
1

FedPA: Generator-Based Heterogeneous Federated
Prototype Adversarial Learning

Lei Jiang, Xiaoding Wang, Xu Yang, Jiwu Shu, Fellow, IEEE, Hui Lin, and Xun Yi

Abstract—Federated Learning is an emerging dis-
tributed algorithm that is designed to collaboratively
train the global model without accessing clients’ private
data. However, heterogeneity of data among clients leads
to significant degradation in model performance. Some
studies suggest adopting model regularization and using
generators to enrich datasets with diverse features can ef-
fectively enhance model performance. But current research
focuses on regularizing specific modules of the model,
failing to achieve regularization across the entire model,
and offering limited mitigation of bias from heterogeneous
data. Moreover, few methods consider that generators
often produce samples with simple features, and the direct
use for generating raw data can raise privacy concerns.
To solve these challenges, we propose a generator-based
heterogeneous federated prototype adversarial learning
framework, named FedPA, which combines prototype
learning and lightweight generators to achieve regulariza-
tion of the entire model. Our generators are designed to
generate features rather than raw data, and use prototype
learning to find the hard features in an adversarial learning
manner, thereby improving model performance. Experi-
mental results show that FedPA improves test accuracy
by 3.7% compared to state-of-the-art methods, validating
that FedPA can effectively mitigate model bias.

Index Terms—Federated learning, Prototype learning,
Model regularization, Feature mining, Privacy protection.

I. INTRODUCTION

F ederated Learning [1] has been widely stud-
ied in many application scenarios due to its

privacy-preserving nature. It involves two main
steps: (1) The training of local models occurs on
the client-side, during which clients upload model
updates to the server instead of sending their private

Lei Jiang, Xiaoding Wang, and Hui Lin are with the Col-
lege of Computer and Cyber Security, Fujian Normal Uni-
versity, Fuzhou 350117, China. E-mails: wyqtjl0322@163.com,
wangdin1982@fjnu.edu.cn, and linhui@fjnu.edu.cn.

Xu Yang and Jiwu Shu are with the College of Computer and Data
Science, Minjiang University, Fuzhou 350108, China, and Jiwu Shu is
also with Department of Computer Science and Technology, Tsinghua
University, Beijing 100084, China. E-mail: xu.yang@mju.edu.cn,
shujw@tsinghua.edu.cn.

Xun Yi is with the School of Computing Technologies, RMIT
University, Melbourne 3000, Australia. E-mail: xun.yi@rmit.edu.au.

data. (2) These updates are then aggregated on the
server to generate a global model, which is then
sent back to the clients as the initial model for
subsequent training. The idea behind this learning
paradigm is to keep client-sensitive data safe with-
out transmitting it to the server or other clients.

Note that there is highly heterogeneous data in
federated learning, exhibiting non-identically and
independently distributed client datasets. Due to
significant differences in data distributions among
clients, model parameters trained on a single client
might not perform well on others, resulting in model
bias caused by data heterogeneity. This can lead to
unstable convergence and performance degradation.
If full-model regularization is not performed and bi-
ased local model parameters are directly aggregated
into the global model, these issues remain unsolved
[2], [3], [4], [5].

To solve these issues, some researchers train gen-
erators to learn the data distribution of clients. For
example, the classic FedGan [6] directly generates
raw data to mitigate the impact of non-identically
and independently distributed datasets. However,
since it directly generates raw data, it raises some
privacy concerns. Similarly, FedDTG [7] adds a
classifier on each client to accelerate the learning
process of data distribution, but it still does not
address privacy concerns. FedGen [8] considers the
data privacy issue and suggests using a lightweight
generator to produce feature representations instead
of raw data. However, local models might struggle
to extract effective feature representations for cer-
tain classes without any efficient feature extraction
guidance that makes full-model regularization diffi-
cult. Moreover, since the generator does not mine
hard sample features, it only produces low-quality
features.

In heterogeneous scenarios, where the global
model has difficulty adapting to local data, Person-
alized Federated Learning (PFL) has gained much
attention. PFL tailors the model for each client, as
seen in representative works such as [9], [10], [11].
However, a big challenge with PFL is that it requires

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

2

local models to have the same structures, however
model heterogeneity is common in real application
scenarios. To address this, researchers have turned
to knowledge distillation, originally introduced by
Hinton et al. [12], in federated learning to mitigate
model heterogeneity [13]. However, it’s important
to note that knowledge distillation poses another
challenge, as it requires an additional proxy dataset.

Notably, FedProto [14] introduces prototype
learning to federated learning, the advantages of
which is that this method does not require model
homogeneity or extra datasets. However, FedProto
has limited impact on the classifier component, as
it does not provide comprehensive model regular-
ization and does not find hard features. Inspired
by FedProto, FedHKD [15] is designed to achieve
classifier regularization by aggregating soft labels.
However, it does not solve the problem of finding
hard sample features as well.

Due to local model bias caused by data hetero-
geneity, the global model performance deteriorates
severely. Our inspiration comes from the idea that
model regularization and generating diverse features
by a generator can improve model performance.
Therefore, we propose to perform full-model regu-
larization under privacy preservation conditions, and
meanwhile to explore hard features. Based on the
above analysis, we summarize the issues addressed
in this paper as follows: Full-model regularization,
Privacy protection, and Mining hard features.

After reviewing the aforementioned works, it is
evident that most algorithms that use generators [6],
[7] mainly focus on directly generating raw data
without considering privacy concerns. Although [8]
deals with feature generation by the generator,
it still lacks full-model regularization. While [14]
addresses the issue of the proxy dataset in [13],
it also does not achieve full-model regularization.
Inspired by [14], [15] considers using soft labels to
achieve full-model regularization, however it does
not explore hard features.

In this paper, we propose a generator-based het-
erogeneous federated prototype adversarial learning
framework, named FedPA. In FedPA, each client
calculates the mean of the features for each class
during feature extraction, creating a local prototype
representation. These representations are uploaded
to the server to create a global prototype representa-
tion. Next, a lightweight feature generator is trained
on the server. The generator uses the global proto-

type representation in an adversarial way to help it
find hard features. Then, the server sends both the
global prototype representation and the generator
to the clients. This allows the client to regularize
local feature extractor and local classifier, thereby
achieving full-model regularization. Compared to
the aforementioned methods, FedPA successfully
solves three issues simultaneously.

We summarize our contributions of this paper as
follows:

• We propose FedPA, a methods that aggregates
and creates global prototype representations on
the server. This ensures alignment along feature
dimensions during local feature extraction on
each client, allowing local models to effectively
extract features, even for classes with fewer
samples.

• We propose adversarial mining of hard sample
features. When training the generator on the
server, we use the idea of “moving away”
from global prototype representations to create
hard sample features. Simultaneously, we uti-
lize the classifier of the local model to learn
the distribution of model features, ensuring
the authenticity of these features. Through this
adversarial learning method, we significantly
improve the quality of features produced by the
generator and the model’s robustness as well.
To the best of our knowledge, we are the first to
use prototype representations in extracting hard
sample features among all research works.

• To rigorously demonstrate the effectiveness of
FedPA, we have provided a thorough mathe-
matical proof of its convergence and general-
ization bounds.

• We use the Dirichlet distribution Dir(α) to
model data heterogeneity among clients. Ex-
perimental results show that FedPA improves
test accuracy by 3.7% compared to state-of-the-
art methods, thereby proving its effectiveness
in reducing model bias caused by data hetero-
geneity.

The rest of the paper is organized as follows: In
Section II, we conduct the literature review. Section
III elaborates the FedPA framework, including the
design of feature alignment, generator training, and
hard feature mining. Section IV provides theoreti-
cal analysis of the convergence and generalization
bounds of FedPA. We then present experimental

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

3

results and discussions in Section V. Finally, we
conclude this paper in Section VI.

II. RELATED WORK

In this section, we present related work on miti-
gating data heterogeneity in federated learning.

A. Heterogeneity Federated Learning
The issue of data heterogeneity in federated learn-

ing significantly affects its performance, which has
drawn much attention from researchers. One of the
solutions is to correct the bias of local models,
as seen in FedProx [16], which achieves this by
introducing an L2 approximate regularization term.
FedNova [17] introduces a normalized averaging
method to eliminate objective inconsistencies and
achieve fast convergence. FedEnsemble [18] uses
ensemble training in federated learning by col-
lecting predictions from all clients. FedNTD [19]
effectively regularizes local models by using global
model predictions on locally held-out data for non-
true classes. FedCAD [20], inspired by FedNTD,
uses auxiliary data to assess the confidence of the
global model on each class, enabling dynamic, adap-
tive adjustments of the global model’s impact on
local models. Unlike previous approaches, FedFTG
[21] allows local models to use free-data knowledge
distillation to adjust the global model, thus avoiding
direct aggregation impact.

In recent years, Personalized Federated Learning
(pFL) methods have gained more attention due to
their ability to address statistical data heterogeneity
[22]. Some examples of pFL methods include LG-
Fed [9], FedPer [10], and CD2-pFed [11]. The first
two algorithms personalize the neural network at
the bottom and top layers, respectively, while CD2-
pFed achieves personalization at each layer of the
neural network by decoupling channels and per-
sonalizing them proportionally. FedNH [23] shares
only the feature extraction part and overcomes data
heterogeneity by imposing semantic adjustment of
prototype relationships. Other research aimed at
overcoming data heterogeneity includes methods
such as Scaffold [24], MOON [25], and FedMix
[26].

B. Generator in FL
Generative Adversarial Networks (GANs) [27]

are a class of deep learning models comprising

two main neural networks: the Generator and the
Discriminator. Their primary objective is to generate
data that closely matches the distribution of real
data. Researchers also tackle data heterogeneity us-
ing GANs. For instance, FedGan [6] utilizes GANs
within the federated learning framework to address
data heterogeneity. FedDTG [7] deploys generators
and discriminators on the client side and adds a
classifier to assist the generator to learn the data
distribution rapidly. FedGen [8] addresses some
privacy concerns by training the generator on feature
representations for each class instead of using raw
data. The generator is then deployed to each client
to aid local models in feature classification, thus
enhancing privacy protection to some extent.

Note that generator-based solutions [6], [7] pri-
marily address the impact of data heterogeneity by
directly generating raw data. However, this type
of method often raises privacy concerns. In [8],
although privacy protection is addressed, the ab-
sence of hard feature mining leads to the the quality
degradation of the generated features.

C. Prototype Learning in FL
Prototype learning that calculates the mean fea-

ture representation for each class is very good in
tasks like few-shot learning and one-shot learning
because it efficiently use limited sample informa-
tion for classification. This indicates that prototype
learning can also be used to reduce data hetero-
geneity, where some classes may have very few
or no samples on certain clients. FedProto [14]
proposes that clients not upload model parameters or
gradients but only send prototype representations to
regulate client training so as to reduce classification
errors. FedHKD [15] uses prototype learning’s mean
feature, together with soft predictions from knowl-
edge distillation, to form super-knowledge. This
super-knowledge is sent to each client, effectively
reducing performance degradation.

In the prototype-based learning methods men-
tioned above, FedProto [14] only uses prototype
alignment for feature extraction without perform-
ing full-model regularization. FedHKD [15] intro-
duces soft labels to get full-model regularization,
but it not mine hard features.

In summary, none of the methods discussed above
manage to achieve privacy protection, full-model
regularization, mining hard features at the same
time.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

4

Notation Description
θ The generator model parameters
ωg The global model parameters
ωi Local model parameters
Π Feature extractor parameters
FΠ The embedding function of the Feature extractor
Φ Classifier parameters
RΦ The embedding function of the Classifier

nm The total number of samples of class m in all
clients

nm
i The number of samples of class m in client i

ci Label counter for client i
p̃(y) The label distribution
z The noise vector

h
The features after feature extraction or features
generated by the generator

φt,m
i

The local prototype representation obtained by
client i using local data aggregation for class m
in round t

φt+1 Global prototype representations for round t+1
(including all classes)

TABLE I: Notation table of FedPA Algorithm.

III. METHODOLOGY

We will elaborate the implementation details of
the proposed FedPA model in this section, as shown
in Figure 2 and Algorithm 1. The algorithm primar-
ily emphasizes the use of global prototype repre-
sentations to guide both feature extraction on the
client-side and feature classification learning with
the assistance of the generator. During the training
process of the generator, the global prototype repre-
sentations are also utilized for hard feature mining,
as illustrated in Figure 1. We present the symbols
used in this paper and their explanations in Table I.

A. Problem Definition

We consider an architecture comprising N clients
and one server, where all clients engage in col-
laborative model training through communication
with the server, without the access to their private
data. Let each client have its own independent data
distributions, denoted by D1, D2, ..., DN .

The implementation of the proposed FedPA re-
lies on two following components: the feature
extractor and the classifier (constructed using fully
connected layers). The former is responsible for
extracting features from the data, while the lat-
ter classifies the features from the former output.
We parameterize extractor Πi and classifier Φi by
ωi = (Πi,Φi). Let the embedding functions for these
two components be denoted by FΠi

(·) and RΦi
(·),

respectively. Thus, the federated learning process

Generator

-
(increasing)

Local Data K

(decreasing)
-

Server side Client side

Generator Feature Local data Feature

Local Prototyope Local Prototyope

Gocal Prototyope

Feature Extractor

Fig. 1: The global prototype representation can be
used to guide feature extraction of the client and
mining of hard features, respectively. The bold box
in the figure indicates that the prototype represen-
tation and feature correspond to the same class.

can be expressed as the following optimization
problem:

min
ω
P(ω) =

N∑
i=1

qi E(xj ,yj)∼Di
L (RΦi

(FΠi
(xj)), yj)

(1)

where ω is the global model parameter; L is the loss
function, qi = |Di|/

∑
k∈N |Dk|.

B. Aggregation of Global Prototype Representa-
tions

In this subsection, we will introduce the aggrega-
tion of local prototype representations and global
prototype representations, respectively. First, the
data is mapped through the feature extraction layer
of the model to a q dimension latent feature space,
represented as (X → Z ⊂ Rq). Then, the mean
of feature vectors of the same class is computed
to obtain the prototype representation of this class.
Thus, the formula for computing the local prototype
representation of client i for class m in the tth global
rounds is then given by:

φt,m
i =

1

nm
i

nm
i∑

k=1

FΠi
(xk) (2)

where φt,m
i denotes the local prototype representa-

tion of class m computed by client i; xk represents
samples of class m; nm

i indicates the number of
samples belonging to class m on client i.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

5

y

Client K

Local Prototype

Global Prototype

Prototype AggregationGlobal Model Aggregation
Generator

Feature
Local Classifier

Generator Training
Central Server

Upload

Local ClassifierLocal Models

Global Model

(update)

(fixed)

Local Data K Feature Extractor
(update)

Classifier
(update)

Generator
(fixed)

CE Loss

Norm Loss

Div Loss

Download(download)

The average of feature vectors
 within a class

Feature vector after data extracti
-on or generated feature vector

Privacy
 protection

Full-model regularization
Mining hard

features

Fig. 2: The server aggregates local models and local prototype representations submitted by clients to
create a global model and a global prototype representation. Subsequently, the server utilizes the local
model classifiers uploaded by clients to train a generator. When this process is completed, the server
delivers global prototype representations, the global model, and the generator to the clients. Clients use
the global model to initialize their local models and align the extracted feature with the global prototype
representations. Moreover, clients use the generator to enrich the feature space by generating features and
feeding them into the classifier, enabling the classifier to learn more features.

After client i computes the prototype represen-
tations for all classes, it obtains the local proto-
type representations, denoted by φt+1

i . At the tth
round, when the local training is completed, the
selected clients upload their local models and the
locally computed prototype representations φt+1

i to
the sever, who constructs global prototype represen-
tations and the global model for the next round. The
aggregation of the prototype representation for class
m is implemented using the following formula:

φt+1,m =
∑
i∈St

nm
i

nm
φt+1,m
i (3)

where nm
i represents the number of samples from

class j of client i; nm =
∑

i∈St
nm
i represents

the total number of class m samples from selected
clients.

Then the global prototype representations φt+1 is
obtained by aggregating the prototype representa-
tions of all classes.

C. Prototype-Adversarial Based Generator Train-
ing

Inspired by [8], we train a lightweight generator
on the server side, which generates feature vectors
rather than raw data using input label and Gaussian
noise only, e.g., Y → Z . Since the feature vectors
generated by each client cannot be directly accessed
by other clients, it prevents information leakage,
achieving a certain degree of privacy protection.
Moreover, because it does not directly generate
high-dimensional data, e.g., images, the model com-
plexity, storage overhead, and computational costs
are significantly reduced.

h = Gθ(z, y) (4)

where h represents the features generated by the
generator for label y; z ∼ N (0, 1) corresponds to
standard Gaussian noise.

In terms of generator training, we focus on op-
timizing the generator’s performance through three

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

6

critical dimensions: fidelity, difficulty keeping, and
diversity.

Regarding fidelity, generator training requires the
classifier of a local model. The server feeds labels
and noise into the generator to produce feature
representations, which are then fed into the classifier
of uploaded local model to evaluate the feature
quality. Thereby, to ensure fidelity, we consider the
following loss function:

Lfid =
1

B · |St|

|St|∑
k=1

B∑
j=1

pjLCE(RΦk
(hj), yj) (5)

where B represents the batch size for generating
features on the generator; |St| is the number of se-
lected clients; pj is a weighting factor that represents
the proportion of the number of classes yj in client
k to the total number of classes yj in all selected
clients, that is pj = n

yj
k /n

yj
i∈St

.
Regarding difficulty keeping, we adopt an adver-

sarial method to mine hard feature representations.
Since Lfid encourages the generator to generate
samples that perform well on the local model, it
tends to generate relatively straightforward features,
which often result in lower feature quality. To
address this, we design the generator to produce
feature representations “moving away” from the
global prototype representations. Under such con-
dition, while still maintaining fidelity, the gener-
ator will seek hard features in the feature space,
thereby enhancing the generalization capability of
local model. Thus, to ensure difficulty keeping, the
following loss function is considered:

Lad =
1

B

B∑
j=1

||hj − φt+1,m||2 (6)

where hj denotes the feature representations pro-
duced by the generator for class m; φt+1,m is
the global prototype representations for class m at
round t.

By reducing the Lfid and increasing the Lad

through adversarial training, the generator gradually
focuses on ensuring the generation of high-quality
features.

Regarding diversity, we borrow the idea of ap-
plying [28] to FedGen [8]. However, we make
some adjustments by paying more attention to the

diversity within classes. Thereby, to ensure diversity,
we use the following loss function:

Ldiv = e
1

B·B
∑

p,q∈{1,...,B}[1yp=yq](−||hp−hq ||·||zp−zq ||)

(7)

where 1condition is the indicator function.
The generator ultimately utilizes three loss func-

tions as training objective as follows:

min
θ

Ez∼N (0,1),y∼p̃(y)L = γfidLfid + γdivLdiv − γadLad

(8)

where γfid, γdiv and γad are both hyperparameters
that can be adjusted.

D. Local Training and Feature Extractor Regular-
ization Guided by Global Prototype Representations

In FedPA, during each global round, the selected
clients receive the global model and global proto-
type representations from the previous round, and
they also obtain a lightweight generator trained by
the server. Then, they initialize the local models
with the global one, and train them with the local
dataset. The objective of client i can be expressed
by:

Lpre =
1

Bi

Bi∑
k=1

LCE(RΦi
(FΠi

(xk)), yk) (9)

where LCE is the cross-entropy loss; (xk, yk) ∼ Di

represents the sample data and labels from the local
dataset Di.

However, during local model training, each client
should ensure that the feature extractor possesses
a global prototype perspective for each class. In
other words, our goal is to guide local models in
feature extraction for each class utilizing global pro-
totype representations so as to achieve the extractor
regularization. Thereby, we need to minimize the
norm distance between the feature representation
extracted from local data and the global prototype
representation of the corresponding class to achieve
feature alignment for each class. To this end, we
design the following loss function to measure the
feature alignment as:

Lpo =
1

Bi

Bi∑
k=1

∥∥FΠi
(xk)− φt,yk

∥∥
2

(10)

where Bi represents the batch size for client i on
their local dataset; (xk, yk) ∼ Di represents the

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

7

Algorithm 1 FedPA Algorithm
Input: Total communication rounds T , global
model parameters ωg, local model parameters ωi,
generator parameters θ, local epochs E, the total
number of samples of class m in all clients nm,
learning rate η, prototype average feature φ, clients
sample ratio C.
Output: The final global model ωg

Server executes:
1: Initialize global model ω0

g on server.
2: for t = 0, . . . , T − 1 do
3: St ← Randomly sample a set of C · N

clients.
4: broadcast generator θt, global parameters

ωt
g, global prototype φt to i ∈ St clients.

5: for i ∈ St in parallel do
6: ωt

i , φ
t+1
i , ci ← ClientUpdate(ωt

g, θ
t, φt)

7: end for
8: for m class φt+1,m =

∑
i∈St

nm
i

nmφt+1,m
i tra-

verse all classes to get φt+1, and update label
counter c, p̃(y) based on ci.

9: ωt+1 ←
∑

i∈St

|Di|/|DSt |ω
t
i

10: θt = θt − η2△L(θt) [Eq.8]
11: end for
each i ClientUpdate: (ωt

g, θ
t, φt)

1: ωt
i ← ωt

g

2: for e = 1, 2, . . . , E do
3: from server get φt and p̃(y), input noise

vector z, and y ∼ p̃(y) to generator θt to get
{hj}Bj=1.

4: ωt
i = ωt

i − η1△L(ωt
i) [Eq.12]

5: for m class φt,m
i =

∑nm
i

k=1 FΠi
(xm

k)/n
m
i

traverse all classes to get φt+1
i .

6: update label counter ci.
7: end for
8: return ωt

i , φ
t+1
i , ci to the server

samples and labels in the dataset of client i; φt,yj

represents the global prototype representations for
class yj in the tth round; || · || denotes the Euclidean
norm.

It is essential to emphasize that alignment and
local training use the same samples. In other words,
the very same samples are used for both regular
classification training and feature alignment simul-
taneously.

E. Classifier Regularization based on Feature Gen-
erator

Due to the extreme imbalance in client data
distribution, it’s possible for some clients have very
few samples or even none for certain classes. We are
aware that the regularization of the feature extractor
only is insufficient. This is because the classifier
performs unsatisfactorily for classes with few or no
samples. To address this, we introduce a lightweight
feature generator to enhance the classification ability
of local models.

In local training, each client utilizes the generator
given by the server to generate features. These
features are then fed to the local model’s classifier
to achieve the classifier regularization according to
the following loss function:

Lge =
1

Bi

Bi∑
j=1

LCE(RΦi
(hj), yj) (11)

Where yj ∼ p̃(y) represents the label of the jth
class; p̃(y) is the global label distribution, which
is formed by each client uploading its local label
distribution to the server, and subsequently the
server aggregates these distributions to form the
global label distribution; hj ∼ Gθ(zj, yj) signifies
the features generated as the result of inputting the
label yj into Gθ(zj, yj).

For each client, its local learning objective con-
sists of the three loss functions mentioned above to
achieve full-model regularization. The total loss
function is as follows:

min
ωi

E(xk,yk)∼Di,h∼Gθ(z,y)L = Lpre + λgeLge + λpoLpo

(12)

where λge and λpo are both hyperparameters that
can be adjusted.

IV. CONVERGENCE AND GENERALIZATION
BOUNDS ANALYSIS

A. Convergence Analysis

In this subsection, we present the convergence
analysis for FedPA and make the following assump-
tions to derive the proof of FedPA’s convergence,
following a framework similar to that in [14] and
[15]. The specific details pertaining to the assump-
tions and the proof can be found in Appendix A.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

8

Assumption 1. We define that each loss function
L(ω) satisfies L1-Lipschitz smoothness, meaning
that its gradient is L1-Lipschitz continuous, and the
embedding function of the feature extractor FΠ(·)
satisfies L2-Lipschitz continuous.∥∥∇L(ωt1)−∇L(ωt2)

∥∥
2
≤L1

∥∥ωt1 − ωt2
∥∥
2
,

∀t1, t2 > 0 (13)

∥FΠt1 (·)− FΠt2 (·)∥ ≤ L2

∥∥Πt1 −Πt2
∥∥
2
,

∀t1, t2 > 0, (14)

Assumption 2. For each client i, the stochastic
gradient gt

i = ∇L (ωt
i, ξ

t
i) used to update its model

is an unbiased estimate.

Exi∼Di

[
gti
]
= ∇L

(
ωt

i

)
∀i{∈ 1, 2, 3, . . . , N},

(15)

the variance of the gradient is bounded by σ2:

E
[∥∥gti −∇L (ωt

)∥∥2
2

]
≤ σ2,∀i ∈ {1, 2, 3, . . . , N}.

(16)

Assumption 3. The expected value of the Euclidean
norm of the stochastic gradient is bounded by V ,

E
[∥∥gti∥∥22] ≤ V 2, ∀i ∈ {1, 2, 3, . . . , N} (17)

Theorem 1. By the above assumptions, it can be
derived that in a communication round, the upper
bound on the loss function for any client is satisfied
as:

E
[
Lt+1, 1

2
i

]
− Lt, 1

2
i ≤ Eη0V

2 + L1E
2η20V

2 + 2λpoL2

Eη0V −
E−1∑
e= 1

2

(
ηe −

η2eL1

2

)∥∥∇Lt,e
i

∥∥2
2
+

η20L1E

2
σ2

(18)

Theorem 1 shows that for any client, adjusting the
appropriate hyperparameters ensures convergence
of the upper bound on the deviation of the loss
function between two consecutive communication
rounds when this bound becomes less than 0.

Theorem 2. (FedPA convergence) Let βη0 < ηe <
η0, e ∈ {1/2, 1, 2, . . . , E}, where β represents the
decay factor for the learning rate.

βη0 < ηe <
2
∥∥∇Lt,e

i

∥∥2
2
− 4λpoL2V − 2V 2(

2L1EV 2 + L1

∥∥∇Lt,e
i

∥∥2
2
+ L1σ2

)
(19)

Theorem 2 states that when the learning rate
satisfies the conditions mentioned above, the loss
function of any client decreases monotonically be-
tween two communication rounds, ensuring the con-
vergence of the algorithm.

B. Generalization Bounds Analysis

In this subsection, we provide an analysis of
the generalization bounds for FedPA. The specific
details pertaining to the assumptions and the proof
can be found in Appendix B.

Theorem 3. (FedPA Generalization Bounds) Sym-
bols with the same form as Lemma 4 share identical
definitions. D̃′

k, D̃k, and D̃A, after being influenced
by global prototype representations, respectively be-
come D̃′,p

k , D̃p
k, and D̃p

A, with probability of 1− δ:

LT (h) ≤
1

K

∑
k

LT ′,p
k
(hk) +

1

K

∑
k

(dH△H(D̃′,p
k , D̃))

+
1

K

∑
k

λ′,p
k +

√
4

N ′

(
d log

2eN ′

d
+ log

4K

δ

)
(20)

where T ′,p
k = {D′,p

k , c∗} represent updated local do-
main, λ′,p

k refers to the risk of the optimal hypothesis
on both T and T ′,p

k .

FedPA introduces global prototype representa-
tions, which further makes the local feature dis-
tribution closer to the global feature distribution,
and by mining difficult samples, the augmented
data distribution is closer to the global feature
distribution, thus making the algorithm have better
generalization.

V. EXPERIENCE

In this section, we compare the performance of
FedPA with that of FedAvg, FedProx, FedEnsemble,
FedGen, and FedHKD on four realistic datasets. All
the mentioned algorithms are implemented using the
PyTorch framework. Our code is available at https:
//github.com/threeStoneLei1/FedPA.

A. Experiment Detail

1) Datasets: We will evaluate the effectiveness
of FedPA on four different datasets: MNIST, EM-
NIST, Fashion MNIST, and CelebA. MNIST is a

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/threeStoneLei1/FedPA
https://github.com/threeStoneLei1/FedPA

9

0 1 2 3 4 5 6 7 8 9
label

1
2
3
4
5
6
7
8
9

10
us

er
 ID

0

500

1000

1500

2000

2500

la
be

l c
ou

nt
s

(a) α = 0.1

0 1 2 3 4 5 6 7 8 9
label

1
2
3
4
5
6
7
8
9

10

us
er

 ID

0

250

500

750

1000

1250

1500

1750

la
be

l c
ou

nt
s

(a) α = 0.4

0 1 2 3 4 5 6 7 8 9
label

1
2
3
4
5
6
7
8
9

10

us
er

 ID

0

200

400

600

800

1000

1200

1400

1600

la
be

l c
ou

nt
s

(b) α = 0.7

0 1 2 3 4 5 6 7 8 9
label

1

2

3

4

5

6

7

8

9

10

us
er

 ID

0

200

400

600

800

1000

1200

la
be

l c
ou

nt
s

(c) α = 1.0
Fig. 3: Visualization of varying degrees of heterogeneity in the Mnist dataset, where the depth of color
represents the quantity of samples.

classic handwritten digit recognition dataset con-
taining a series of handwritten digit images. The
EMNIST dataset is an extension of the classic
MNIST dataset, encompassing various character
classes. Fashion MNIST is analogous to MNIST,
encompassing grayscale images of 10 distinct cat-
egories of fashionable apparel and accessories.
CelebA is a dataset widely used for research in
facial recognition and facial attribute analysis.

2) Model: The generator consists of two fully
connected layers, with the dimensions of each layer
varying across different datasets. We denote the
structural dimensions adopted for each dataset as
[di, dh, do]. For the MNIST and Fashion MNIST
datasets, the generator structure is [42, 256, 32]. For
the EMNIST dataset, the generator structure is
[58, 256, 32]. For the CelebA dataset, the genera-
tor structure is [32, 256, 32]. We adopt CNN and
fully connected layers as the model architecture for
each client. For the MNIST and Fashion MNIST
datasets, we designed the model structure as fol-
lows: [6, 16, 32, 784, 10]. For the EMnist dataset, our
model structure is: [6, 16, 32, 784, 26]. In the case of
the CelebA dataset, we employ the model structure:
[16,M, 32,M, 64,M, 32, 64, 2], where M represents
the maximum pooling layer.

3) Hyperparameters: For all algorithms across
all datasets, we have set 200 communication rounds.
During each communication round, the local train-
ing consists of E = 20 epochs with a batch size
of 32. The number of clients is fixed at 20 and the
activation ratio C is 0.5, so that the number of clients
St selected at each time is 10. In the local training
loss function for clients, λge starts at 25 with a decay
rate of 0.98 per communication round. λpo begins
at 5 with a decay rate of 0.98 per communication
round, reaching a minimum value of 0.15. As for
the generator’s hyperparameters, γfid starts at 25
and decays by 0.98 each communication round. γdiv
is set to 1, and γad is set to 0.15. We adopted

a consistent random seed, set to 3. For training
both the generator model and the client models,
we employed the Adam optimizer, with a learning
rate of 0.0001 for the EMNIST dataset, while other
datasets were trained with a learning rate of 0.0003.

4) Data heterogeneity: We use the Dirichlet dis-
tribution Dir(α) to model data heterogeneity among
clients, where smaller values of α indicate higher
data heterogeneity. In the MNIST and EMNIST
datasets, we set α to 0.1 and 1, respectively. For
the Fashion MNIST dataset, we set α to 0.3 and
1. In Figure 3, a visualization of the heterogeneity
of the MNIST dataset under different levels is
presented. In these images, darker colors represent
a higher number of samples for a specific client and
label, while lighter colors indicate fewer samples.

5) Communication Overhead Analysis: In terms
of communication overhead in the FedPA algo-
rithm, we conducted two aspects of analysis: the
upload phase and the download phase. In the upload
phase, compared to conventional federated learn-
ing, we introduce local prototype representations
and local label distributions. These two are essen-
tially two-dimensional vectors, resulting in minimal
communication overhead. In the download phase,
we further introduce global prototype representa-
tions, label distributions, and a lightweight gener-
ator. Firstly, the communication overhead between
global prototype representations and local prototype
representations is roughly equivalent. Secondly, the
lightweight generator consists of two fully con-
nected layers. Compared to the neural networks
required for training, its communication overhead
is significantly reduced.

B. Performance Comparison

1) Test Accuracy: To validate the effectiveness of
FedPA, we compared the accuracy of various fed-
erated learning algorithms on three datasets under

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

10

0 25 50 75 100 125 150 175 200
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

FedAvg
FedProx
FedGen
FedHKD
FedPA

MNIST Accuracy α = 0.1

0 25 50 75 100 125 150 175 200
Communication Round

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

FedAvg
FedProx
FedGen
FedHKD
FedPA

MNIST Accuracy α = 1.0

0 25 50 75 100 125 150 175 200
Communication Round

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
FedAvg
FedProx
FedGen
FedHKD
FedPA

EMNIST Accuracy α = 0.1

0 25 50 75 100 125 150 175 200
Communication Round

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
FedAvg
FedProx
FedGen
FedHKD
FedPA

EMNIST Accuracy α = 1.0

Fig. 4: Test accuracy curves across MNIST and EMNIST datasets under two levels of data heterogeneity

MNIST EMNIST FashionMNIST CelebA
α = 0.1 α = 1 α = 0.1 α = 1 α = 0.3 α = 1 iid

FedAvg 88.87±2.19 94.58±0.56 70.09±0.81 78.41±0.55 84.36±0.26 86.31±0.18 85.53±0.34
FedProx 88.18±2.69 94.19±0.43 69.27±0.93 77.60±0.59 84.58±0.10 86.19±0.17 85.85±0.44
FedEnsemble 91.09±0.19 94.71±0.64 70.33±0.80 78.51±0.49 85.44±0.13 86.49±0.18 87.64±0.69
FedGen 90.49±2.40 95.34±0.18 76.34±0.78 82.60±0.33 85.26±0.18 86.90±0.14 86.57±0.68
FedHKD 90.15±2.53 94.76±0.35 72.39±0.23 79.27±0.36 84.67±0.19 86.44±0.05 85.66±0.83
FedPA(ours) 94.79±0.18 96.77±0.05 78.25±0.67 83.30±0.09 85.52±0.50 87.41±0.23 87.32±0.53

TABLE II: Test Accuracy of different FL algorithms on MNIST, EMNIST, FashionMNIST, and CelebA.

two different levels of data heterogeneity, as shown
in Table II. In order to better visualize the learning
processes of each method, in Figure 4, we plotted
the test accuracy curves of various algorithms on
different datasets. It’s evident that FedPA demon-
strates outstanding performance on the vast majority
of datasets.

Results Analysis. Furthermore, as α decreases,
indicating deeper data heterogeneity, the perfor-
mance gap between FedPA and other algorithms
widens. For example, on the EMNIST dataset with
α = 0.1 and α = 1.0, FedPA outperforms FedAvg
by 8 and 5 percentage points, respectively. This
trend is also observed when comparing FedPA to
other algorithms, indicating that FedPA effectively
mitigates model bias in scenarios with high data
heterogeneity through global prototype representa-
tions, generator-learned feature distribution, and the
exploration of hard features.

To further validate that FedPA maintains an ad-
vantage under different client participation rates, we
considered three values for the client participation
rate C: 0.1, 0.5, and 0.8. We calculated the accuracy
on the EMNIST dataset with α = 0.1 as shown
in Table III.

Results Analysis. FedPA consistently delivers the
best performance across various client participation
rates. It is noteworthy that, with the decrease in
participation rate, our algorithm exhibits a more
pronounced performance difference compared to the

state-of-the-art algorithm. This phenomenon further
underscores the exceptional robustness of our algo-
rithm when dealing with heterogeneous data envi-
ronments, specifically situations where lower client
participation rates lead to a more uneven distribution
of the global dataset.

Algorithm C = 0.1 C = 0.5 C = 0.8

FedAvg 66.39 70.13 70.87
FedGen 69.46 75.59 76.21

FedHKD 70.58 71.83 73.41
FedPA(ours) 74.00 77.14 78.35

TABLE III: The performance influence of varying
client participation rates on the EMNIST dataset.

Lad Lge Lpo Accuracy

Module

× × × 70.94
× × ✓ 75.21
× ✓ × 77.39
✓ ✓ × 77.42
× ✓ ✓ 78.85
✓ ✓ ✓ 78.93

TABLE IV: The impact of various components of
FedPA.

2) Ablation Study: To validate the effectiveness
of various components of FedPA, we conducted
ablation experiments on the EMNIST dataset with
α = 0.1. The experiments aim to verify the contri-
butions of feature alignment, rich feature generation

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

11

(a) α = 0.1.

(b) α = 0.4.

(c) α = 0.7.

(d) α = 1.0.

Fig. 5: t-SNE visualization of generator output features trained using clients trained on the EMNIST
dataset with different data heterogeneity.

α = 0.1 α = 0.4 α = 0.7 α = 1.0

intra-class inter-class intra-class inter-class intra-class inter-class intra-class inter-class

round 0 27.898 27.351 27.898 27.351 27.898 27.351 27.898 27.351
round 2 16.673 40.106 17.227 39.785 16.328 40.558 14.244 40.731
round 3 7.626 44.693 6.987 44.571 7.215 45.525 6.431 43.939

round 10 2.262 53.056 2.241 52.454 2.305 54.133 2.280 52.811

TABLE V: The intra-class and inter-class distances for generated samples in different data heterogeneity.

by the generator, and exploration of challenging
features. Accuracy comparisons can be observed
in Table IV, demonstrating the effectiveness of
different components of FedPA.

Results Analysis. In the absence of all three com-
ponents, the algorithm is equivalent to the vanilla
federated learning, exhibiting the poorest results.
With the introduction of prototype learning or a
generator, the performance has improved by 5% and
7%, respectively (see the second and third lines),
indicating that aligning features enables local mod-
els to have a global perspective. Even for sparsely

represented classes, the feature extractor demon-
strates outstanding feature extraction capabilities.
As the generator produces features, the classifier
can comprehensively classify features, effectively
alleviating overfitting. Furthermore, by incorporat-
ing challenging feature mining (see the fourth row),
the generator gradually learns to generate complex
features, thereby enhancing the quality of feature
generation. Ultimately, in the presence of all three
components, FedPA achieves optimal performance,
conclusively confirming the effectiveness of these
three components.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

12

C. Generator’s Learning Ability Analysis

To evaluate the generator’s ability to learn data
distributions under different levels of heterogeneity,
we conducted visualization experiments using t-
SNE. We set up 20 clients, each trained on the
EMNIST dataset, with a client participation rate
of 0.5. We conducted four experiments based on
four different levels of data heterogeneity in the
EMNIST dataset, with α set to 0.1, 0.4, 0.7, and
1.0, respectively. We mapped the prototype repre-
sentations generated by the generator trained in each
global round to data points on a two-dimensional
plane using t-SNE (we only selected 0, 2, 3, and
10 global rounds for display, where the generator
for global round 0 was not trained). These data
points were represented in different colors to denote
different categories, with data points of the same
color representing the same category.

Results Analysis. By observing Figure 5 and
Table V, we can clearly see that as the global
rounds increase, the generator gradually learns the
characteristics of each category, reducing the intra-
class distance and increasing the inter-class distance.

VI. CONCLUSION

In this paper, to tackle the challenge of reduced
model performance in federated learning stemming
from high data heterogeneity, we introduce the Fed-
erated Prototype Adversarial (FedPA) framework.
We successfully combine prototype learning and
lightweight generators to achieve full-model regu-
larization, and utilize prototype learning to mine
hard features while preserving privacy. We have pro-
vided mathematical proofs for FedPA convergence
analysis and generalization bounds, and extensive
experiments have validated its superiority.

REFERENCES

[1] Brendan McMahan, Eider Moore, Daniel Ra-
mage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep
networks from decentralized data. In Artificial
intelligence and statistics, pages 1273–1282.
PMLR, 2017.

[2] Yue Zhao, Meng Li, Liangzhen Lai, Naveen
Suda, Damon Civin, and Vikas Chandra. Fed-
erated learning with non-iid data. arXiv
preprint arXiv:1806.00582, 2018.

[3] Tzu-Ming Harry Hsu, Hang Qi, and Matthew
Brown. Measuring the effects of non-identical
data distribution for federated visual classifica-
tion. arXiv preprint arXiv:1909.06335, 2019.

[4] Tian Li, Anit Kumar Sahu, Ameet Talwalkar,
and Virginia Smith. Federated learning:
Challenges, methods, and future directions.
IEEE signal processing magazine, 37(3):50–
60, 2020.

[5] Ahmed Khaled, Konstantin Mishchenko, and
Peter Richtárik. Tighter theory for local sgd
on identical and heterogeneous data. In Inter-
national Conference on Artificial Intelligence
and Statistics, pages 4519–4529. PMLR, 2020.

[6] Mohammad Rasouli, Tao Sun, and Ram Ra-
jagopal. Fedgan: Federated generative adver-
sarial networks for distributed data. arXiv
preprint arXiv:2006.07228, 2020.

[7] Zhenyuan Zhang, Tao Shen, Jie Zhang, and
Chao Wu. Feddtg: Federated data-free
knowledge distillation via three-player gen-
erative adversarial networks. arXiv preprint
arXiv:2201.03169, 2022.

[8] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou.
Data-free knowledge distillation for hetero-
geneous federated learning. In International
conference on machine learning, pages 12878–
12889. PMLR, 2021.

[9] Paul Pu Liang, Terrance Liu, Liu Ziyin,
Nicholas B Allen, Randy P Auerbach, David
Brent, Ruslan Salakhutdinov, and Louis-
Philippe Morency. Think locally, act globally:
Federated learning with local and global rep-
resentations. arXiv preprint arXiv:2001.01523,
2020.

[10] Manoj Ghuhan Arivazhagan, Vinay Aggarwal,
Aaditya Kumar Singh, and Sunav Choudhary.
Federated learning with personalization layers.
arXiv preprint arXiv:1912.00818, 2019.

[11] Yiqing Shen, Yuyin Zhou, and Lequan Yu.
Cd2-pfed: Cyclic distillation-guided channel
decoupling for model personalization in feder-
ated learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition, pages 10041–10050, 2022.

[12] Geoffrey Hinton, Oriol Vinyals, and Jeffrey
Dean. Distilling the knowledge in a neural
network. In NIPS Deep Learning and Repre-
sentation Learning Workshop, 2015.

[13] Tao Lin, Lingjing Kong, Sebastian U Stich,

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

13

and Martin Jaggi. Ensemble distillation for
robust model fusion in federated learning.
Advances in Neural Information Processing
Systems, 33:2351–2363, 2020.

[14] Yue Tan, Guodong Long, Lu Liu, Tianyi Zhou,
Qinghua Lu, Jing Jiang, and Chengqi Zhang.
Fedproto: Federated prototype learning across
heterogeneous clients. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 36, pages 8432–8440, 2022.

[15] Huancheng Chen, Chaining Wang, and Haris
Vikalo. The best of both worlds: Accurate
global and personalized models through feder-
ated learning with data-free hyper-knowledge
distillation. In The Eleventh International Con-
ference on Learning Representations, 2023.

[16] Tian Li, Anit Kumar Sahu, Manzil Zaheer,
Maziar Sanjabi, Ameet Talwalkar, and Vir-
ginia Smith. Federated optimization in het-
erogeneous networks. Proceedings of Machine
learning and systems, 2:429–450, 2020.

[17] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri
Joshi, and H Vincent Poor. Tackling the objec-
tive inconsistency problem in heterogeneous
federated optimization. Advances in neural in-
formation processing systems, 33:7611–7623,
2020.

[18] Naichen Shi, Fan Lai, Raed Al Kontar, and
Mosharaf Chowdhury. Fed-ensemble: Im-
proving generalization through model ensem-
bling in federated learning. arXiv preprint
arXiv:2107.10663, 2021.

[19] Gihun Lee, Minchan Jeong, Yongjin Shin,
Sangmin Bae, and Se-Young Yun. Preservation
of the global knowledge by not-true distillation
in federated learning. Advances in Neural
Information Processing Systems, 35:38461–
38474, 2022.

[20] Yuting He, Yiqiang Chen, Xiaodong Yang,
Yingwei Zhang, and Bixiao Zeng. Class-wise
adaptive self distillation for heterogeneous fed-
erated learning. In Proceedings of the 36th
AAAI Conference on Artificial Intelligence,
Virtual, volume 22, 2022.

[21] Lin Zhang, Li Shen, Liang Ding, Dacheng
Tao, and Ling-Yu Duan. Fine-tuning global
model via data-free knowledge distillation for
non-iid federated learning. In Proceedings of
the IEEE/CVF conference on computer vision
and pattern recognition, pages 10174–10183,

2022.
[22] Alysa Ziying Tan, Han Yu, Lizhen Cui, and

Qiang Yang. Towards personalized federated
learning. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

[23] Yutong Dai, Zeyuan Chen, Junnan Li, Shelby
Heinecke, Lichao Sun, and Ran Xu. Tack-
ling data heterogeneity in federated learning
with class prototypes. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 37, pages 7314–7322, 2023.

[24] Sai Praneeth Karimireddy, Satyen Kale,
Mehryar Mohri, Sashank Reddi, Sebastian
Stich, and Ananda Theertha Suresh. Scaf-
fold: Stochastic controlled averaging for feder-
ated learning. In International conference on
machine learning, pages 5132–5143. PMLR,
2020.

[25] Qinbin Li, Bingsheng He, and Dawn Song.
Model-contrastive federated learning. In Pro-
ceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages
10713–10722, 2021.

[26] Tehrim Yoon, Sumin Shin, Sung Ju Hwang,
and Eunho Yang. Fedmix: Approximation of
mixup under mean augmented federated learn-
ing. In International Conference on Learning
Representations, 2020.

[27] Ian Goodfellow, Jean Pouget-Abadie, Mehdi
Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets. Advances in neu-
ral information processing systems, 27, 2014.

[28] Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Si-
wei Ma, and Ming-Hsuan Yang. Mode seek-
ing generative adversarial networks for di-
verse image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and
pattern recognition, pages 1429–1437, 2019.

[29] Xingchao Peng, Zijun Huang, Yizhe Zhu, and
Kate Saenko. Federated adversarial domain
adaptation. In International Conference on
Learning Representations, 2020.

[30] Shai Ben-David, John Blitzer, Koby Crammer,
and Fernando Pereira. Analysis of repre-
sentations for domain adaptation. Advances
in neural information processing systems, 19,
2006.

[31] Shai Ben-David, John Blitzer, Koby Cram-
mer, Alex Kulesza, Fernando Pereira, and Jen-

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

14

nifer Wortman Vaughan. A theory of learning
from different domains. Machine learning,
79:151–175, 2010.

Lei Jiang received the bachelor’s degree
from the School of Science and Technology at
Nanchang University in 2022 and is currently
pursuing a master’s degree at the School of
Computer and Cyberspace Security at Fujian
Normal University. His research interests in-
clude federated learning and edge computing.

Xiaoding Wang received the Ph.D. degree in
2016 from the College of Mathematics and In-
formatics, Fujian Normal University, Fuzhou,
China, where he is currently an Associate
Professor. His main research interests include
network optimization and fault tolerance.

Xu Yang received the Ph.D. degree in 2021
from the School of Science, RMIT University,
Melbourne, Australia, in collaboration with
Data61 CSIRO, Australia. He is currently an
Associate Professor with the College of Com-
puter and Data Science, Minjiang University,
Fuzhou, China. He has published papers in ma-
jor conferences/journals, such as IEEE TDSC,
IEEE TSC, IEEE TSUSC, IEEE IoTJ, VEH

COMMUN, FGCS, etc. His research interests include cryptography
and information security.

Jiwu Shu (IEEE, Fellow) received the PhD
degree in computer science from Nanjing Uni-
versity, in 1998, and finished the postdoctoral
position research with Tsinghua University,
in 2000. Since then, he has been teaching
with Tsinghua University, and currently he
is also the president of Minjiang university.
His current research interests include storage
security and reliability, non-volatile memory

based storage systems, and parallel and distributed computing.

Hui Lin received the Ph.D. degree in com-
puting system architecture from the College of
Computer Science, Xidian University, Xi’an,
China, in 2013. He is currently a Professor
with the College of Computer and Cyber Secu-
rity, Fujian Normal University, Fuzhou, China.
His research interests include mobile cloud
computing systems, blockchain, and network
security.

Xun Yi received the Ph.D. degree in elec-
tronic engineering from Xidian University,
Xi’an, China, in 1995. He is currently a Profes-
sor with the School of Computing Technolo-
gies, RMIT University, Australia. His research
interests include data privacy protection, Cloud
and IoT security, Blockchain, network security
and applied cryptography. He has published
over 300 research papers in international jour-

nals and conference proceedings. Currently, he is an Associate Editor
for IEEE Transactions on Dependable and Secure Computing, IEEE
Transactions on Knowledge and Data Engineering, ACM Computing
Survey, Information Science (Elsevier) and Journal of Information
Security and Application (Elsevier).

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3419211

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on July 02,2024 at 05:58:28 UTC from IEEE Xplore. Restrictions apply.

