virtual space.
When the agent chooses a strategy, if the environment gives positive
feedback, the probability of the agent choosing the same strategy in
the next round will increase; otherwise, it will decrease. Therefore, the
decision-making agent will acquire knowledge, learn from the acquired
knowledge and the feedback given by the environment, and choose a
strategy, so that the strategy choice trend of the participants in the
real space can be reflected in the virtual space. Finally, the predicted
results are fed back to the real space, and suggestions are provided.
Participants can make timely strategic adjustments to avoid losses and
can also maintain the sustainable and healthy development of the
interim reporting system. The following is the specific implementation
of multi-agent reinforcement learning used in this paper.

5.1. Algorithm description

In this paper, we use the multi-agent reinforcement learning model
proposed in bing Liu and Wang (2009) to predict the outcome of
evolutionary games, this algorithm has been proven by the author
to be successfully used in evolutionary games to find optimal strate-
gies. For a four-party evolutionary game, suppose the strategy form is
(8,AY, A2, A3, A%, 1 2,3 %, p), where S is a set of states, A!, A2, A3,
and A* are the action space of player 1, player 2, player 3 and player
4 respectively, r!, r?, > and r* are the reward functions of the players,
which can be obtained from the game’s payoff matrix, and p is the state
transition probability. ¢ is the number of repeated games, and the state
at time ¢ is denoted as s,. Since the set of states in the model is the action
composition of the game, the transitions of the states can be depicted by
the player’s action space. In state s, the player chooses his actions a!, a2,
a® and a* to get rewards r!, 2, r3 and r*, respectively. After that, a new
state s’ is reached, and the transition probability is p(s'|s,a!,a?, a>, a*).
So far, the decision-making process of the evolutionary game is mapped
to the reinforcement learning model, which can be used to simulate the
dynamic decision-making in the evolutionary game.

According to the above model, the total expected rewards of players
are as follows.

1 1 2 3 4 1 1 2 3 4
Q'(s,a,a%,a,a’)=r(s,a ,a",a’,a")

+v Zp(s’ls, a',d? d, a4)Q1(s, a',d d, a4), (10)
Qz(s,a',az,a3,a4) = rz(s,a],az,a3,a4)
+v Z (s’ s, a',d? d, a4)Qz(s, a',d ad, a*), (1)
Q3(s,al,a2,a3,a4) = r3(s,a1,a2,a3,a4)
+y 2 p(s’]s, a', %, d, a4)Q3(s, a',a%, a3,a4), (12)
Q4(s, al, az, a3, a4) = r4(s, al, az, a3, a4)
13)

+7 ) ' ls,d' %, d, a0 (s, a' a?,da),
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Fig. 2. Framwork of DT based crowdsoucing.

The player updates the Q value according to the following formula

0}, (s.d",d* a,a") = (1 - )0/ (s,a',a*,a’, a*)

+ a,r} +768'(s)6°(s8° (s)8* (50, (s")], a9

Q?H(s, a,adadhH=(1- ar)Qtz(s, a',ad%,d,a% (1s)
+ ay[r] +78'(5)6%(s)8 (s)6* (s Q7 (5],

Qr3+1 (s,a,a%dahy =1 - a,)Q?(s, al,d,d, a* (16)
+ a,[r; +76'(s)6°(s")8° (s)8*(s)Q} (),

Q?H(s, d,d®, d®ah = (1- (x,)Q;‘(s, d,d* d®,a* an

+ a[rt + 882 (583 (s (sHOH (s,

Among them, (6'(s), 82(s), 63(s), 5*(s)) and (5'(s"), 62(s"), 83(s"), 6*(s))
are the matrix games (0] (s), Q7(s), Q;(s), @} (s)) and (Q/, (), 0%, (s,
Qf+ o) Q;‘H(s’ )) mixed strategy Nash equilibrium respectively.

The process of the policy iteration algorithm is shown in Algorithm
1, and the process is as follows:

Step 1 Initialize r = 0, er (s,a',d?,a%,a*) =0, Q,z(s, a',a?,a%,a*) =0,
Q?(S,al,az,a3,a4) =0, Qf(s,al,az,az’,tﬁ) =0.Vs €S, a e Al, at e Az,
a® € A3, a* € A%, and initialize the current state;

Step 2 Calculate the mixed strategy Nash equilibrium (5! (s), 5%(s),
8%(s), 5*(s) through matrix game (Q/(s), 02(s), 0} (s), Q}(s))), and select
an action a' according to §'(s), observe the rewards r},r2,r>,r#, the
opponent’s actions a2, a®, a* and the next state s;

Step 3 Calculate the mixed-strategy Nash equilibrium (6'(s"), 62(s"),
83(s"), 5*(s")), and update Q', 02, 03, 0%

Step 4 Go back to step 2, set t = ¢ + 1, repeat until all states have
been searched.

5.2. Feasibility analysis

According to the above description, the learning agent needs to
maintain n Q-functions, and each agent in the system has a Q-function.
These Q-functions are maintained internally by the learning agent,
assuming it can observe the behaviors and rewards of other agents.

The learning agent updates (Q', ..., 0"), where each 0/, j = 1,2, ...,
n, for all s, a', ..., a" consists of Q/(s,a',...,a"). Let |.S| be the number
of states, and let |A’| be the size of the action space A’ of agent i.
Suppose |A!| = -+ = |A"| = |A|, the total number of entries in Q¥ is
|.S] - |A|". Since our learning agent must maintain n Q-tables, the total
space requirement is n|.S| - |A|".

The learning algorithm that we used, in terms of space complexity,
is linear in the number of states, polynomial in the number of actions,

Algorithm 1 Policy iteration

Initialize:
1: Let t = 0, get the initial state s,,.
2: Let the learning agent be indexed by i, i = 1,2, 3, 4.
3: For all s € S and o' € A, let Qﬁ(s,al,az,a3,a4) =0.
Ensure:
4: repeat
5:  Choose action a'.
6: Compute mixed strategy Nash equilibrium (6'(s), 5%(s), 6°(s), 6*(s)
through matrix game (Q!(s), 0%(s), Q3(s), Q¥(5))).
7. Observe r},rtz,r?,r;‘, al,a? a?,a;‘ and s, =5
8: Compute (615", 8%(5"), 83(s"), 8*(s")
(0},,(5),07 (5,0}, ,(5),07, ().
9: Update Q!, 0% 03, 0%
10: Lett=1r+1.
11: until all states have been searched.

through

and exponential in the number of agents. The running time of the
algorithm mainly depends on the calculation of the mixed strategy
Nash equilibrium used in the Q-function update. For n-player games,
approximation methods are usually used. In our proposed game model,
the learning time for 5000 rounds is less than 3 s, which shows that it
can be implemented in a near real-time manner.

Cost considerations are inevitable when integrating digital twins
into model-based systems engineering processes (West and Blackburn,
2017). The cost of a digital twin is the number of components in
the system, the interfaces and dependencies between components, the
complexity of the algorithms used to implement specific functions, and
the functions required to build the digital twin. While digital twins
require a larger upfront investment, the addition of digital twins is
expected to provide significant return on investment over the life of
the system, and building reusable digital twins can further reduce costs.
This means that although our method is more costly when deployed, it
can amortize the cost through continuous operation and reduce poten-
tial error correction costs in the future. It can also reduce deployment
costs by using a common digital twin framework.

6. Experimental verification

We apply a multi-agent reinforcement learning model to an evolu-
tionary game where each player has two strategies: honesty (H) and
fraud (F).
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In evolutionary games, players seek optimal strategies through
reinforcement learning models, and the states in the reinforcement
learning models are regarded as the players’ strategy combinations.
In this model, the state space is S = {(HHHH),(HHHF),(HHFH)
(HFHH),(HFFH),(HFHF),(HHFF),(HFFF),(FHHH),
(FHHF),(FHFH),(FFHH),(FFFH),(FFHF),(FHFF),
(FFFF)}, the player’s strategy set is A = {a',d?,a%,a*} = {H, F}, the
instantaneous reward of can be determined by the payoff matrix. There-
fore, the player’s total expected payoff can be denoted by Q. Through
the Q-value table, the agent can choose the optimal strategy according
to the corresponding state to maximize the expected return. In the
experiments, we set the multi-agent reinforcement learning model
parameters as y = 0.7, a, = 0.2 to simulate the bounded rationality of
groups in evolutionary games. We also compare the simulation results
of strategy selection based on multi-agent reinforcement learning with
the numerical simulation results based on matlab.

We introduce the blockchain performance into the proposed four-
party game model, and we use Geth to test the performance of the
blockchain when it records transaction information and logistics in-
formation under the simulated crowdsourcing logistics scenario of
Ethereum. In this article, Geth uses the default configuration and
connects to the public test network to simulate real-life conditions.
Substitute the obtained real data into the C, parameters in the model to
verify the stability of the evolution equilibrium point with the addition
of real blockchain performance data.

According to the local stability of the equilibrium point in Table 3,
experiments are first performed to verify the existence of the stable
point (1,1,1,1). We set the parameters in the four-party evolutionary
game A = 05,1 =05 u=03,v=03 P =40,C, = 12, R = 15,
Ci =158 =15 B =4, M, =14, C; = 2,C, =0, 0] = 50,
A, = 5, S, = 26, R, = 15, assuming that temporary workers, contract
workers, platforms and task publishers all have an initial selection rate
of integrity of 0.5. The simulation results are shown in Fig. 3(a), which
are consistent with our inference results, that is, the policy combination
of temporary workers, contract workers, platform and task requester
is (Honest, Honest, Honest, Honest). As can be seen from Fig. 3(a)
and (b) that although the intermediate process is somewhat different,
the evolution results based on multi-agent reinforcement learning are
consistent with the simulation results of matlab, which shows that the
correct policy evolution results can be obtained through this multi-
agent reinforcement learning model. Setting z to 0.8 indicates that the
platform chooses an honest strategy, and uses Matlab to simulate the
evolution process of different initial strategies of temporary workers,
contract workers, and task publishers in three-dimensional space. The
results are shown in Fig. 3(c). It can be seen that in the crowdsourcing
participants, when there is no particular tendency to commit fraud at
the beginning, the crowdsourced workers complete the logistics tasks
in a timely manner, the platform monitors the logistics information,
and the requester provides real rewards, which effectively avoids the
problems of free riders and false reports.

Next, we verify the existence of the stable point (1,1,0,1). Reset .S =
R = 12, according to Table 3, the Jacobian eigenvalues corresponding
to the equilibrium point (1,1,0,1) are all negative, and the stable
equilibrium point of the system is (Honest, Honest, Fraud, Honest). The
simulation results of multi-agent reinforcement learning are shown in
Fig. 4(a). The results are consistent with those in Fig. 4(b) and are
consistent with our inference results. Similarly, set z = 0 to indicate
that the platform selects a fraud strategy, and simulate the evolution
process of different initial strategies of the other three parties in three-
dimensional space. The simulation results are shown in Fig. 4(c). In this
case, crowdsouring workers always complete logistics tasks in time, and
task requesters always give real logistics rewards, Therefore, platforms
tend not to monitor to save costs.

Finally, verify the existence of the stable point (0,1,1,1). According
to Table 3, in order to make the equilibrium point (0,1,1,1) reach a
stable state, we need to resetu = v =0.2, Cj; = 14, M, = 5, S = 8, at this
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Fig. 3. Evolution of four-party under (1,1,1,1).

time, the corresponding Jacobian matrix eigenvalues are all negative,
and the simulation results based on multi-agent reinforcement learning
and matlab simulation are shown in Fig. 5(a) and (b) respectively,
which are consistent with our reasoning at this time. We let z = 0.8 rep-
resent the platform chooses the integrity strategy, and the simulation
results of the evolution process of temporary workers, contract workers
and task issuers under different initial strategies are shown in Fig. 5(c).
Let x = 0 indicate that the temporary worker chooses a fraud strategy,
and simulate the evolution process of the other three different initial
strategies, and the results are shown in Fig. 5(d). It can be seen
that if the initial behavior of the crowdsourcing participants tends to
be honest, although the temporary workers choose to delay delivery,
since the contract workers and the platform respectively deliver and
supervise the logistics information in a timely manner, the requester
will give the contract workers real logistics rewards. At the same time,
it also allows packages to be delivered in a timely manner without
suffering losses.
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7. Conclusion

This paper proposed a four-party evolutionary game model in a
crowdsourcing logistics scenario in which players include temporary
workers, contract workers, a blockchain-based platform and task re-
questers, and adopts a replication dynamics approach to analyze evolu-
tionary stability strategies. Through the proposed game model, the real
crowdsourcing participants are mapped to the players in the DT virtual
space, and the multi-agent reinforcement learning method is used to an-
alyze the evolution trend of the current players’ strategies, and predict
the development results of the crowdsourcing participants’ strategies.
We also added real blockchain performance data to the proposed game
model to make the evolution results more realistic. As far as we know,
this paper built a four-party game model in the crowdsourcing logistics
scenario for the first time, and adds DT to optimize the crowdsourcing
logistics system. We believe that the research results in this paper can
stimulate more research on the combination of crowdsourcing logistics
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system and DT, which will help better understand the behavior of each
participant in a real-world crowdsourcing logistics system.
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