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Abstract—Brain tumor detection has advanced sig-
nificantly with the development of deep learning tech-
nology. Although multimodal data, such as Magnetic
Resonance Imaging (MRI) and Computed Tomography
(CT), has potential advantages in diagnostics, most
existing studies rely solely on a single modality. This is
because common fusion methods may lead to the loss
of critical information when attempting multimodal
fusion. Therefore, effectively integrating multimodal
data has become a significant challenge. Addition-
ally, medical image analysis requires large amounts
of annotated data, and labeling images is a resource-
intensive task that demands experienced professionals
to spend a considerable amount of time. To address
these challenges, this paper introduces a new unsu-
pervised learning framework named Double-SimCLR.
This framework builds on the foundation of contrastive
learning and features a dual-branch structure, enabling
direct and simultaneous processing of MRI and CT
images for multimodal feature fusion. Given the “weak
feature” characteristics of CT images (e.g., low soft
tissue contrast and low resolution), we incorporated
adaptive weight masking technology to enhance CT
feature extraction. Moreover, we introduced a multi-
modal attention mechanism, which ensures that the
model focuses on salient information, thereby elevating
the precision and robustness of brain tumor detection.
Even without substantial labeled data, experimen-
tal results demonstrate that Double-SimCLR achieves
93.458% accuracy, 92.463% precision, and a 93.058%
F1-score, outperforming state-of-the-art (SOTA) mod-
els by 2.871%, 2.643%, and 3.098%, respectively.
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I. Introduction

Brain tumors are abnormal masses formed by uncon-
trolled cell proliferation in the brain, and they are among
the leading diseases threatening human health worldwide
[1]. Brain tumors can be classified into two types based
on severity: benign and malignant. Most benign brain
tumors are non-destructive and limited to nearby tissues.
In contrast, malignant brain tumors grow at a much faster
rate and invade surrounding tissues as they develop [2],
[3]. Malignant brain tumors severely impact brain health;
consequently, the 5-year survival rate is around 36%, while
the 10-year survival rate is just below 31%. Thus, early
diagnosis and treatment could significantly impact the
survival of brain tumor patients.

Traditional manual detection of brain tumors primarily
relies on the expertise of doctors. Given the significant
variation in the shape and size of brain tumors, manually
detecting and classifying brain tumor images is highly
challenging. Moreover, the manual analysis of large vol-
umes of medical images is not only tedious but also takes
a considerable amount of time. Errors in brain tumor
analysis can have serious consequences, directly affecting
patient safety and well-being [4].

In recent years, deep learning (DL) technology has found
extensive applications in processing multimodal images,
particularly in medical image analysis, where supervised
learning techniques are primarily used to enhance diag-
nostic precision. Supervised methods require very large
annotated datasets, using representative images with cor-
rect brain tumor labels to train models. These models
learn to identify diseased tissues. However, a significant
challenge remains: the need for substantial amounts of
labeled data for optimal functionality. In many cases,
especially with rare diseases and specific types like medical
imaging, creating sufficient annotated datasets is difficult.
This process is not only expensive but also demands a
significant amount of time from experienced professionals.
This is a critical issue that needs to be addressed.

Recognizing the limitations of supervised learning due
to the scarcity of large annotated datasets underscores
the importance of using multiple imaging modalities.
Currently, MRI and CT are the most popular imaging
techniques used in brain tumor identification because of
their respective advantages. MRI provides high-contrast

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3467343

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on October 03,2024 at 08:20:51 UTC from IEEE Xplore.  Restrictions apply. 



2

images of soft tissues and is highly effective in delineating
tumor boundaries and visualizing depth and relations to
nearby structures. Typically, MRI images have higher
resolution and grayscale levels, capturing more details and
multi-parameter imaging information. In contrast, CT is
a fast imaging technique that excels at showing bone
structure and precise tumor location [5], [6]. Compared
to MRI, CT exhibits “weak features,” including lower soft
tissue contrast, high homogeneity, and notably lower reso-
lution, resulting in less information and complexity. Each
imaging technique has its limitations in specific cases;
for example, MRI has poor sensitivity for calcifications,
while CT has limited specificity for distinguishing tumor
margins from surrounding edematous tissue [7]. Therefore,
utilizing multimodal imaging data is crucial for enhancing
the accuracy and sensitivity of brain tumor diagnoses.
While techniques for merging multiple images, such as
MRI and CT, into a single image to improve diagnostic
capabilities have advanced, this technology often involves
complex preprocessing that can lead to information loss
or mismatched fusion results [8]. This presents another
significant issue that needs to be addressed.

To solve these problems, we propose a novel multimodal
brain tumor detection framework named Double-SimCLR,
which can directly and simultaneously process MRI and
CT images. This framework is capable of extracting and
fusing information from each modality at the feature level,
enabling more accurate brain tumor detection.

The main contributions of this paper are summarized
as follows:

• To address the low diagnostic accuracy associated
with single-modal images, we developed a novel
double-branch framework that combines features
from MRI and CT images. By utilizing contrastive
learning, we leverage unlabeled medical image data
without requiring large annotated datasets, thus ad-
dressing the scarcity of medical image labels.

• To accommodate the differences between modalities,
we adopted different strategies for handling the MRI
and CT branches. Given the ”weak features” of CT
images, we introduced adaptive weight masking tech-
nology in the CT branch, which dynamically adjusts
the weights of each layer. This enables the model
to better adapt to the weak features of CT images,
thereby improving the accuracy of feature extraction. 

• To enhance feature extraction capabilities, we em-
ployed a multimodal attention mechanism that im-
proves our model’s ability to select features, allowing
it to focus more on regions potentially affected by a
brain tumor.

• We validated our framework on the Harvard Medi-
cal Image Fusion Dataset and also used the dataset
provided by Cheng et al. [9]. Our framework demon-
strated superior performance in brain tumor detec-
tion, surpassing state-of-the-art (SOTA) frameworks
by 2.871% in accuracy, 2.643% in precision, and
3.098% in F1-score.

The rest of this paper is organized as follows: Section II
provides a comprehensive overview of current research on
detecting brain tumors. Section III presents the details of
our proposed Double-SimCLR model. Section IV describes
the design and implementation of our experiments. Section
V concludes the paper.

II. Related Work

We discuss the deep learning technologies used in the
detection of brain tumors from the following aspects:
single-modality image recognition, multimodal image fu-
sion, and unsupervised learning. We will then summarize
their advantages and disadvantages.

Single-Modality Image Recognition. Single-
modality image recognition technology is more popular
because it simplifies data processing and speeds up
diagnosis. For example, Lamrani et al. [10] developed a
model to detect brain tumors using convolutional neural
networks to enhance recognition capacity. Its task is
to identify critical features within MRI images, thereby
improving their efficiency and accuracy. Combining K-
means clustering algorithms and SVM classifiers, Jamberi
et al. [11] designed a diagnostic tool for distinguishing
between benign and malignant brain tumors based on
MRI images, enhancing accuracy and precision in the
diagnostic process. Zubair and colleagues proposed an
advanced AI-driven model that integrates the strengths of
EfficientNetB2 with balanced and homomorphic filtering
to further improve MRI image processing methods,
maximizing performance in brain tumor detection.

However, single-modality imaging technology presents
significant challenges because it cannot provide a com-
prehensive representation of the various characteristics of
brain tumors [12]. Detecting brain tumors using only one
imaging modality may lack the full spectrum of features
necessary for understanding the disease and its pathogen-
esis compared to a multimodal approach. Consequently,
more researchers are turning to multimodal imaging to
gain a more holistic view of diagnosis and prognosis.

Multimodal Image Fusion. Human recognition is
limited by the single source of information in vision; thus,
research has gradually shifted toward multimodal image
fusion. Badal et al. [14] proposed an end-to-end CNN
model with multiple layers of convolution and nonlinear
activation functions, which aids in automatically extract-
ing multimodal image features by utilizing different infor-
mation for each layer to achieve optimal interpretation.
Guo et al. [15] introduced several imaging modalities,
including CT, MRI, and PET, in their study using a
CNN framework. This allowed the CNN to learn the
complementary information contained in each modality
during the feature extraction process. Similarly, Li et al.
[16] considered various imaging technologies, such as MRI,
CT, and SPECT, to propose multimodal medical image
fusion algorithms that address the challenges of integrat-
ing features from different imaging modalities. However,
important information may be lost during the fusion of
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TABLE I: SOTA models’ comparison.

Research Techniques Used Advantages Limitations

Lamrani et al.(2022)
[10]

Convolutional Neural Networks
(CNNs) for MRI images

Improved efficiency and
accuracy by automatically
identifying key features

Limited to single modality
imaging

Jamberi et al.(2024)
[11]

K-means clustering algorithms
and Support Vector Machine
(SVM) classifiers for MRI im-
ages

Enhanced accuracy and
efficiency of brain tumor
diagnosis

Limited to single modality
imaging

Zubair et al.(2024) [13]
EfficientNetB2 with balanced
and homomorphic filtering for
MRI images

Improved accuracy and ef-
ficiency through enhanced
MRI image processing

Limited to single modality
imaging

Sousa et al.(2023) [12] Analysis of limitations of
single-modality imaging

Highlighting limitations of
single-modality imaging

Limited comprehensive
feature capture

Badal et al.(2018) [14] End-to-end CNN structure for
multimodal image fusion

Effective extraction of
multimodal features

Potential loss of critical
information during fusion

Guo et al.(2019) [15]
CNN framework for handling
different imaging modalities
(CT, MRI, PET)

Enhanced feature extrac-
tion process

Challenges in combining
features from different
modalities

Li et al.(2021) [16]
Multimodal medical image fu-
sion technique for MRI, CT,
and SPECT

Improved fusion of differ-
ent imaging technologies

Challenges in effectively
combining features from
different modalities

Zhou et al.(2019) [17] Review of challenges in multi-
modal image fusion

Identifying critical infor-
mation loss challenges

Critical information loss
during feature extraction

Taher et al.(2022) [18]

Transfer learning-based
approach combining three
unsupervised clustering
techniques for MRI images

Improved MRI image pro-
cessing

Does not incorporate mul-
tiple imaging modalities

Saeed et al.(2022) [19] Improved k-NN algorithm for
MRI images

Novel clustering algorithm
for better identification
and localization

Does not incorporate mul-
tiple imaging modalities

Sankareswaran et al.
(2022) [20]

Rigid Body Convolutional Neu-
ral Network (RBCNN) for MRI
registration

Improved MRI registra-
tion accuracy and effi-
ciency

Limited to single modality
images

multimodal images, complicating effective integration of
multi-modality features [17].

Unsupervised Learning. A wide range of unsuper-
vised learning methods is also employed in brain tu-
mor detection. Taher et al. [18] developed a transfer
learning-based approach that combines three unsuper-
vised clustering techniques: Gaussian Mixture Model, K-
means algorithm, and Agglomerative Hierarchical Cluster-
ing, primarily aimed at accelerating brain tumor detection
with greater accuracy in MRI image processing tasks.
Saeed et al. [19] proposed an enhanced version of the k-
NN algorithm, introducing a new unsupervised clustering
mechanism that successfully detects and tracks the origins
of brain tumors in MRI images. Another approach by
Sankareswaran et al. utilized a Rigid Body Convolutional
Neural Network for brain tumor MRI registration, pre-
senting an unsupervised end-to-end method for medical
image registration [20]. These methods have significantly
improved the accuracy and efficiency of MRI image regis-
tration for detecting and tracking brain tumors. However,
these approaches primarily focus on single-modality im-

ages, neglecting the information available from different
imaging modalities.

Table I summarizes the comparison of state-of-the-art
(SOTA) models for brain tumor detection. Based on a
comprehensive analysis of the aforementioned research,
our method introduces innovations and improvements by
combining multimodal data with unsupervised learning
techniques. Our aim is to address the limitations of ex-
isting technologies in the field of brain tumor detection.

III. Method

In the medical image analysis of brain tumors, several
major challenges exist. Firstly, single-modality informa-
tion is limited and cannot provide comprehensive diag-
nostic insights for brain tumors. Secondly, the cost of
annotating medical image data is high, and the quantity
of available annotated data is limited, making it a pressing
issue to train an efficient model under these constraints.

To address these problems, we propose the Double-
SimCLR framework, which aims to improve the accuracy
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of brain tumor detection through a dual-branch con-
trastive learning method and an attention mechanism. Our
Double-SimCLR model consists of two main modules: the
Feature Extraction Module and the Feature Fusion Module.
Table II lists the symbols used in this paper along with
their descriptions.

A. Feature Extraction Module
To effectively extract features, we need to address the

following two key problems: 1. How can we extract features
under conditions of sparse labels? 2. How can we effectively
extract features from multimodal data?

1) Solution to the Scarce Label Problem
While most tasks, such as image classification, involve

supervised learning that requires a large amount of labeled
data, collecting this data can be time-consuming and
expensive [21], [22]. In light of this requirement, unsuper-
vised learning has emerged as an alternative that operates
without labeled data, learning directly from the structure
and features inherent in the data [23].

Contrastive learning [24] (see Fig. 1 for illustration)
is a form of unsupervised learning. It aims to increase
similarity for samples from the same class while decreasing
similarity for samples from different classes. For instance,
in the context of image data, positive examples could be
two images cropped from the same scene, while negative
examples would be from different classes. The model learns
to distinguish these through adjusting the distances—
minimizing for positive pairs and maximizing for negative
pairs using a contrastive loss [25], [26]:

L =
1

N

N∑
i=1

[
yij · d2ij + (1− yij) ·max(m− dij , 0)

2
]
, (1)

where dij is the distance between sample pairs, (m) is a
preset margin value used to distinguish between positive
and negative samples, and yij is an indicator variable, with
“1” denoting a positive sample pair and “0” denoting a
negative sample pair.

Anchor: 𝐼𝑎

Positive: 𝐼+

Negative: 𝐼−

𝜃

Encoder 𝑓+ = 𝜃(𝐼+)

𝑓− = 𝜃(𝐼−)

𝛿(𝑓𝑎 , 𝑓+)

𝛿(𝑓𝑎 , 𝑓−)

Distance function

𝑓𝑎 = 𝜃(𝐼𝑎)

Minimize

Maximize

Fig. 1: Illustration of contrastive learning process.

As a contrastive learning model, SimCLR [25] effectively
extracts features from single-modal data, making it an
important component of the proposed Double-SimCLR
model. We summarize the implementation of SimCLR in
the following steps:

Raw Images

Batch Size = N

···

···

Pair 1

Pair N

Augmented Images = 2NData

Augmentation

Fig. 2: Sample pair generation.

Input and Data Augmentation. The original in-
stance x undergoes two different random data augmen-
tation transformations from the same family of transfor-
mation methods (denoted as T ), referred to as t and t′,
respectively. This method generates two variant images, x̃i

and x̃j , which may look different from each other but are
effectively alternate views of the same original image. As a
result, we obtain positive sample pairs. For any augmented
version of an image, the rest of the augmented images
in the batch can be considered negative samples. Fig. 2
illustrates the generation process of sample pairs, while
Fig. 3 presents the differences in similarity between paired
combinations of four images: CT, CT Augmented, MRI,
and MRI Augmented.

Feature Extraction. An encoder network f(·) is then
applied independently to each of these two augmented
images to yield their feature representations, namely:

hi = f(xi), hj = f(xj). (2)

Projection Head Mapping. Next, the two embed-
dings hi and hj are processed one more time with the
projection head g(·) to further reduce their dimensions
in a new space, resulting in zi and zj , respectively. This
step is performed to compute the contrastive loss using
these reduced-dimension features. Here, g(·) represents a
feedforward neural network (FNN) with one hidden layer,
achieving zi = g(hi) = W (2)σ(W (1)hi), where W denotes
a linear transformation and σ(·) is the ReLU nonlinear
activation function.

Maximizing Consistency. In the space mapped by
the projection head, we maximize the consistency between
positive pairs (zi, zj) while minimizing their consistency
with other samples in the same batch. This encourages
representations zi and zj from the same original image
to be close together, while representations from differ-
ent original images are pushed apart. To this end, we
use the NT-Xent (Normalized Temperature-Scaled Cross-
Entropy) loss. Specifically, the NT-Xent loss function
introduces a temperature parameter to adjust the similar-
ity distribution, making the differences between positive
and negative pairs more pronounced, thereby enhancing
the model’s discriminative capability. Unlike traditional
contrastive loss functions, as shown in Eq. (1), NT-Xent
does not require additional threshold settings for positive
and negative pairs, has lower computational complexity,
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TABLE II: Symbols and meanings.

Symbol Explanation Symbol Explanation
L Contrastive learning loss function yij Indicator variable
dij Distance between sample i and sample j m Preset margin value
zi Projection of the feature representation f(·) Encoder network
zc Compressed feature vector Fsq Squeeze operation function
uc Feature vector of each channel in the input

feature map
uc(i, j) Pixel value

W Width of the feature map H Height of the feature map
s Excitation weight vector Fex Excitation function
z Compressed feature vector W Weight matrix of the fully connected layers
σ Sigmoid activation function g(z,W ) Intermediate representation in excitation
W2 Weight matrix of the second fully connected

layer
δ ReLU activation function

h(·) Projection head W1 Weight matrix of the first fully connected
layer

Ũc Reweighted feature map Fscale Reweight function
Uc Input feature map sc Weights computed by the excitation function

Fig. 3: Pairwise similarity among four images.

and enhances model robustness. For these reasons, we
chose NT-Xent as the contrastive loss. Subsequently, we
compute the similarity between positive and negative pairs
using cosine similarity, defined as sim(u, v) = u·v

∥u∥∥v∥ ,
where u and v are feature vectors generated by the projec-
tion head. Formally, let li,j represent the loss for a given
positive pair (zi, zj). Then, it can be expressed as:

li,j = − log exp(sim(zi, zj)/τ)∑2N
k=1 lk ̸=i exp(sim(zi, zk)/τ)

, (3)

where lk ̸=i denotes an indicator function that is 1 if k ̸= i
and 0 otherwise; τ is a temperature parameter used to
control the scale of similarity scores.

2) Solution to Features Extraction from Multimodal
Data

In order to extract features effectively from multi-modal
data, we made improvements to the SimCLR model by
upgrading the original single-channel input architecture of

SimCLR to a more complex dual-branch network struc-
ture, thus it can simultaneously process multimodal data,
e.g., both MRI and CT images. This dual-branch structure
enables the model to capture information from differ-
ent modalities more comprehensively at the initial stage,
thereby enhancing the effectiveness of feature learning.

We performed dedicated optimizations over encoders
and projection heads for each branch to enhance feature
extraction from MRI and CT images. For the MRI im-
age, considering the high characteristics of details, we set
deeper layers with finer convolutional kernels. For the
CT image branch, we adjusted the size of the receptive
field and the depth of layers to enhance capture of low-
contrast features. Furthermore, we considered modality-
specific projection heads based on image characteristics to
handle their respective structural information effectively.

3) Solution to Multimodal Data Flexibility
To better adapt to changes in data and enhance the

overall performance of the model, we introduced an adap-
tive weight mask mechanism capable of dynamically ad-
justing the importance of output features at each layer.
This adaptive weight mask is generated based on the input
data and provides fine-grained control over the outputs
from the model’s layers. Moreover, we applied the adaptive
weight mask mechanism to the CT branch. The following
sections will discuss this technology in detail, using the
CT branch as an example.

The output of each layer in the CT branch is multiplied
by a dynamically generated weight mask. These dynamic
weight masks are created by a small network conditioned
on the CT input features and are adjusted dynamically
during training. The CT branch comprises the following
hierarchical structures: the convolutional layer, batch nor-
malization layer, ReLU activation function, max pooling
layer, residual block, and fully connected layer. For these
layers, we define the following adaptive weight mask ma-
trix M :
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M =



mconv1 ∈ RN×64×H/2×W/2

mbn1 ∈ RN×64×H/2×W/2

mrelu ∈ RN×64×H/2×W/2

mmaxpool ∈ RN×64×H/4×W/4

mresidual ∈ RN×128×H/4×W/4

mfc ∈ RN×D


, (4)

where R represents the set of real numbers, N is the batch
size, D is the output dimension, H is the height of the
image, and W is the width of the image.

To retain more spatial information and simplify the
branch structure, we removed the pooling layer and fully
connected layer by setting their corresponding mask values
to 0, while initializing the other parts to 1. The entire
process consists of the following steps:

Weight Adjustment. The output of each layer is
masked by

H ′
i = Hi ⊙mi, (5)

where Hi is the output of the ith layer, mi is the dynami-
cally generated weight mask, and ⊙ denotes element-wise
multiplication.

Mask Generation. The weight mask mi is generated
by a small neural network based on the input features:

mi = σ(Wmask ·Hi−1 + bmask), (6)

where σ is the activation function, and Wmask and bmask

are the trainable parameters of the mask generation net-
work.

Backpropagation and Update. During backpropa-
gation, we compute the gradient of the loss function with
respect to the weight mask and update the parameters
of the mask generation network using an optimization
algorithm:

mi ← mi − η
∂L

∂mi
, (7)

where η is the learning rate.

B. Feature Fusion Module
After feature extraction, we introduced a feature fu-

sion module to meticulously combine features from both
modalities. Here, we employed a simple concatenation
strategy, directly combining the features from the two
branches. This method is straightforward to implement
and computationally efficient, allowing for full retention
of information from different modalities. Although simple
concatenation might lose some correlations between the
features, it is easy to implement and integrates multimodal
features well. This approach is suitable for our current
small-scale dataset, thereby mitigating the risk of overfit-
ting that might arise from more complex fusion strategies.
Subsequently, we applied an SEBlock [27] attention mech-
anism to the fused features to more accurately extract
and weigh important features, enabling us to fine-tune
the model with a small amount of labeled data and thus
facilitating effective brain tumor detection.

Algorithm 1 Double-SimCLR
Input: batch size N , constant τ , structure of fmri, fct, g,

augmentation set T
Output: encoder networks fmri(·) or fct(·)

1: for sampled minibatch {(xk,mri, xk,ct)}Nk=1 do
2: for all k ∈ {1, . . . , N} do
3: draw two augmentation functions t ∼ T , t′ ∼ T
4: # the first augmentation
5: x̃2k−1,mri = t(xk,mri)
6: h2k−1,mri = fmri(x̃2k−1,mri) # extract features
7: z2k−1,mri = Flatten(h2k−1,mri) #flatten features
8: x̃2k−1,ct = t(xk,ct)
9: h2k−1,ct = fct(x̃2k−1,ct)

10: z2k−1,ct = Flatten(h2k−1,ct)
11: # the second augmentation
12: x̃2k,mri = t′(xk,mri)
13: h2k,mri = fmri(x̃2k,mri)
14: z2k,mri = Flatten(h2k,mri)
15: x̃2k,ct = t′(xk,ct)
16: h2k,ct = fct(x̃2k,ct)
17: z2k,ct = Flatten(h2k,ct)
18: # combine features from MRI and CT
19: zcombined = Concat(zmri, zct)
20: # project combined features into a new space
21: z = g(zcombined)
22: end for
23: for all i ∈ {1, . . . , 2N} and j ∈ {1, . . . , 2N} do
24: si,j =

z⊤
i zj

∥zi∥∥zj∥ {pairwise similarity}
25: end for
26: Calculate ℓ(i, j) = − log exp(si,j/τ)∑2N

k=1 ⊮[k ̸=i] exp(si,k/τ)

27: L = 1
2N

∑N
k=1 [ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)]

28: update networks fmri, fct, and g to minimize L
29: end for

A key component in Squeeze-and-Excitation Networks
(SENet), the SEBlock mechanism enhances the represen-
tational power of neural networks through a lightweight,
computationally efficient attention process. Contrary to
more complex attention mechanisms, SEBlock’s straight-
forward implementation only marginally increases compu-
tational overhead while significantly improving model per-
formance. Specifically, SEBlock processes features through
the following steps:

Squeeze. The Squeeze part of the SEBlock is designed
to extract a global information embedding, which means
compressing the spatial details of the feature vector of each
channel of the feature map U . Thus, a single scalar for each
channel captures global information regarding the spatial
aspect of the input feature map. In this process, Global
Average Pooling (G.A.P.) is performed. Specifically, it
calculates the average across the feature maps for each
channel c (where c ∈ {1, 2, . . . , C}):

zc = Fsq(uc) =
1

W ×H

W∑
i=1

H∑
j=1

uc(i, j). (8)
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Fig. 4: The framework of Double-SimCLR.

Excitation. The primary function of the Excitation
part is to adaptively assign feature weights to each of the
C channels by learning zc. The specific computation is as
follows:

s = Fex(z,W) = σ(g(z,W)) = σ(g(W2δ(W1z))), (9)

where z is the compressed feature vector, W1 and W2 are
weight matrices, δ is the ReLU activation function, and σ
is the Sigmoid activation function.

Reweight. This step applies the computed weights
to recalibrate each channel in the original feature map,
enhancing the representations and recognition of different
features by the network. This is implemented for each
channel by

Ũc = Fscale(Uc, sc) = sc · Uc, (10)

where Ũc is the recalibrated feature map and sc is the
weight corresponding to channel c.

C. Overall Design of Double-SimCLR Model
In this section, we elaborate on the overall design of the

Double-SimCLR model. This model directly fuses features
from MRI and CT images through a two-branch structure.

By employing unsupervised contrastive learning, it fully
utilizes unlabeled medical image data, thereby avoiding
the problem of scarce medical data labels. Additionally,
a multimodal attention mechanism and adaptive weight
masking technology are introduced to enhance the model’s
feature selection ability, allowing it to focus on areas
that may contain brain tumors. The overall design of
the Double-SimCLR model is shown in Fig. 4, while the
training process is illustrated in Fig. 5. Specifically, the
encoder f(·) and the projection head g(·) are first trained.
After training, the projection head g(·) is discarded, and
only the output h from the encoder f(·) is retained for
feature extraction in downstream tasks. The m within
the dashed box represents the features of the CT branch
processed through the adaptive weighting mask mecha-
nism. The pseudocode for Double-SimCLR is summarized
in Algorithm 1.
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IV. Experiments
In this section, we evaluate the performance of the

proposed Double-SimCLR model, while compared with
SOTA models SimCLR [25] and ResNet50 [28]. Our code
can be accessed from the following link: https://github.
com/MohamedAliHabib/Brain-Tumor-Detection.

A. Experimental Equipment and Parameter Description
Our model runs on the following equipment:·CPU: 16 vCPU Intel(R) Xeon(R) Platinum 8352V

CPU @ 2.10GHz·GPU: RTX 4090 (24GB) * 1
Software environment:·Operating System: Ubuntu 20.04 LTS·Programming Language: Python 3.8·Dependencies:PyTorch 2.0.0;CUDA 11.8
The detailed configurations of the hyperparameters are

given in Table III.

B. Dataset Preparation
The Double-SimCLR model in this paper requires

paired MRI and CT images along with their corresponding
labeled data. However, public brain tumor datasets do not
meet this specific requirement. Therefore, we conducted
experimental tests using the model code proposed by
MohamedAliHabib to analyze brain tumor recognition in
MRI images.

We labeled the data based on the following criteria: if
the model predicts the probability of a brain tumor being
present as greater than 50%, the corresponding image is
labeled as “1”; otherwise, it is labeled as “0”. Using this
strategy, we collected and labeled a total of 1,178 paired
MRI and CT images, with 589 images of each type. These
images primarily come from the Harvard Medical Image
Fusion Dataset [29]. The Harvard Medical Image Fusion
Dataset is a multimodal medical image dataset focused
on brain imaging. It contains matched images from CT,

Fig. 6: Paired MRI and CT dataset display.

MRI, PET, and SPECT scans, mainly sourced from the
Whole Brain Atlas at the Harvard Medical School publicly
available database. We selected 184 pairs of brain tumor
images from different patients, with each pair consisting
of one CT image and one MRI image. All images have
a resolution of 256x256 pixels, ensuring consistency and
comparability in image quality. Below are some examples
of the collected image data (see Fig. 6).

C. Discussion on the Scale of Dataset
This paper adopts a relatively small-scale dataset con-

taining 589 MRI-CT image pairs. We are aware that
the size of the dataset may affect the performance of
generalization. The smaller the dataset, the easier it is
for the model to overfit and struggle with learning typical
variations in tumor characteristics.

However, we have the following reasons for choosing this
dataset:

Data Quality. The images are primarily selected from
the Harvard Medical Image Fusion Datasets, ensuring
high-quality images with good alignment between MRI
and CT scans.

Paired Characteristics. Fully matched pairs of MRI
and CT images are very difficult to find, while our dataset
provides this valuable paired resource.

Data Augmentation. Given the limitations on the size
of our dataset, we utilized data augmentation techniques
to increase the number of training samples, allowing for
better learning of image features.

D. Data Preprocessing
It is evident that the brain sizes in the CT and MRI

images in the dataset vary, and there is a significant
amount of irrelevant information in the background that
can interfere with image analysis. To remove non-target
regions and crop areas likely representing the brain, we
employed the cropping technique proposed by Dahiwade
et al. [30] for preprocessing the dataset, following these
steps. To provide a more intuitive demonstration of the
results at each processing step, we present the outcome of
each step in Fig. 7, while Fig. 8 shows the resulting dataset
images processed through following steps:

Grayscale Conversion and Gaussian Blur. First,
we converted the MRI and CT images to grayscale to
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TABLE III: Hyperparameters for contrastive learning and downstream task phases.

Phase Hyperparameter Value Description

Contrastive Learning

Learning Rate 0.001 Learning rate for the contrastive learning phase.
Batch Size 32 Batch size for each training iteration.
Temperature 0.5 Temperature parameter for contrastive loss.

Projection Head 2 layers, 2048 *
2 neurons

Two-layer projection head, input dimension 2048
* 2, output dimension 128.

Training Epochs 500 Total number of training epochs.

Optimizer Adam Optimizer used for the contrastive learning
phase.

Downstream Task

Learning Rate 0.001 Learning rate for the downstream task phase.
Batch Size 32 Batch size for each training iteration.
Training Epochs 300 Total number of training epochs.
Optimizer Adam Optimizer used for the downstream task phase.
Weight Decay 1 × 10−6 L2 regularization term to prevent overfitting.

Fig. 7: The visualization of each step’s outcome.

Fig. 8: Display of paired MRl and CT dataset after
processing.

simplify them to a single color channel. After this, we ap-
plied Gaussian blur to reduce image noise. Gaussian blur
smooths the image using a Gaussian function controlled
by standard deviation, which is important for removing
minor disturbances and providing a solid basis for precise
thresholding of brain contours.

Binary Thresholding. Afterward, we applied binary
thresholding to the blurred images. This step sets pixels

with values less than the threshold to zero (black), while
pixels with values greater than the threshold are set to
255 (white). This results in an image with clear differenti-
ation between the background and the region of interest,
where the target area is marked white, facilitating further
analysis.

Morphological Noise Removal. To enhance the
recognition of brain contours, we performed morphological
processing on the binary thresholded images, including
erosion and dilation operations. This effectively removes
small noise points created by thresholding and helps close
small gaps within the brain contours, ensuring continuity
and completeness for the next contour detection step.

Brain Contour Detection. Using the processed
thresholded images, we performed contour detection. Con-
tours are lines that connect all continuous points along a
boundary with the same color or brightness. We utilized
functions from the ”imutils” library to find the main
contours based on area size, which usually correspond to
the primary regions of interest in the image—the brain.

Extremity Points Calculation. We calculated the
extremity points of the detected brain contours, including
the leftmost, rightmost, topmost, and bottommost points.
These points are derived from the extreme horizontal
and vertical coordinates of the contour points, accurately
marking the spatial position of the brain in the image.

Image Cropping Based on Brain Contour. Once
these extremity points are calculated, a cropping region is
defined as a rectangle in the original image, bounded by
the furthest extremity points of the contour. The resulting
cropped image tightly envelops the identified brain region.

E. Experimental Results
1) Performance Comparison
We conducted experiments based on the aforementioned

dataset to perform a comparative analysis of the per-
formance of four models: Double-SimCLR, BTD-CNN
[10], EFDL-BTD [18], and ResNet50. After 300 epochs
of iterative training, the results are shown in Fig. 9.
From the figure, it is evident that the overall accuracy
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of Double-SimCLR is higher than that of EFDL-BTD
and ResNet50. Although its performance is slightly lower
than that of BTD-CNN during the initial training phase,
Double-SimCLR demonstrates higher accuracy in the later
convergence stage, surpassing BTD-CNN. The specific
experimental results are presented in Table IV.

Fig. 9: Comparison of accuracy of model training pro-
cesses.

TABLE IV: Model performance metrics across test sets.

Test Set Model Accuracy Precision F1-score

1

Ours 0.9568 0.9581 0.9673
BTD-CNN 0.9375 0.9600 0.9412
EFDL-BTD 0.8729 0.8730 0.8593
Resnet50 0.8715 0.8718 0.8843

2

Ours 0.9623 0.9513 0.9567
BTD-CNN 0.9483 0.9413 0.9494
EFDL-BTD 0.9218 0.9184 0.9207
Resnet50 0.8333 0.8462 0.8462

3

Ours 1.0000 1.0000 1.0000
BTD-CNN 0.8750 0.8718 0.8843
EFDL-BTD 0.8333 0.8333 0.8397
Resnet50 0.8333 0.8571 0.8571

4

Ours 0.9518 0.9493 0.9664
BTD-CNN 0.8750 0.8235 0.8235
EFDL-BTD 0.9357 0.9375 0.9302
Resnet50 0.8750 0.8750 0.8750

We evaluated the trained model on four test sets, which
are divided according to image resolution, image type,
image quality, and tumor boundary clarity as below.

• Test Set 1: This test set comprises high-resolution
MRI images to evaluate the model on high-quality
images.

• Test Set 2: This set includes standard-resolution CT
images, emphasizing the model’s capability to process
regular clinical data.

• Test Set 3: A test set consisting of challenging MRI
images with high levels of noise or unclear tumor
boundaries is used to test the model’s robustness.

• Test Set 4: This set contains both MRI and CT
images to evaluate the model’s integration capability
on multimodal datasets.

Our model demonstrated exceptional performance on
Test Set 3, which included complex MRI images character-
ized by high noise and blurred tumor boundaries, achiev-
ing an accuracy of 1.0000. This indicates that our model is

highly robust under conditions of degraded image quality.
The key factor contributing to this achievement lies in
the integration of contrastive learning strategies combined
with adaptive masking techniques, allowing the model to
effectively discern and extract important discriminative
features from noisy data.

We further demonstrated the models’ accuracy on four
different test sets more intuitively using box plots, as
shown in Fig. 10. Our method (Ours) indicates the high-
est median accuracy and the smallest range of accuracy
distribution, demonstrating very stable and accurate per-
formance across the different test sets.

Fig. 10: Comparison of the performance of three models.

2) Ablation Experiment
It can be seen in Fig. 11 that the accuracies of the dual-

branch Double-SimCLR are significantly higher compared
to those of the single-branch model, which did not improve
much and remained around 75%. This result is expected,
as contrastive learning typically requires a large amount
of data to learn key features from images. Our dataset
contains only 589 pairs of MRI and CT images, and the
single-branch SimCLR was capable of learning information
from just one modality. This limitation greatly affected
the learning process. Additionally, the ablation experiment
with MSEBlock, represented by six curves, shows that
adding the SEBlock to the model stabilizes the learning
process and increases accuracy, which is quite encouraging.
Furthermore, it incorporates an adaptive weight mask
mechanism in the CT branch to accommodate different
data. The differences and changes in accuracy between
the MRI and CT branches can also be intuitively observed
from the figure.

Figures 12 and 13 show the training losses of Double-
SimCLR and SimCLR during two training phases. The
training losses for both models decreased significantly
over time in the contrastive learning phase, but the loss
values for Double-SimCLR were lower and converged more
quickly. In the initial phase (the first 50 epochs), the loss
value of Double-SimCLR dropped rapidly from about 4.0
to 2.5, while SimCLR’s loss value decreased from 4.0 to
around 2.75. After 100 epochs, the loss value of Double-
SimCLR stabilized at about 2.25, while SimCLR’s loss
value stabilized around 2.5. This indicates that Double-
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Fig. 11: Performance comparison of the model after abla-
tion.

Fig. 12: Comparison of losses in the contrastive learning.

SimCLR was more effective in learning the main features
of the data during the contrastive learning phase, pri-
marily because it can integrate multimodal information,
thereby improving feature extraction efficiency and repre-
sentation capability.

In the downstream task phase, both Double-SimCLR
and SimCLR quickly reduced their loss values from 3.0 to
around 0.5 and 0.75, respectively, during the first phase
(the first 10 epochs). After 50 epochs, the loss value
of Double-SimCLR decreased further and stabilized at
around 0.25, while SimCLR’s loss value remained around
0.5. This indicates that Double-SimCLR achieved faster
convergence and a lower final loss value in the downstream
task phase, which suggests better generalization ability
and performance in practical tasks.

From this, it is evident that our proposed dual-branch
model, Double-SimCLR, which integrates multimodal in-
formation, reached an accuracy of up to 98% during
training, surpassing traditional models. This demonstrates
that the fusion of multimodal information significantly
enhances model performance in cases of limited data.
Double-SimCLR excels in extracting and representing im-
age features by processing different modalities in parallel
and performing feature fusion, thereby achieving comple-
mentary and enriched information.

Fig. 13: Comparison of losses in the downstream task.

3) Batch Size Impact on Model Accuracy
In the following section, we discuss the impact of batch

size on the model’s accuracy and loss. Figures 14 and 15
show the changes in accuracy and loss for different batch
sizes.

As shown in Fig. 14, generally, the top-1 accuracy
of the model improves with an increase in batch size.
Notably, when the batch size is 512, the accuracy after 200
epochs is significantly better than that of other batch sizes.
However, the instability associated with larger batch sizes
also leads to more significant fluctuations in the accuracy
curve.

Fig. 14: The accuracy comparison of different batchsize.

Fig. 15 shows the changes in training loss for different
batch sizes. The figure clearly demonstrates that batch size
has a significant impact on loss. Specifically, smaller batch
sizes (like 32 and 64) exhibited a rapid decrease in loss
during the early phase of training and maintained lower
loss levels throughout the process. In contrast, larger batch
sizes (like 256 and 512), while achieving better accuracy,
showed higher loss values and slower convergence during
training.

Afterward, we tested the top-1 accuracy under various
batch sizes using box plots, as shown in Fig. 16. From the
analysis of the results, we found that the individual top-1
accuracies were nearly invariant across different batch sizes
(32, 64, 128, 256, 512), with medians all close to 95%. The

This article has been accepted for publication in IEEE Journal of Biomedical and Health Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2024.3467343

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on October 03,2024 at 08:20:51 UTC from IEEE Xplore.  Restrictions apply. 



12

Fig. 15: The loss comparison of different batchsize.

model exhibited lower variability and greater stability with
batch sizes of 256 and 512. However, with a batch size of
32, there was more variability, as the accuracy was more
spread out. Overall, larger batch sizes resulted in better
accuracy and stability as the model trained.

Fig. 16: Top-1 accuracy boxplot for different batchsize.

4) Data Augmentation Impact on Model Accuracy
To further verify the impact of data augmentation

methods on the overall performance of the model, we
selected four techniques: contrast adjustment, brightness
adjustment, flipping, and rotation. We conducted valida-
tion analysis on their pairwise combinations. Due to the
original image size of 240×240 causing memory overflow
during training, we cropped the images to 32×32 for
the subsequent experiments. Table V shows the specific
parameter values for each data augmentation method.

TABLE V: Data augmentation parameters.

Data Augmentation Methods Parameters
Random Resized Crop Crop Size: 32x32
Random Horizontal Flip Probability: 1
Color Jitter (Brightness) Adjustment Range: 0.5
Random Rotation Rotation Angle: ±30°

Fig. 17 and 18 show the heatmap representations of
the four transformations. The diagonal values are set to
0 by default, while the values in other regions represent
the average top-1 accuracy after 300 training epochs for

each combination of data augmentations (rounded to four
decimal places). From the combined accuracy and loss
value heatmaps, we find that the combination of contrast
adjustment and rotation achieves an average accuracy of
93.4699%, surpassing other combinations.

Upon deeper analysis, as observed from the correspond-
ing violin plots (Fig. 19), the Contrast+Rotate combina-
tion exhibits the highest mean accuracy and the most con-
centrated accuracy distribution. Its median and mean also
compare favorably to other combinations, with smaller
variance and a reasonable range of extreme values. There
is no doubt that, in terms of both stability and overall per-
formance, the Contrast+Rotate combination outperforms
other data augmentation strategies.

Fig. 17: Accuracy heatmap.

Fig. 18: Loss heatmap.

This result indicates that exploring superior data aug-
mentation methods significantly aids the Double-SimCLR
model in learning image features, offering new directions
for future model improvements.

V. Conclusion
Detecting brain tumors is a significant challenge due to

the brain’s complex structure and the diverse morphol-
ogy of tumors, which complicates the analysis of medi-
cal images. Most existing techniques for estimating flow
fields in images rely on supervised learning that requires
large labeled datasets. Moreover, the substantial benefits
of multiple modalities on diagnostic accuracy are often
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Fig. 19: Accuracy distribution for different data augmen-
tation combinations.

overlooked. In this paper, we propose the Double-SimCLR
framework to integrate multimodal imaging data from
MRI and CT using unsupervised contrastive learning.
This framework offers several advantages over state-of-
the-art (SOTA) models. First, by utilizing unsupervised
learning, Double-SimCLR circumvents the need for exten-
sive labeled datasets, making it more scalable and cost-
effective. Second, the framework’s ability to integrate data
from multiple modalities enhances its diagnostic accuracy
by effectively capturing complementary information from
both MRI and CT images, which are critical for accurate
tumor detection and characterization. Experimental re-
sults demonstrate that Double-SimCLR achieves an accu-
racy of 93.458%, precision of 92.463%, and an F1-score of
93.058%, outperforming SOTA models by 2.871%, 2.643%,
and 3.098%, respectively. These improvements underscore
the efficacy of our framework in leveraging multimodal
data and unsupervised learning to address the challenges
of brain tumor detection.

However, while Double-SimCLR shows promise, it is not
without potential challenges. One area for further explo-
ration is the optimization of data augmentation strategies,
which play a crucial role in contrastive learning. We stud-
ied how different data augmentation schemes affected the
model and conducted ablation studies on all possible pairs
of the four methods listed above. Additionally, it would
be interesting to further explore better combinations of
augmentation methods in the future.
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