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Abstract—The Augmented Intelligence of Things (AIoT) is an
emerging technology that combines augmented intelligence with
the Internet of Things (IoT) to facilitate advanced decision-
making processes. In this paper, we focus on the detection
of vehicle trajectory anomalies in a vehicle-road collaboration
system by AIoT, aiming to improve the traffic safety and road
operation efficiency. We transmit collaboration data collected by
sensors to an IoT server, which enables the effective data analysis
for vehicle trajectory information. We propose a self-supervised
learning augmented intelligence algorithm to achieve precise and
efficient detection of trajectory anomalies. First, we models the
traffic road network as a topology graph. Subsequently, we
sample the relevant subgraph contexts for each target node
through a random walk algorithm. And the subgraphs with
higher intimacy scores are selected as the contextual background
to be input along with the target node. After that, the anomaly
score of each target node is computed through the generative
learning module and the contrastive learning module. To evaluate
the effectiveness of our anomaly detection approach, we initially
conduct pre-training of the model using four widely utilized
graph machine learning datasets. The experimental results reveal
that our approach surpasses related methods in terms of the
accuracy of identifying graph anomaly nodes. In addition, we
carry out our proposed approach on two real traffic datasets with
high accuracy of 86.47% and 85.2%, respectively. The results of
this study demonstrate our proposal’s effectiveness in detecting
trajectory anomalies in real-life traffic scenarios, demonstrating
the effectiveness of our approach.

Index Terms—Vehicle road collaboration, Augmented Intelli-
gence of Things, Anomaly Detection, Self-supervised Learning.
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I. INTRODUCTION

THE development of Intelligent Transportation Systems
(ITS) makes road safety and traffic efficiency a top prior-

ity in urban planning and traffic management [1]. Effectively
detecting and identifying abnormalities such as traffic conges-
tion, accidents, and road damage is crucial for maintaining the
integrity and smooth operation of the transportation network.
Vehicle-road collaboration systems, which allow vehicles and
infrastructure to exchange real-time data, attract widespread
attention. These systems first capture information from sensors
deployed on vehicles and infrastructure, and then transmit the
data to IoT data centers for in-depth analysis and to effec-
tively respond to road anomalies [2], [3]. This collaborative
environment not only offers the possibility of making the most
of the data collected, but also creates an excellent opportunity
to ensure traffic safety and improve the efficiency of road
operations.

On the other hand, the rapid development of the Internet
of IoT and Artificial Intelligence (AI) makes remarkable
achievements in various fields [4], and this trend leads to the
convergence of a variety of information technologies, such
as computers, electronics, and automation, bringing about
tremendous changes and opportunities for modern society.
Against this backdrop, the Augmented Intelligent Internet of
AIoT emerges as a key approach to achieving comprehensive
intelligent network coordination and management. It combines
IoT technology with augmented intelligent algorithms, partic-
ularly machine learning algorithms, to significantly enhance
data processing and analysis capabilities [5]. With the rapid de-
velopment of vehicle-road collaboration technology, the appli-
cation of AIoT in the field of transport also attracts widespread
attention. As shown in Fig. 1, in practical applications, aug-
mented intelligence methods such as deep learning are usually
used to perform data analysis and pattern recognition on traffic
data collected by large-scale IoT devices to achieve intelligent
traffic management and decision support. However, traditional
methods typically use a grid-based approach to model traffic
data, dividing the traffic network into regular grid cells and
computing attributes such as average speed or flow rate in each
cell. The limitation of this approach is that many real transport
networks (e.g., complex road networks and subway networks)
are inherently graph-structured. Consequently, conventional
grid methods may encounter difficulties when dealing with
complex road structures and irregular traffic flows [6].
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Fig. 1. Vehicle-road collaboration system applying AIoT. This is achieved by using wireless communication devices (e.g., sensors installed on the road)
to collect vehicle trajectory information (e.g., average speed and flow rate of passing vehicles), after which the collected data is processed and analysed by
augmented intelligence (e.g., deep learning or machine learning).

Roads within a city should not be viewed as isolated entities
since changes in traffic volume on one road are influenced by
the topology of neighboring road networks. Specifically, the
traffic state of an upstream road impacts the downstream road,
and the condition of the downstream road reflects the acces-
sibility of the upstream road. This interconnected relationship
implies that traffic flow within the network is influenced not
only by the attributes of individual roads but also by the traffic
conditions of neighboring roads [7]. The interrelated nature of
traffic flow within the network introduces significant complex-
ity to its propagation and dynamics. To capture this complexity
and interactivity more accurately, we model it as a topology
graph rather than treating it as separate entities such as grids or
line segments [8]. This graph-based representation enables the
incorporation of traffic information as node attributes, along
with the contextual factors mentioned above. Subsequently,
we can employ anomaly detection algorithms on the graph to
detect and address road anomalies within the traffic network.

In recent years, significant advancements are being made in
anomaly detection of graphs, particularly through methods like
Graph Convolutional Neural Networks (GCN) [9]. GCN is a
deep learning model based on graphs, which can process graph
data efficiently and learn the representation of nodes from
the network. Through information propagation and fusion,
GCN captures the contextual associations within a graph
and incorporates information from neighboring nodes during

the representation process to capture complex dependency
relationships between nodes. This makes GCN a powerful tool
for processing traffic data and detecting abnormal behaviour.
In addition, in the context of the traffic network, anomaly
labels are often scarce, and supervised anomaly detection
algorithms suffer from the problems of uneven distribution and
inability to cover all anomaly types during the training process,
which leads to poor training results. Therefore, unsupervised
detection algorithms are more suitable for the practical appli-
cation of traffic network data.

To address the above problems, this paper proposes a vehicle
track anomaly detection method that leverages the collabo-
ration between vehicles and road infrastructure. We employ
a self-supervised anomaly detection technique for graphs to
detect anomalous nodes. Our approach utilizes the rich sensor
data collected by vehicles and combines it with the information
provided by the infrastructure to construct a comprehensive
representation of the road network, where each node represents
a road segment and edges represent the connectedness between
nodes. The node attributes encompass various features related
to the road segment, such as average speed, vehicle density,
or vehicle flow rate. Vehicle trajectory anomalies are also
abstracted as node anomalies that differ significantly from the
behaviors of other nodes in the graph. To accurately detect
anomalies, we construct different environments (subgraphs)
around target nodes and employ a self-supervised learning
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strategy to compare and obtain anomaly scores for each
node. Specifically, we first select the subgraphs with high
intimacy scores to the target node from the subgraphs of
the target node generated by the random walk and input
them into the GCN encoder along with the target node as
contextual information for the target node input to the GCN
encoder to learn the latent representation of each node. After
that, we employ two modules, namely Generative Learning
with Attribute Reconstruction and Contrastive Learning with
Structure Prediction, for anomaly detection. By reconstructing
node attributes through the decoder, the generative learning
module can capture anomalies in the attribute space. The con-
trastive learning module captures anomalies in the structural
space and also considers the mixture of structural and content
information by directly comparing the target node and its
surrounding context. Finally, we combine the output of the
generative and contrastive modules to compute the anomaly
score for each node.

Our proposed anomaly detection algorithm adopts a self-
supervised learning approach, eliminating the need for manual
data labels during training. This reduction in manual labeling
results in lower energy consumption compared to traditional
rule-based or manually designed feature methods. Addition-
ally, by incorporating local subgraphs, our algorithm can
operate without requiring the entire graph information. This
approach significantly reduces computational and communica-
tion requirements compared to traditional centralized or global
computation methods, thus alleviating the burden on network
traffic. By achieving higher efficiency in anomaly detection on
real traffic datasets, our algorithm avoids the resource overhead
associated with monitoring and analyzing the entire road
network. This results in savings in computational and storage
resources, ultimately improving overall resource utilization
efficiency.

The major contributions of this paper are listed as follows:
• In this paper, a self-supervised learning augmented intel-

ligence algorithm is innovatively used for vehicle trajec-
tory anomaly detection, which applies AIoT technology
to the vehicle-road collaboration system. The algorithm
effectively analyses vehicle trajectory information using
collaborative vehicle and infrastructure data collected by
sensors in the system, thereby improves traffic safety and
road operation efficiency.

• We model the traffic road network as a topology graph
to capture the complex network structure of vehicle
tracks and improve the previous self-supervised learning
algorithm by introducing the concept of intimacy score.
By selecting subgraphs with higher intimacy scores as
the contextual background, we provide a more accurate
and comprehensive data basis for subsequent anomaly
detection and also improve the efficiency of anomaly
detection.

• We provide a comprehensive experimental validation of
the proposed self-supervised learning augmented intelli-
gence algorithm. Firstly, the model is pre-trained with
four widely used graph machine learning datasets, and
it is demonstrated that the method outperforms previous
methods in the accuracy of identifying graph anomaly

nodes. In addition, test results on two real traffic datasets
show that the accuracy of the method is as high as 86.47%
and 85.2%, which fully demonstrates the effectiveness
and practical application value of the algorithm in detect-
ing trajectory anomalies in real traffic scenarios.

The rest of this paper is organized as follows. Section II re-
views related work. Section III describes the proposed method.
Section IV discusses the experimental results and we conclude
the paper in Section V .

II. RELATED WORK

Augmented Intelligence is widely regarded as an extension
of Artificial Intelligence, with a specific focus on enhancing
human cognitive abilities rather than replacing them [10].
Artificial Intelligence encompasses a multitude of techniques
and methods used to enable machines or computer systems to
simulate human intelligence. In contrast, Augmented Intelli-
gence places a stronger emphasis on fostering collaboration
between humans and machines to augment human cognition
and decision-making. This is achieved by combining the
computational power and intelligence of machines with the
unique insights and judgement of humans. In the field of
the Internet of Things (IoT), the application of augmented
intelligence has given rise to the emerging concept of AIoT,
effectively addressing a series of problems caused by the
proliferation of IoT data. With the help of cloud comput-
ing and big data analysis, AIoT not only provides more
accurate and personalized services for modern industries [4],
but also shows broad application prospects in areas such
as network edge collaborative computing. For example, in
the study of unmanned aerial vehicles (UAVs) on-board life
extension, the application of AIoT has significantly improved
the operational efficiency and lifetime of the UAVs [11].
The Vehicle-Road Collaboration field is also benefiting from
the deeper application of AIoT technology. By integrating
vehicles, road infrastructure, and cloud-based data processing
with augmented intelligence, AIoT can facilitate real-time data
analysis, decision support, and traffic optimization, leading to a
safer and more efficient travel experience for drivers and traffic
managers. The combination of AIoT technology and vehicle
road collaboration enables the development of a smarter, more
efficient, and safer transportation system. Since our goal is
to apply self-supervised learning algorithms in augmented
intelligence for efficient anomaly detection in a vehicle-road
collaboration system, we will describe the background in three
related sections of work, namely vehicle-road collaboration
system, anomaly detection and self-supervised learning.

A. Vehicle Road Cooperation System

Vehicle-to-road cooperative systems, through vehicle-to-
internet (V2X) technology, have greatly expanded the connec-
tivity capabilities between intelligent vehicles and the external
environment, resulting in a revolutionary advancement in the
field of intelligent transportation [16]. V2X covers a variety of
interaction modes, including vehicle-vehicle (V2V), vehicle-
road setup (V2I), vehicle-internet (V2N), and Vehicle-Person
(V2P). V2N is the vehicle-vehicle information interaction and
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TABLE I
COMPARISONS AMONG OUR METHOD WITH EXISTING SELF-SUPERVISED LEARNING METHODS.

Approach Subgraph selection Generative learning Comparative learning Multi-view contrast
DGI [12] % % ! !

MVGRL [13] % % ! !

CoLA [14] % % ! !

SL-GAD [15] % ! ! !

Ours ! ! ! !

reminder, which can be used to enhance the vehicle collision
avoidance coefficient. V2I refers to the interaction between
the vehicle and the base setup, through which the V2I can
obtain the information from the roadside monitoring devices
such as road sensors, climate sensors, traffic lights in front
of the driving, barricades, and other road sensing devices.
This effectively improves the efficiency and safety of road
traffic. V2N allows vehicles to connect to the cloud through
mobile networks and use the navigation, monitoring, safety
warnings, etc. provided by the cloud. V2P is the interaction
between vehicles and pedestrians, which can provide safety
warnings to pedestrians and non-motorized vehicles on the
road. Notably, Oh et al. [17] proposed an advanced traffic
information system based on V2V communication. In this
system, the vehicle first passes the traveling data measured
by acceleration sensors, and the GPS positioning module,
and then detects unsafe driving maneuvers by the designed
detection algorithm. The development and application of this
system further demonstrate the immense potential of vehicle-
road collaboration systems in enhancing road traffic safety and
efficiency.

B. Anomaly Detection

Anomaly detection is a consistent research hotspot [18]. In
recent years, as deep learning gains prominence, researchers
are gradually shifting from traditional statistical methods to
deep learning techniques to solve anomaly detection problems.
Although these methods mainly target data in the Euclidean
domain, anomaly detection of graph-structured data from out-
side the Euclidean space is also receiving extensive attention
in recent years [19]. How to measure graph anomalies is
an important issue in graph anomaly detection, Perozzi and
Akoglu [20] proposed the AMEN anomaly detection method,
which considers the ego network information of each node,
and uses residual analysis for anomaly detection to find
anomalous neighbors on the attribute network. After this, deep
encoders are also being applied to detect graph anomalies
[21], [22]. These methods typically use graph autoencoders to
embed nodes into the potential space, reconstruct the graph in-
formation, and then detect anomalies using the reconstruction
error between the original and reconstructed graph informa-
tion. Recently, SL-GAD [15] scores nodes to detect anomalies
by sampling relevant subgraphs of the target node followed
by two self-supervised learning tasks of attribute learning
structure learning respectively. However, SL-GAD only uses
a random wandering approach when selecting subgraphs for
the target nodes, which cannot ensure a high correlation
between the subgraphs and the target nodes, which restricts

the subsequent acquisition of information from the contextual
information of the subgraphs.

C. Self-supervised Learning

Self-supervised learning (SSL) is a new learning paradigm
that aims to train models by automatically generating goals or
labels from unlabeled data and using these generated goals.
Compared to traditional supervised learning methods, self-
supervised learning eliminates the need for manual labeling
of extensive data and thus finds wide applications in scenarios
where labeled data is scarce. In the past few years, self-
supervised learning made significant research progress in areas
such as computer vision (CV) [23] and natural language
processing (NLP). Recently, SSL is being extended to the
graph domain. For example, Deep Graph Infomax (DGI) [12]
considers the representation of nodes and graph-level repre-
sentation vectors as contrasted instance pairs and generates
corrupted negative samples, which is the first algorithm based
on unsupervised patterns of contrast learning. On the basis
of DGI, MVGRL [13] treats the original graph structure and
graph diffusion as two different views and proposes a multi-
view contrast learning model. CoLA [14], a self-supervised
learning method based on localized information, which learns
node representations by comparing nodes with their contex-
tual information in graphs to learn node representations by
comparing them and calculating anomaly scores.

Based on our proposal, we present an anomaly detection
algorithm that leverages augmented intelligence and self-
supervised learning to enhance the efficiency of the vehicle-
road cooperative system. Table I provides a comparison be-
tween our algorithm and existing self-supervised learning
methods. Specifically, our algorithm initially samples sub-
graphs associated with the target nodes and selects those
subgraphs that exhibit strong correlations with the target
nodes. Subsequently, we employ a combination of generative
and comparative self-supervised learning tasks to enable more
comprehensive anomaly detection. Notably, the comparative
self-supervised learning employs multi-view comparisons to
effectively utilize the information embedded within the sub-
graphs.

III. METHODOLOGY

The utilization of augmented intelligence for detecting ve-
hicle trajectory anomalies through vehicle-road collaboration
has broad applications in intelligent transportation systems.
This technology not only enables real-time monitoring and
anomaly detection of vehicle trajectories in urban traffic,
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Fig. 2. The general framework of our model. Initially, we represent the road segment and traffic attribute information as a graph, and then several subgraphs
are randomly sampled from the original graph. From these subgraphs, we select the ones with high intimacy scores to be used as inputs to the GCN encoder,
along with the target nodes. This is followed by the self-supervised learning module, which consists of the generative learning with attribute reconstruction
module and the contrastive learning with structure prediction module together, with the contrastive learning module framed by a green rectangle in the middle
part. Finally, generated anomaly scores and compared anomaly scores are collected to generate the final anomaly score. According to the given threshold,
nodes with an anomaly score greater than the threshold are determined as anomalous.

thereby enhancing the efficiency and safety of traffic manage-
ment, but also plays a critical role in smart agriculture. For
instance, monitoring and detecting anomalies in the trajectories
of agricultural vehicles are equally vital. The trajectories of
agricultural vehicles in the fields need to be monitored to
ensure that tasks such as planting, fertilizing, and spraying are
carried out according to plan. By implementing augmented
intelligence technology, real-time monitoring and anomaly
detection of agricultural vehicles can be achieved, assisting
farmers in operating more efficiently in agricultural produc-
tion, reducing resource wastage, and increasing yields.

In this section, we introduce the general framework of our
proposed AIoT algorithm for detecting vehicle track anomalies
in traffic network maps. As shown in Fig. 2, our approach
consists of five parts, including transport network modeling,
subgraph sampling, a self-supervised learning module con-
sisting of generative learning with attribute reconstruction
and contrast learning with structure prediction and graph
anomaly scoring. First, we model a traffic road network as
a topology graph, for the road segment graph modeled as a
graph, we use an augmented intelligence anomaly detection
method on the graph to detect it. Specifically, for each node
to be detected, we first select a number of subgraphs for
it using the random walk algorithm, and later select the
subgraphs from among them that have high intimacy scores
with the node. After that, for the rich node- and subgraph-level
information we have taken, inspired by [15], we construct two
different self-supervised objectives to detect anomalous nodes,
that is, generative learning with attribute reconstruction and
constrastive learning with structure prediction. The generative
learning with attribute reconstruction aims to reconstruct the
feature vector of the target node using neighboring attribute
information of the. By doing so, any attribute mismatches

between the selected node and its surrounding context can
be reflected as a regression loss through a regression loss
computed between the reconstructed feature vector and the
original feature vector. The constrastive learning with structure
prediction, on the other hand, is proposed to more fully utilize
the structural information of the input graph, and unlike the
node-level objective of generating attribute reconstruction, this
hybrid-level contrast objective, compares the target node with
its surrounding context directly in the embedding and structure
space. Therefore, our model optimizes with these two self-
supervised objectives that are closely related to node anomaly
detection. During inference, we craft two scoring functions
based on these two objectives, which tend to assign higher
anomaly scores to attribute anomalies and structural anomalies
in graphs. As shown on the right of Fig. 2, we compare the
obtained anomaly score with the selected threshold. Nodes
with scores higher than the threshold are considered abnor-
mal, while nodes with scores lower than the threshold are
considered normal.

A. Transport Network Modelling

First, we model a traffic road network as a topology graph,
where each road segment in the network represents a node
and the connectivity between road segments is represented
by edges in the graph. The attribute information of the node
can be abstracted from the traffic information of the roadway,
where the traffic information is collected by the sensors and
sent to the IoT server for access. After modeling the traffic
road network as a graph, since the structural information of
the graph is the road information and the node attribute infor-
mation is the traveling information of the vehicles on the road,
the problem of detecting anomalies in vehicle trajectories is
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transformed into the problem of detecting anomalous nodes on
the graph, and then we use an augmented intelligence anomaly
detection method on the graph to detect it. We give a notation
representation of the graphs commonly used in the article as
follows. A graph 𝐺 can be described as 𝐺 = (𝑉, 𝐸, 𝑋, 𝐴),
where 𝑉 = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } is the set of nodes in the graph,
and 𝐸 is the set of edges. 𝑋 ∈ R𝑁×𝐷 and 𝐴 ∈ R𝑁×𝑁 denote
the node features and graph adjacency matrix, where 𝐷 is the
numbers of dimensions of node features.

B. Subgraph Sampling Module

Similar to the vision domain, self-supervised learning meth-
ods for graphs can be broadly classified into two branches:
generative method and comparative method. In the generative
branch, most existing work focuses on attribute prediction, typ-
ically at the same scale [24], such as "node vs. node" (attribute
regression) and "graph vs. graph" (structure prediction). On the
other hand, comparative learning can distinguish instances not
only at the same level but also at different scales, "node vs.
graphs". As mentioned in [14], in graph anomaly detection,
an anomaly generally manifests itself as a mismatch between
it and its surrounding context, so we sampled subgraphs for
each node to construct its contextual background.

In our approach, we first establish the process of select-
ing context subgraphs for the target nodes and propose two
self-supervised learning objectives. Specifically, the anomaly
detection in the attribute space is performed first, and the
feature vector of the target node is reconstructed using the
GCN encoder and decoder, and then it is compared with the
original feature vector of the node. Furthermore, to detect
anomalies existing in the structure space, we construct a hybrid
hierarchical comparison between the target node and its local
subgraphs. This comparison involves analyzing positive and
negative samples, enabling us to identify structural anomalies.
Based on this, we first sample the context information of the
target node from the input graph and then select the one with
a high score as the sampled subgraph of the target node by
calculating their respective closeness scores.

For our attribute targets, the discriminant pairs are the
original and reconstructed target nodes. On the other hand,
in our comparison target, the two discriminant pairs are the
target node and the two sampled graph views, respectively. We
now elaborate on the aforementioned processing steps:

(1) Target node sampling. Since we are mainly concerned
with detecting node-level anomalies in the graph, we first
sample the target nodes. In this paper, we sample the target
nodes from the given input graph by uniform sampling.

(2) Graph view sampling. It is then a matter of sampling
the target node context subgraph, which is key to learning
a high-quality representation of the center node. Due to the
different importance of different neighbors and to control the
randomness of sampling to some extent, we make improve-
ments to the traditional random wandering sampling method
[25]. Specifically, we first sample multiple subgraphs with
the random walk algorithm and then calculate the importance
scores of the neighbor nodes of the target nodes in these
subgraphs. In this, for the computation of the importance of

the neighbor nodes, we follow the subgraph sampling based
on the personalized PageRank algorithm of [26], as described
in [27], the importance score matrix 𝑆 can be denoted as

𝑆 = 𝛼 · (𝐼 − (1 − 𝛼) · 𝐴), (1)

where 𝐼 is the identity matrix, 𝛼 ∈ [0, 1]is a parameter usually
set to 0.15. Term 𝐴 = 𝐴𝐷−1 denotes the adjacency matrix
normalized by columns, 𝐷 is a diagonal matrix with 𝐷 (𝑖, 𝑖) =∑

𝑗 𝐴(𝑖, 𝑗) on its diagonal. 𝑆(𝑖, 𝑗) measures the importance
scores between node 𝑣𝑖 and 𝑣 𝑗 . Based on this, we define the
intimacy score for the measure of picking subgraphs:

Definition 1: (Intimacy scores of subgraphs): For each
subgraph 𝑔𝑡

𝑖
generated by random walks of target node 𝑣𝑖 , we

calculate its intimacy scores 𝐼 𝑡
𝑖
=
∑

𝑗 𝑆(𝑖, 𝑗) separately, where
𝑣 𝑗 ∈ 𝑔𝑡𝑖 .
And then the subgraphs 𝑔

𝜑1
𝑖
, · · · , 𝑔𝜑𝑘

𝑖
with scores in the top k

are selected as the inputs for the training task afterwards.
(3) Node anonymization. In order to increase the dif-

ficulty of the two predefined self-supervised learning tasks
and to prevent the original information from interfering with
the learning results, the target nodes in the sampled graph
views are anonymized [28](their original features are set to
zero). Using this mechanism not only prevents information
from leaking but also encourages the model to rely only on
contextual information to identify anomalies.

C. Generative Learning with Attribute Reconstruction

As noted earlier, the anomalies of an instance are usually
expressed as the degree of disagreement between its orig-
inal and reconstructed information. This disagreement can
be quantified by measuring the 𝑙2-norm distance. A greater
distance indicates greater reconstruction error and a greater
likelihood that the current instance is anomalous. Therefore,
we would like to reconstruct the node’s attribute information
in an unsupervised manner and compare the reconstructed in-
formation with its original feature information for the purpose
of detecting anomalies, and it is this model that is used in
deep autoencoders( AEs). The traditional AEs have two parts,
the encoder 𝐸𝑛𝑐(·) and the decoder 𝐷𝑒𝑐(·), the encoder first
projects the input node features into a low-dimensional feature
space, and then the decoder tries to restore them to the original
data, the learning process of AE can be represented as follows:

𝑥 = 𝐷𝑒𝑐(𝐸𝑛𝑐(𝑥)), (2)

where 𝑥 is the restored feature vector. The optimisation goal
of the AEs is to make 𝑥 and 𝑥 as close as possible. This
can be achieved by minimising their 𝑙2-norm distance, which
encourages the AE to learn latent invariant patterns between
inputs. We have enhanced the conventional AE architecture
to account for the ability to incorporate the fundamental topo-
logical information in attribute reconstruction. Specifically, we
build GCN-based encoders and decoders.

GCN-based encoder. 𝑔
𝜑1
𝑖
, · · · , 𝑔𝜑𝑘

𝑖
are the selected sub-

graphs of 𝑣𝑖 . As mentioned earlier, we first have to map the
features of the nodes in the subgraphs to a low-dimensional
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vector space, and the process implemented by the one-layer
GCN encoder can be denoted as:

𝐻𝜑 𝑗 = 𝐸𝑛𝑐𝐺𝐶𝑁 (𝑋
𝜑 𝑗

𝑖
, 𝐴

𝜑 𝑗

𝑖
) = 𝜎(𝐷− 1

2 (𝐴𝜑 𝑗

𝑖
+ 𝐼)𝐷− 1

2 𝑋
𝜑 𝑗

𝑖
𝑊𝑒),

(3)
where 𝐻𝜑 𝑗 denote the node embedding matrix of 𝑔

𝜑 𝑗

𝑖
, 𝑋

𝜑 𝑗

𝑖

and 𝐴
𝜑 𝑗

𝑖
are the adjacency and feature matrices of the corre-

sponding subgraphs, respectively. In the equation on the right,
𝜎(·) represents an activation function, such as the the often-
used ReLU, 𝐷 (𝑖, 𝑖) =

∑
𝑗 𝐴(𝑖, 𝑗), and 𝑊𝑒 is the matrix of

parameters used in the encoding training process.
GCN-based decoder. In a similar way, our graph decoder

is constructed using a single layer of GCN. We take the
embedding matrix obtained in the encoder as input to the
decoder, the specific decoding process is as follows:

�̃�
𝜑 𝑗

𝑖
= 𝐷𝑒𝑐𝐺𝐶𝑁 (𝐻𝜑 𝑗 , 𝐴

𝜑 𝑗

𝑖
) = 𝜎(𝐷− 1

2 (𝐴𝜑 𝑗

𝑖
+ 𝐼)𝐷− 1

2 𝐻𝜑 𝑗𝑊𝑑),
(4)

where 𝑊𝑑 is the matrix of parameters used in the decoding
training process.

Generative graph anomaly detection. The reconstruction
of attributes for anonymous node 𝑣𝑖 relies on obtaining infor-
mation about the subgraphs of 𝑔𝜑1

𝑖
, · · · , 𝑔𝜑𝑘

𝑖
through the GCN

encoder and decoder, which by anonymising the target node,
can make more full use of the attribute information from the
surrounding context. Therefore, we set the objective function
in the generative attribute learning process to minimise the
Mean Square Error between the original features and the
reconstructed features:

𝐿
𝜑 𝑗

𝑔 =
1
𝑁

𝑁∑︁
𝑖=1
( �̃�𝜑 𝑗

𝑖
[−1, :], 𝑥𝑖)2, 𝑗 ∈ {1, · · · , 𝑘}, (5)

where 𝐿
𝜑 𝑗

𝑔 is the generative loss of the loss of all nodes
on the sampled subgraph 𝑠

𝜑 𝑗

𝑖
, the feature vectors for the

reconstruction of node 𝑣𝑖 are obtained from the reconstructed
feature matrix �̃�

𝜑 𝑗

𝑖
generated by the decoder, and 𝑥𝑖 is the

original feature vector of the node 𝑣𝑖 . The final objective
function is the average value of 𝐿

𝜑 𝑗

𝑔 on the subgraphs :

𝐿𝑔 =
1
𝑘

𝑘∑︁
𝑗=1
(𝐿𝜑 𝑗

𝑔 ). (6)

D. Contrastive Learning with Structure Prediction

As mentioned earlier, due to the strong correlation sig-
nals that precede nodes and their contextual subgraphs, node
anomalies often manifest as disparities between a node and
its environment. The aim of the generative module in the
previous section was to identify anomalies in the attribute
space; however, the structural information within the graph
remained underutilised. To address this limitation, we suggest
implementing a multiple-view comparison learning module.
In the previous section, we discussed the aim of node-level
generative attribute learning, whereas the comparison learning
within the current module blends various graph topological
scales to highlight semi-global information. The comparison
module is made up of three key components: the graph
encoder, the pooling module and the contrastive module.

GCN-based encoder. In this module, our goal is to establish
the comparison between the target node and its contextual
subgraph, therefore, the inputs to the GCN encoder are the
feature matrix of the subgraph and the feature vectors of
the nodes, the process of encoding the feature matrix of
the subgraphs has been shown in Equation (3), the encoding
process of the individual nodes is slightly different from it:

ℎ𝑖 = 𝜎(𝑥𝑖𝑊𝑒), (7)

where 𝑥𝑖 is the feature vectors of target node 𝑣𝑖 , ℎ𝑖 is the cor-
responding embedding vectors. Unlike the graph eigenvector
representation, the graph adjacency matrix is not used as an
input term in the generation of the node’s representation. This
is because individual nodes do not contain graph structures
themselves. Furthermore, the parameter matrix 𝑊𝑒 is shared
with Equation (3).

Pooling module. Since our goal is to compare the target
node with its contextual background information, for this
comparison to work, we need a pooling function Φ(·) to
aggregate the obtained subgraph features to obtain a graph
representation vector, as shown in the middle of Figure2.
Common pooling functions are average pooling and bilinear
pooling, etc. To simplify the operation, we use in this paper
the average pooling function, formulated as follows:

𝑠 𝑗 = Φ(𝐻𝜑 𝑗 ) = 1
𝑛

𝑛∑︁
𝑘=1

𝐻𝜑 𝑗 [𝑘, :], (8)

where 𝑛 is the number of nodes in sampled subgraphs, and 𝑠 𝑗

is the graph representation of subgraph 𝑔
𝜑 𝑗

𝑖
.

Contrastive module. Since self-supervised contrastive
learning does not rely on the original label information but
is trained by an encoder comparing positive and negative
examples, the selection of positive and negative samples is
crucial in contrastive learning. We begin by representing the
positive and negative examples as follows:

𝑒
𝑗

𝑖
= (ℎ𝑖 , 𝑠 𝑗 ), (9)

𝑒
𝑗

𝑖
= (ℎ𝑖 , 𝑠 𝑗 ), (10)

where 𝑒
𝑗

𝑖
denotes the positive example of the target node 𝑣𝑖 ,

and 𝑒
𝑗

𝑖
is the corresponding negative example, in which 𝑠 𝑗

is generated by corrupting 𝑠 𝑗 , specifically, it is generated by
disrupting the embedding matrix 𝐻𝜑 𝑗 , and then aggregated by
Equation (8).

As described in [14], we adopt a discrimination to contrast
the positive and negative examples and score the samples:

𝑑
𝑗

𝑖
= 𝜎(ℎ𝑖𝑊𝑑𝑠 𝑗 ), (11)

𝑑
𝑗

𝑖
= 𝜎(ℎ𝑖𝑊𝑑𝑠 𝑗 ), (12)

where 𝑑
𝑗

𝑖
and 𝑑

𝑗

𝑖
are the discrimination scores for positive

and negative sample pairs 𝑒
𝑗

𝑖
and 𝑒

𝑗

𝑖
, respectively. And 𝜎(·) is

a non-linear function, here we adopt the sigmoid function to
keep the resulting discrimination score in the interval [0, 1].

Contrastive graph anomaly detection. Since nodes depend
on their regional contexts and different nodes have differ-
ent contextual subgraphs. If a node is anomalous, it should
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be more distinct from its surrounding contexts, numerically
should be that 𝑑

𝑗

𝑖
is significantly higher than 𝑑

𝑗

𝑖
. Here, we

adopt Jensen-Shannon divergence [12] to measure the value
of the difference between these two scores:

𝐿
𝜑 𝑗

𝑐 = − 1
2𝑁

𝑁∑︁
𝑖=1
(log(𝑑𝜑 𝑗

𝑖
) + log(1 − 𝑑

𝜑 𝑗

𝑖
)), 𝑗 ∈ {1, · · · , 𝑘},

(13)
where 𝐿

𝜑 𝑗

𝑐 is the contrastive loss value on subgraph 𝑠
𝜑 𝑗

𝑖
.

Similar to the previous module, the final contrastive objective
function is the average of all subgraph losses at node 𝑣𝑖:

𝐿𝑐 =
1
𝑘

𝑘∑︁
𝑗=1
(𝐿𝜑 𝑗

𝑐 ). (14)

E. Node Anomaly Scoring

The above describes the generative loss and contrastive loss
during training, and the next describes the computation of
specific anomaly scores during final inference. Since most of
the nodes in a graph are normal nodes, the graph encoder and
decoder we choose should be able to do the job of mapping
the feature vectors of the normal nodes to the appropriate
embedding space after training, and vice versa. Whereas an
anomalous node, either structural or attribute anomalies, will
distort its features when being mapped to the latent space.

Since in the process of generative learning, the attribute
reconstruction for a target node only relies on the attribute
information in the subgraphs of its contextual neighbors, as
mentioned above, the degree of difference between the original
features and the reconstructed features can be used as an
indicator to determine whether the node is abnormal or not.
In the specific application, we use the 𝑙2-norm distance. as the
scoring function to calculate the degree of difference, and the
process is formulated as follows:

𝑠𝑐𝑜𝑟𝑒𝑔 (𝑣𝑖) =
1
𝑘

𝑘∑︁
𝑗=1
(𝜃 (∥ �̃�𝜑 𝑗

𝑖
[−1, :] − 𝑥𝑖)∥22), (15)

where 𝑠𝑐𝑜𝑟𝑒𝑔 (·) is the scoring function of the generative
anomaly detection module.𝜃 is the parameter that adjusts the
final score to fall into [0, 1], 𝑠𝑐𝑜𝑟𝑒𝑔 (𝑣𝑖).

As for the constructive module, since we have already
computed the scores of the respective sample pairs when
generating the positive and negative sample pairs, according to
the Equation (11) and (12), we give the final scoring function
for constructive learning:

𝑠𝑐𝑜𝑟𝑒𝑐 (𝑣𝑖) =
1
𝑘

𝑘∑︁
𝑗=1
(𝑑 𝑗

𝑖
− 𝑑

𝑗

𝑖
), (16)

where 𝑠𝑐𝑜𝑟𝑒𝑔 (𝑣𝑖) is the contrastive score of target node
𝑣𝑖 . In the sample pairs we have taken to, as described by
Equations (9) and (10), positive pairs are composed of the
target node with its neighboring subgraphs, and negative pairs
are composed of the target node with the disrupted subgraphs,
so if a node is abnormal, it may exhibit a mismatch with its
neighboring subgraphs, and this mismatch is similar to the one
shown with its negative sample pairs, thus 𝑑

𝑗

𝑖
and 𝑑

𝑗

𝑖
should

be numerically close to each other, and the 𝑑
𝑗

𝑖
−𝑑 𝑗

𝑖
approaches

0. Conversely, if a node is normal, the difference between 𝑑
𝑗

𝑖

and 𝑑
𝑗

𝑖
is larger, manifesting as 𝑑

𝑗

𝑖
converging to 1 and 𝑑

𝑗

𝑖

converging to 0. To summarize, the range of 𝑑
𝑗

𝑖
− 𝑑 𝑗

𝑖
is in [0,

1].
The final anomaly score is obtained by combining equations

(15) and (16) :

𝑠𝑐𝑜𝑟𝑒(𝑣𝑖) = 𝜆𝑠𝑐𝑜𝑟𝑒𝑔 (𝑣𝑖) + 𝛾𝑠𝑐𝑜𝑟𝑒𝑐 (𝑣𝑖), (17)

where 𝜆 and 𝛾 are two adjustable parameters used to adjust
the weights accounted for by the comparison and generation
scoring functions.

F. Model Optimization and Algorithm

Our optimization objective is composed of the Eq.(6) and
(14):

𝐿 = 𝜆𝐿𝑔 + 𝛾𝐿𝑐, (18)

where 𝐿 is the total training loss we want to minimize. The
steps of our proposed methodological process are summarized
in Algorithm 1. We first sample a batch of nodes. For each
node, we generate k subgraphs with the highest intimacy score
to the current target node based on the importance score ma-
trix. Then, we choose GCN as the encoder to encode the nodes
in the batch and the corresponding sampled subgraphs. Our
goal is to reconstruct the feature vectors of the anonymized
target nodes in each subgraph, and to compute the generative
loss incurred in this process, we decode the node embeddings
of the subgraphs by the GCN decoder and compare the
reconstructed feature vectors of the nodes with their original
feature vectors. The comparison loss is then computed by
first aggregating the node embeddings in the subgraph to
generate the subgraph representation, which is then generated
by comparing it with the target node embeddings. The final
training loss is then computed by combining two different
targets. The anomaly scores for each node in 𝐺 are repeated 𝑅

times during inference, and the subgraphs are chosen randomly
from a several subgraphs with the highest intimacy scores,
ensuring randomness and ensuring that the final anomaly
scores are statistically stable.

IV. SIMULATION STUDIES

In this section, we conduct experiments on six real-world
datasets to validate the effectiveness of our scheme for node
classification in an unsupervised manner. We compare our
method with the state-of-the-art anomaly detection and self-
supervised learning methods. We conduct an ablation study
and parameter sensitivity experiments to further investigate the
properties of the model.

A. Dataset Description

We conduct pre-training on four datasets, namely Blog-
Catalog, Flickr, Cora, and CiteSeer, and compare our model
with existing supervised and unsupervised learning methods.
Subsequently, we conduct experiments on real traffic datasets
Los-loop and SZ-taxi to validate the effectiveness of our
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Algorithm 1 Anomaly Score Calculation based on Self-
Supervised Algorithm.
Input: A graph 𝐺 with input feature 𝑉 ; Batch size 𝐵; Number
of training epochs 𝑁; Number of evaluation rounds 𝑅.
Output: Anomaly score for each node in the graph
𝐺.

1: Compute importance score matrix S according to Eq. (1);
2: // Training stage
3: for 𝑛 ∈ (1, 2, · · · , 𝑁) do
4: 𝐵← Split 𝑉 into batches;
5: for batch 𝑏 = (𝑣1, · · · , 𝑣𝑏) ∈ 𝐵 do
6: Randomly sample t subgraphs;
7: Calculate the intimacy scores for each subgraph and

select k subgraphs with the highest scores among
them;

8: Encode target node via Eq. (3) and Eq. (7) and
associated subgraph via Eq. (8) to obtain latent
representation;

9: Contrast positive sample pairs and negative sample
pairs, calculate respective scores via Eq. (11) and Eq.
(12);

10: Decode the node representation via Eq. (4) to obtain
the reconstruction node feature;

11: Calculate the loss 𝐿 via Eq. (6) and Eq. (14);
12: end for
13: end for
14: // Inference stage
15: for 𝑣𝑖 ∈ 𝑉 do
16: for evaluation rounds 𝑟 ∈ 1, 2, . . . , 𝑅 do
17: Calculate 𝑠𝑐𝑜𝑟𝑒(𝑣𝑖) via Eq. (17);
18: end for
19: Calculate the average score of the 𝑅 rounds of node 𝑣𝑖;
20: end for

model. In many deep learning tasks, the pre-training needs
larger datasets, which can provide better model representation
capabilities. Moreover, the traffic datasets with features are
small-scale and hard to obtain, so we opted for a pre-training
approach on BlogCatalog, Flickr, Cora, and CiteSeer datasets.
By the pre-training, we can train the model with richer and
more comprehensive data, allowing it to learn richer features
and patterns. Thus, the pre-trained model presents a better
initial state on the new dataset. Therefore, we can deduce that
our method has better performance and results on the traffic
dataset. The corresponding descriptions of these datasets are
as follows:

• BlogCatalog: The BlogCatalog [29] dataset contains the
data of thousands of blog users, where each user is
represented by a node. Each user’s information includes
his/her profile, interest tags as node features, and the
relationships with other users as edges. These blog users
and the relationships between them form a social network.

• Flickr: Flickr is an image-sharing website and similar to
the BlogCatalog dataset. It is also a social network where
users’ interest tags for sharing images are used as nodes’
features attributes in this dataset.

• Cora: Cora [30] is a commonly used academic literature
citation dataset for machine learning. In this dataset,
the nodes represent academic papers, the features of
the nodes include paper titles, abstracts, etc., and the
connecting edges between the nodes indicate the previous
citation relationships of the papers.

• CiteSeer: Similar to the Cora dataset, CiteSeer is a
citation dataset. It contains academic papers and their
citation relationships in the field of computer science
and is used to study the association and citation patterns
among academic literature.

• Los-loop: We choose the real dataset collected by loop
detectors on freeways in Los Angeles in [31]. This dataset
is selected from 207 sensors and their traffic speeds
from March 1 to March 7, 2012, and the traffic speeds
are tested every five minutes. We select only one day’s
data from this dataset as the feature matrix input in our
experiments, and each row of the adjacency matrix in the
data represents one road, and the values in the matrix
represent the distance between sensors on the road.

• SZ-taxi: The dataset is about cab trajectories on January
1, 2015, in Shenzhen [31]. The study area comprises 156
major roads in Luohu District. The dataset has two parts,
the first being a 156*156 adjacency matrix that provides
information on the spatial relationship between roads.
Each row represents a road, and the matrix values denote
connectivity between roads. The second part is a feature
matrix that describes the changes in speed over time for
each road. Each row represents a road, and each column
denotes the speed of traffic on the road at different times.
The traffic speed on every road is summarized every 15
minutes.

The above datasets do not contain anomalies and require
us to manually inject anomalies into them for validation
evaluation. Here, we adopt the anomaly generation strategies
in [21] and [14], which generate anomalies by perturbing the
node features in the graph and the structural information of
the graph, respectively. In this case, attribute anomalies are
generated by randomly selecting distant node attributes in
place of the original attributes of the selected nodes, followed
by randomly selecting a portion of the nodes so that they
are completely connected to generate structural anomalies. We
summarize the above six datasets into Table II.

B. Experimental Settings

We describe the experimental settings in this subsection,
including the baseline methodology, evaluation metrics and
parameter settings.

Baseline methodology. We compare our model with other
anomaly detection methods on four datasets, and the following
is a description of the comparison methods:

• DOMINANT [21] uses the depth autoencoder of the
graph to reconstruct the adjacency and feature matrices of
the graph, which are then compared with the matrices of
the original graph, and the anomalies in the graph can be
measured in terms of reconstruction errors of the nodes.
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TABLE II
THE STATISTICS OF THE DATASETS

Datasets BlogCatalog Flickr Cora CiteSeer Los-loop SZ-taxi
Nodes 5,196 7,575 2,708 3,327 207 156
Edges 171,743 239,738 5,429 4,732 2,853 532
Features 8,189 12,047 1,433 3,703 288 96
Anomalies 300 450 150 150 15 13

• Radar [32] is an unsupervised anomaly detection frame-
work that detects anomalies by combining the residuals
of the attribute information and the intrinsic structure of
the network information.

• AMEN [20] is also an unsupervised learning scheme. It
detects anomalies by combining the attribute information
of nodes and graph structure information in the ego
network.

• DSAD [33] is a deep semi-supervised anomaly detection
method. This method uses abnormal and normal labeled
instances and unlabeled instances to learn an anomaly
detector for independently and identically distributed data
to perform anomaly detection on independently and iden-
tically distributed data.

• SL-GAD [15] constructs different contextual subgraphs
for each node and employs two modules, namely, gen-
erative attribute regression and multi-view comparison
learning, to detect attribute and structural anomalies,
respectively.

Evaluation metrics. We choose ROC-AUC as a compara-
tive indicator to evaluate the performance of our model against
other models [34]. In this case, the ROC curve is a curve
with the true positive rate (anomalies identified as abnormal)
as the vertical axis and the false positive rate (normal nodes
identified as abnormal) as the horizontal axis, which is used
to visualize the performance of the classification model. The
value of AUC is the area under the ROC curve, and the closer
its value is to 1, the better the method detects the samples,
and it can more accurately distinguish positive and negative
samples. On the contrary, the closer its value is to 0, the
less effective it is. In addition, there are some other common
machine learning metrics that we have chosen in order to show
the detection effeciency of our method more comprehensively.
We first select the point on the ROC curve that is closest to the
(0, 1) coordinate. The point ensures that the true-positive rate
is as large as possible and the false-positive rate is as small
as possible, and the threshold at this point is considered to be
the optimal threshold. Based on the true-positive (TPR) and
false-positive rates (FPR) at this point, we can obtain the other
metrics by calculation. Note that, the true positives (TP) are
the number of positive case samples that the model correctly
predicts as positive cases, false positives (FP) are the number
of negative case samples that the model incorrectly predicts as
positive cases, true negatives (TN) are the number of negative
case samples that the model correctly predicts as negative
cases, false negatives (FN) are the number of positive case
samples that the model incorrectly predicts as negative cases.

• Accuracy is the ratio of the number of samples correctly
predicted by the model to the total number of samples and

is one of the most commonly used assessment metrics.
The specific formula is:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 . (19)

• Precision is the proportion of all positive samples that are
predicted to be positive cases by the model. The specific
formula is:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 . (20)

• F1-Score is the reconciled mean of the precision and
false positive (recall) rates, combining the accuracy and
comprehensiveness of the model. The specific formula is:

𝐹1-𝑆𝑐𝑜𝑟𝑒 = 2 × 𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . (21)

Parameter settings. Regarding the parameter settings in
the experiments, if the subgraph is too small, we will get
too little node context information, and if the subgraph is too
large, it will introduce redundant information and increase the
demand for computational resources. On balance, we choose
the subgraph size to be 6, and the hidden dimension in the
GCN encoder is unified to be 64. Then, the learning rate and
the number of training epochs as well as the loss parameter
settings are set differently in different datasets. The learning
rate is chosen to be 0.001 for all the datasets except for
the BlogCatalog dataset where it is 0.003. 100 epochs of
training are performed on the Cora and Citeseer datasets for
the performance evaluation, while a total of 400 epochs are
performed on the BlogCatalog and Flickr datasets. The number
of epochs evaluated is then uniformly 256. For the parameter
settings, 𝑙𝑎𝑚𝑏𝑑𝑎 is fixed to be 1, while the value of 𝛾 is
chosen to be 0.4 for training on the CiteSeer dataset, and 0.6
for all the other datasets. For the other baselines, we retain the
settings described in the corresponding papers.

C. Experimental Results

We compared our model with the baseline methods de-
scribed above to assess model performance. Among the ex-
perimental results, the AUC value is in Table III, while the
ROC curve is shown in Fig. 3. Besides, we put our results
for all indicators on the six datasets in Table IV. Based on the
observation of the experimental results, we make the following
conclusions:
• In the ROC curves in Fig. 3, we can see that the results of

the pre-training of our model outperform the other models
on the four datasets of BlogCatalog, Flickr, Cora, and
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TABLE III
ABNORMALITY DETECTION PERFORMANCE (I.E., AUC VALUE) WITH THE BEST RESULTS ON EACH DATASET IN BOLD

Method BlogCatalog Flickr Cora CiteSeer Los-loop SZ-taxi
AMEN 0.6385 0.6572 0.6260 0.6150 N/A N/A
Radar 0.7384 0.7301 0.6439 0.6709 N/A N/A
DOMINANT 0.7466 0.7442 0.8152 0.8247 N/A N/A
DSAD 0.6412 0.7201 0.7240 0.8143 N/A N/A
SL-GAD 0.8095 0.7850 0.8801 0.8773 N/A N/A
Ours 0.81650.81650.8165 0.78650.78650.7865 0.90470.90470.9047 0.89630.89630.8963 0.86660.86660.8666 0.88490.88490.8849

TABLE IV
ANOMALY DETECTION PERFORMANCE OF OUR METHOD ON MULTIPLE METRICS AND ACROSS MULTIPLE DATASETS.

Metrics BlogCatalog Flickr Cora CiteSeer Los-loop SZ-taxi
AUC 0.8165 0.7865 0.9047 0.8963 0.8666 0.8849
FPR 0.2346 0.2637 0.1552 0.1728 0.1041 0.1048
TPR 0.6966 0.6933 0.8533 0.8066 0.8667 0.8468
Accuracy 0.6997 0.6865 0.8524 0.8043 0.8647 0.8502
Precision 0.9798 0.9763 0.9895 0.9898 0.9881 0.9889
F1-Score 0.8154 0.8124 0.9169 0.8893 0.9209 0.9119

CiteSeer, and there is a more significant improvement
on the Cora dataset and CiteSeer dataset compared to
the previous scheme. Especially on the Cora dataset, we
notice that the rising segment of the ROC curve is steeper,
which implies that our model has a relatively high true
positive rate at different thresholds, accompanied by a
lower false positive rate. It suggests that our model has
higher accuracy and robustness in the anomaly detection
task on the Cora dataset. This validates the effectiveness
of multi-task self-supervised learning combined with sub-
graph selection for anomaly detection.

• Table III is the specific AUC values corresponding to
Fig. 3 for our model and other comparison methods
on the four datasets of BlogCatalog, Flickr, Cora, and
CiteSeer. Among them, AMEN and Radar methods per-
form poorly because of the limitations of their shallow
mechanisms, which are less capable of handling complex
graph structures and nonlinear data. This may be due to
their inability to fully capture the complex patterns and
contextual information in the graphs. On the BlogCatalog
and Flickr datasets, the AMEN method achieves AUC
values of 0.6385 and 0.6572, respectively, while the Radar
method achieves AUC values of 0.7384 and 0.7301. In
contrast, our model achieves higher AUC values of 0.8165
and 0.7865 on these two datasets, proving the superiority
of our method in handling complex graph structures
and nonlinear data. DSAD, due to the combination of
labeled and unlabeled samples, utilizes information from
unlabeled samples to improve model performance. This
may have an impact on the performance of DSAD as
the model is more likely to favor normal samples and
may not be accurate enough to identify abnormal samples.
And although DOMINANT is a deep method, its unsu-
pervised learning model only considers the reconstruction
of attributes and structures, and the subgraphs in SL-
GAD are only obtained by random wandering, and the
correlation between subgraphs and nodes may be slightly
insufficient. In the table, the SL-GAD method achieves
higher AUC values of 0.8801 and 0.8773 on the Cora and

CiteSeer datasets, respectively. In contrast, our method
achieves higher AUC values of 0.9047 and 0.8963 on
these two datasets, further validating the effectiveness of
our subgraph selection strategy. In summary, our method
selects subgraphs by their proximity to the target nodes,
and combines generative and contrastive self-supervised
learning strategies to achieve better results in anomaly de-
tection. Compared to other methods, our model achieves
higher AUC values on multiple datasets, proving its
superiority in dealing with complex graph structures and
nonlinear data.

• In Table IV, our experimental results on both Cora and
CiteSeer datasets have FPR below 0.2 and TPR above
0.8, which prove that our model has a low false alarm
rate in detecting anomalous nodes and is efficient in
identifying anomalous nodes. Precision of our model
is higher than 0.97 on all four datasets, indicating the
effectiveness of our algorithm for the identification of
anomalous nodes. F1-Score is the reconciled average of
Precision and Recall, which combines the accuracy and
completeness of the model. The value of the F1-Score of
our model is above 0.8 on each dataset, which means that
our model strikes a good balance in the anomaly detection
task with high precision and recall, i.e., it can identify
anomalous nodes accurately and less likely to misclassify
normal nodes as anomalous nodes. This suggests that
our model can effectively balance the risk of false posi-
tives and omissions, and achieve a better performance in
dealing with the anomaly detection problem. In addition
to evaluating the performance of pre-trained models on
the BlogCatalog, Flickr, Cora, and CiteSeer datasets, we
further conduct experiments to validate the effectiveness
of our proposed self-supervised learning algorithm on
graph-based anomalous node detection tasks. Specifically,
we extend our evaluation to include real-world traffic
datasets, namely Lop-loop and SZ-taxi. The Lop-loop and
SZ-taxi datasets capture the speeds of vehicles on various
roadways, particularly neighboring roadways, which often
exhibit similarities at the same time. Our objective is
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(a) Cora (b) CiteSeer

(c) Flickr (d) BlogCatalog

Fig. 3. ROC curves on the four datasets. The larger the AUC of the area under the curve, the better the performance of graph anomaly detection.

to identify and connect nodes on the road network that
display significant differences. By applying our proposed
algorithm, we aim to detect anomalous nodes effectively
in this traffic context. The experimental results not only
demonstrate the efficiency of our algorithm on traditional
graph machine learning datasets, but also highlight its
effectiveness on real-world traffic datasets. These findings
reinforce the versatility and robustness of our model in
diverse graph-based applications.

V. CONCLUSION

The AIoT technology combines the advancements of IoT
and augmented intelligence techniques, and enables synergistic
utilization. In this paper, we apply AIoT technology to vehicle-
road collaboration and propose a self-supervised learning algo-
rithm for detecting anomalies in vehicle trajectories. We first
modelled the vehicle travel data collected by the IoT sensors
and the traffic road network as a topology graph. Then, we
processed the topology graph in the IoT server using deep self-
supervised learning algorithms for anomaly detection. Since
the self-supervised learning algorithm is trained using unla-
beled data, it does not need to manually label a large amount
of data, which reduces the energy overhead and improves the
efficiency of energy utilization. Specifically, we started by
picking out some subgraphs of the target node using random
walks, and the use of subgraphs avoids the computational and
communication overhead of the need to transmit the entire

graph information, reduces the burden on the network traffic,
and reduces the use of computational resources. We calculated
the intimacy scores between these subgraphs and the target
nodes, and chose the ones with higher scores. Subsequently,
two self-supervised learning modules were employed to de-
tect attribute anomalies and structural anomalies of nodes,
respectively, generating anomaly scores for each node. Higher
scores indicate a higher likelihood of anomalies. Finally, to
validate the effectiveness of the algorithm, we conducted pre-
training on four commonly used datasets and evaluated the
obtained model on two traffic datasets, and the accuracy of the
experiments were 86.47% and 85.2%, respectively, indicating
that our algorithm performs well.
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