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Abstract—The introduction of semantic communication offers
an effective solution for achieving efficient and reliable infor-
mation transmission in the Social Internet of Things (SIoT).
SIoT combines social networks with the Internet of Things
(IoT) to create a "social network of smart objects," utilizing
analytical and statistical models to provide efficient and scal-
able services. However, ensuring high-quality and reliable data
transmission within the SIoT remains a significant challenge.
Semantic communication methods can effectively address this
issue. Semantic communication represents an advanced paradigm
aimed at achieving reliable transmission through semantic-
level data compression. In this paper, we propose a semantic
communication framework based on adaptive federated deep
learning. This framework combines source-channel joint coding
with channel bandwidth adaptation techniques to enhance trans-
mission efficiency and promote natural and effective information
exchange. Specifically, deep reinforcement learning is employed
to manage dynamic bandwidth allocation, enabling the selection
of optimal bandwidth under varying signal-to-noise ratios and
data conditions, thereby improving transmission quality and
bandwidth utilization. Additionally, we introduce a training
method based on federated learning to enhance the model’s
generalization ability under different channel conditions. Simula-
tion results demonstrate that our proposed method outperforms
traditional models, exhibiting excellent adaptability to low signal-
to-noise ratios and low bandwidth environments, as well as higher
stability. This positions our method as a valuable approach for
ensuring reliable data communication in the SIoT.

Keywords: social internet of things, semantic communication,
deep learning, deep reinforcement learning, federated learning

I. INTRODUCTION

The Social Internet of Things (SIoT) [1][12] combines
social networks with the Internet of Things to form a "social
network of smart objects" in which these objects can establish
social relationships. By leveraging analytical and statistical
models from social networks, SIoT ensures efficient and scal-
able network navigability to facilitate the discovery of services
and objects. Further research is needed to achieve high-quality
and high-stability social communication in the SIoT system.
Semantic communication, an innovative form of intelligent
communication, offers a new approach to achieving reliable
communication through semantic-level data compression [11].
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Therefore, it is promising to deploy a specific semantic com-
munication model in SIoT to improve the efficiency, accuracy,
and robustness of the system.

The transmission quality of semantic communication largely
depends on the quality of the transmission channel and the
available bandwidth. Under conditions of low SNR and limited
bandwidth, the effectiveness of semantic communication is
greatly restricted. Considering the low-latency and reliability
requirements of many real-world applications, it is essential
to explore more feasible methods to design communication
systems that can adapt to various wireless settings. Addressing
this need, this paper introduces an effective semantic commu-
nication system for SIoT [10] based on joint source-channel
coding using deep learning. This system leverages the synergy
of deep neural networks with channel-bandwidth adaptation
technologies to enable natural, high-speed communication of
various types of information, thereby significantly improving
the user experience. By applying deep reinforcement learning
for dynamic bandwidth allocation, we can determine the
optimal bandwidth allocation strategy under different SNR
conditions, thereby significantly improving transmission qual-
ity across various channel conditions.

Given the importance of data security and privacy protection
[4] in information transmission, we utilize federated learning
to protect privacy and enhance model generalization during
training [28]. Federated Learning is a privacy-by-design dis-
tributed deep learning paradigm, where clients collaboratively
train a model via the coordination of a server without sharing
their private data. Training the semantic communication model
using federated learning strengthens its generalization and
privacy protection capabilities [31].

In the context of the Social Internet of Things (SIoT), feder-
ated learning enhances privacy by ensuring that data remains
localized on individual devices, thus minimizing the risk of
data breaches. It also employs techniques such as differential
privacy and encrypted model updates to further protect sensi-
tive information. Regarding generalization, federated learning
leverages the diverse, heterogeneous data generated by various
devices to improve the model’s adaptability and performance
across different scenarios. This dynamic and decentralized
training approach allows the model to better generalize and
respond to new data patterns and conditions, making it more
robust and effective in SIoT environments.

The main contributions of this paper can be summarized as
the followings:

• We integrate channel adaptation into semantic commu-
nication: By considering channel conditions during data
encoding and decoding, the transmission model can effec-
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tively adapt to low SNR, thereby enhancing transmission
performance.

• We apply deep reinforcement learning to the bandwidth
allocation module: By integrating bandwidth adaptation
into semantic communication, the model can adapt not
only to low SNR ratios but also to environments with
limited bandwidth, significantly improving transmission
performance under challenging communication condi-
tions.

• We train the model in a federated learning environ-
ment: Utilizing the distributed training mode of federated
learning enhances the model’s generalization ability and
ensures data privacy protection, thereby improving its
applicability and security.

• We evaluate the developed adaptive federated deep learn-
ing model for its capability to enhance the reliability
and stability of data transmission. Simulation experiments
demonstrate that the model achieves effective communi-
cation under conditions of low bandwidth and low SNR,
thereby enhancing user experience and providing reliable
services.

The rest of the paper is organized as follows. Section II reviews
the related work. Section III presents the theoretical basis
and system model. Sections IV introduces the implementation
details of the proposed framework. Section V shows the
simulation results and discussions. Section VI concludes the
paper.

II. RELATED WORK

Semantic communication is a research endeavor aimed at
achieving intelligent interaction between humans and ma-
chines. Its goal is to enable computers to understand and
respond to human language expressions, thereby facilitating
more natural and efficient communication. The following pro-
vides an overview of recent developments in various aspects
of semantic communication.

A. Semantic Communication and Natural Language Process-
ing

In the field of semantic communication research, natural
language processing (NLP) and machine learning technologies
play a crucial role. Researchers are dedicated to developing
semantic understanding and generation models to parse and
comprehend the meaning of human language. These mod-
els can extract meaningful information from sentences or
texts through techniques such as semantic analysis, intent
recognition, and context inference, and respond accordingly.
For example, Eliyahu Kiperwasser and Yoav Goldberg [15]
proposed a simple yet effective dependency parsing scheme
based on bidirectional LSTMs (BiLSTM). Each token in a
sentence is associated with a BiLSTM vector that represents
the token’s context within the sentence. Feature vectors are
constructed by concatenating several BiLSTM vectors. The
resulting parser has a very straightforward architecture and can
match or exceed state-of-the-art accuracy for both English and
Chinese.

Similarly, Farsad et al. [8] proposed a deep learning-
based encoder and decoder for scenarios involving limited-
length documents and constrained encoding lengths, aiming
to achieve lower word error rates. Unlike traditional separate
source and channel coding methods, this approach first embeds
sentences into a semantic space and then performs joint source
and channel coding on these embeddings, thereby preserving
the semantic information of the sentences.

B. Adaptive semantic communication

Adaptive semantic communication is a method designed to
address the challenges of dynamic environments and changing
data distributions. Traditional communication systems typ-
ically assume static channels and fixed data distributions,
whereas real-world communication environments and data
distributions are often dynamic. Adaptive semantic communi-
cation aims to tackle this challenge by dynamically adjusting
the parameters and models of the communication system
to adapt to environmental changes, ensuring communica-
tion reliability and performance. Guangyi Zhang [32] pro-
posed a deep learning-based semantic communication system
(DeepSC-MIMO), which leverages channel state information
and noise variance for model design. The system includes a
performance evaluator to predict the reconstruction quality
of each image, enabling intelligent image allocation. This
significantly improves the reliability of image transmission
while greatly reducing feedback overhead.

Jincheng Dai [6] introduced a novel online learning method
for joint source and channel coding, utilizing the overfitting
characteristics of deep learning models. This method up-
dates pre-trained models in a lightweight online manner post-
deployment to adapt to changes in the distribution of source
data and environmental domains. By pushing the concept
of overfitting to the extreme, a series of implementation-
friendly methods were proposed, adapting the encoder-decoder
models or representations to individual data or channel state
instances. This approach achieves significant gains in end-
to-end rate-distortion performance. The system design is for-
mulated as a joint optimization problem aiming to minimize
a loss function that balances data stream bandwidth cost,
model stream bandwidth cost, and end-to-end distortion. The
proposed method enables all parameters in the network to
achieve communication-efficient adaptability without compro-
mising decoding speed. Extensive experiments on dynamically
changing target source data and wireless channels, including
user studies, validate the effectiveness of this approach.

C. Application of Federated Learning in Model Training

Federated learning is a distributed machine learning ap-
proach that allows models to be trained without centralizing
data. Participants retain their local data and train models
locally, then aggregate the model parameters on a central
server to form a global model. This method protects data
privacy while allowing the use of global data statistics for
model updates. Federated learning has many advantages and
is particularly suited for privacy-sensitive domains such as
healthcare and financial services [16][25]. It also enhances
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model generalization and performance, addresses data frag-
mentation and ownership issues, and facilitates model sharing
among multiple organizations.

Jianrui Chen [5] proposed a trustworthy semantic commu-
nication system for the metaverse based on federated learn-
ing, designed to handle large volumes of multimodal data
in immersive environments while safeguarding data security
and privacy. By leveraging distributed decision-making and
privacy-preserving capabilities, this system reliably manages
confidential data exchanges.

III. THEORETICAL BASIS AND SYSTEM MODEL

A. Semantic communication theoretical basis

The following uses text semantic communication as an
example to introduce the process of semantic communication.
The transmitter maps a sentence s into a complex stream of
symbols x, which is then passed through a physical channel
with transmission impairments such as distortion and noise
[26]. The receiver decodes the received y to estimate the
original sentence s. The sender consists of a semantic encoder
and a channel encoder, which are used to extract semantic
information and ensure the successful transmission of semantic
information on the physical channel. The encoded symbol
stream can be expressed as:

x = Cα(Sβ(s)). (1)

Here, Sβ(·) is a semantic encoder network with parameter set
β, and Cα(·) is a channel encoder network with parameter set
α.

After being encoded by the encoder, the encoded symbol x
is transmitted through a physically noisy channel with trans-
mission impairments, such as distortion and noise. We will
mainly consider using AWGN channels [21][23]. The chosen
channel must allow backpropagation. Physical channels can
be represented by neural networks. For example, simple neural
networks can be used to simulate AWGN channels, multiplica-
tive Gaussian noise channels [9] and erasure channels [2]. The
transmission process of data in the channel can be expressed
as:

y = η(x) = x+ ω. (2)

Here, the vector ω ∈ Ck represents the channel interference
coefficient.

We also consider to conduct experiments with this system
on other channels, in which the transmission process of the
channel can be represented as:

y = hx+ ω. (3)

Here, h ∈ C is the channel gain.
On the other hand, the receiver includes a channel decoder

and a semantic decoder to recover the transmitted symbols and
transmitted sentences respectively. The decoded signal can be
expressed as:

ŝ = S−1
ν (C−1

µ (y)). (4)

Here, ŝ is the recovered sentence, C−1
µ (·) is the channel

decoder with parameter set µ, and S−1
ν (·) is the semantic

decoder network with parameter set ν.
Note that the goal of this system is to minimize semantic

errors while reducing the number of symbols to be transmitted.
Using cross entropy (CE) [7] as the loss function to measure
the difference between s and ŝ. For example, consider a
scenario where both the sender and receiver understand the
concept of a "sunny day." In traditional communication, the
sender would transmit each letter of the phrase "sunny day,"
and the receiver would reconstruct and decode these letters to
retrieve the original message. In contrast, semantic communi-
cation allows the sender to convey the core meaning of "sunny
day" directly. The receiver can then recover the information
by understanding this meaning, which reduces the amount of
data transmitted and enhances communication efficiency.

B. System model

As shown in Figure 1, it is the basic framework of the
entire adaptive semantic communication model. The entire
framework is divided into two parts: encoder and decoder. The
encoder and decoder have their corresponding neural networks
to encode and decode text data. The main contribution of this
paper is to add channel adaptation and bandwidth adaptation
on top of the basic semantic communication framework. The
green part at the bottom of the figure is the channel adaptation
part, which extracts the signal-to-noise ratio information of the
channel and fuses the features with the encoder and decoder
to adapt to different channel qualities. The blue part above
the encoder is the Deep Reinforcement Learning bandwidth
decision module, which considers the transmission data and
the channel SNR to decide the output bandwidth of the
encoder. In this way, data can be transmitted with bandwidth
adaptation in different channels.

IV. THE IMPLEMENTATION DETAILS OF THE PROPOSED
FRAMEWORK

A. Channel Adaptation

We propose a channel-adaptive method based on the article
[29]. This method can operate under different SNR levels
during transmission, dynamically adjusting the compression
ratio of source coding and the encoding rate of channel coding
according to the SNR. This is achieved through an attention
mechanism.

We use the Attention Fusion (AF) module to process the
SNR feedback from the channel, and then embed it into the
encoder by alternating with the Feature Learning (FL) module,
as shown in Figure 2. In general, the AF module processes
the features extracted by the FL module using global average
pooling. The pooled features are then combined with the SNR
to form contextual information. This contextual information is
fed into a fully connected neural network to produce scaling
factors. The scaled features are derived by applying these
scaling factors, thereby adapting the features according to the
SNR conditions.

We then explain the channel adaption in details. Recall that
our encoder and decoder consist of the FL and AF modules
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Fig. 1: Deep learning-based adaptive semantic communication system model

respectively. In the encoder-decoder system, the encoder inte-
grates both the FL and AF modules to encode the input data
into a format suitable for transmission. The FL module extracts
features from the data and combines them with SNR feedback
to create context information. The AF module then applies
weighting to these features to enhance data representation. The
decoder performs the reverse process, decoding the encoded
data to recover the original information, incorporating the
reverse FL and AF modules to ensure effective data recovery.

The FL module first extracts information from the data
and fuses it with the SNR to form contextual information,
which is then provided to the next AF module. Then, given
the contextual information as input, an attention mask for the
FL feature is generated in the factor prediction network, and
the FL feature is scaled according to the attention weights.
The output of each AF module is then fed back to the next
FL module, and this process is repeated four times to obtain
the final scaled data.

Training this structure under a certain range of SNR enables
it to adaptively encode data under different channel environ-
ments, improving the quality of data transmission, especially
under poor channel quality and low SNR. In the following
experiments, we compare the channel-adaptive model with
three models trained under fixed SNR to demonstrate its
superior performance, especially under poor channel quality.
The pseudo code of channel adaptation is shown in Algorithm
1.

B. Bandwidth Adaptation

In traditional semantic communication, the encoder encodes
all data and transmits it in its entirety. This traditional ap-
proach, known as full bandwidth transmission, aims to faith-
fully reproduce the original data. However, in scenarios with
poor channel quality, this method transmits all data, even when
not all of it is essential. Consequently, it fails to effectively
utilize the limited bandwidth resources to transmit the most
critical data. To address this, we propose the use of deep
reinforcement learning [30] to create a bandwidth decision

Algorithm 1 Channel adaptive algorithm

Input: Data x, Signal-to-noise ratio SNR
Output: Eigenvalues Af

1: The FL module extracts features ωL from data x and
passes ωL to the AF module.

2: The AF module performs average pooling on it to obtain
I . I = A(ωL)

3: Connect I with SNR. Is = (I, SNR)
4: After a simple neural network. IN = Nϵ(Is)
5: Finally, it is checked with ωL to obtain the attention

feature Af . Af = IN ·ωL
6: return Af

module. This module, by learning the current channel’s SNR
and optimizing data transmission within the constraints of
limited bandwidth resources, adapts bandwidth allocation to
the given environment. The pseudo code of channel adaptation
is shown in Algorithm 2.

We treat the allocation of available bandwidth for each
data set as a decision process and utilize deep reinforcement
learning to find the optimal bandwidth allocation strategy. The
decision module is defined by a tuple (S,A, r), where S is the
set of states, A is the set of actions, and r : S × A → R is
the reward function. At each time step n, we observe the state
sn ∈ S and choose an action an ∈ A based on its policy
π : S → A. Subsequently, the state transitions to sn+1 based
on feedback regarding data transmission quality, and a reward
rn is received. The objective of this reinforcement learning
network is to maximize the expected cumulative reward. In
the context of dynamic bandwidth allocation problems, we
define the state at time step n as:

Sn = {Datan, SNRn}. (5)

Here, Datan represents text data, and SNRn represents the
current signal-to-noise ratio.

Meanwhile, we define action set A as follows, where k
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represents the upper limit of allocable bandwidth.

An = {1, 2, 3 . . . k}. (6)

After data transmission, we get the feedback transmission
quality and MSE. The higher the transmission quality, the
smaller the MSE. The average MSE for N data is defined
as follows:

MSE =
1

N

N∑
i=1

d(x(i) − x̂(i)). (7)

The smaller MSE, the greater the reward. Thereby, we
define reward as follows, where x is a value greater than and
close to MSE, which is used to convert MSE into a positive
number

r = x−MSE. (8)

To learn the optimal allocation strategy, we employ the deep
Q-learning [20] , where the network qψ seeks to approximate
the Q-function Q : S × A → R. The purpose of the Q-
function is to map each state-action pair to a Q-value, where
the Q-value represents the total discounted reward for a given
state-action pair (sn, an) at time step n, as shown below:

Q(sn,an) = E

[ ∞∑
i=n

γi−nri

∣∣∣∣∣ sn,an
]
,∀(sn,an) ∈ S ×A.

(9)
In this paper, we employ a typical DQN method, using

a replay buffer, a target network, and an ε-greedy policy to
enhance the learning of the Q-function. The replay buffer
stores experiences (sn, an, rn, sn+1) and uniformly samples
them to update the parameters ψ. We use the following loss
function to compute the loss of the DQN.

LDQN(ψ) =
(
rn + γmax

a

{
qψ−

(
sn+1,a

)}
− qψ (sn,an)

)2

.

(10)
Although using DQN for bandwidth allocation is innovative,

but its computational complexity and practical feasibility in the
social Internet of Things (SIoT) must be carefully evaluated.
The computational complexity of DRL primarily arises from
the size of the state space S and the action space A. The
state space must represent various channel conditions and
data characteristics, while the action space encompasses dif-
ferent bandwidth allocation strategies. This can result in high-
dimensional state and action spaces, increasing computational
complexity. Additionally, training DQN models typically re-
quires substantial computing resources and time, as the model
needs to optimize its strategy through numerous interactions,
which may pose a bottleneck for real-time applications.In
the context of real-time SIoT applications, while DQN offers
significant advantages, it also presents challenges. DQN can
dynamically adjust bandwidth allocation strategies based on
real-time channel conditions, greatly enhancing data transmis-
sion efficiency. This dynamic adaptability is vital for optimiz-
ing bandwidth utilization. However, the high computational
resource demands of DQN may strain real-time applications.
Therefore, balancing optimization algorithms with computing
resources is essential to ensure the system operates efficiently
in real-time environments.

Algorithm 2 Bandwidth Adaptive Algorithm

1: Initialization:
Initialize the memory for revisiting, denoted as D, with a
capacity to store N data records
Initialize the action-value function Q using the weight θ =
γ, r ;
Set θ− = θ to initialize the target action-behavior network
Q−;

2: The first state S1 = {Text1, Image1, Speech1, SNR1}
of the event is initialized, and the characteristic input
ϕ1 = ϕ(s1) corresponding to the state is obtained through
preprocessing

3: for t = 1, T do
4: Select random action with probability ε, i.e., At = at1
5: In the absence of the occurrence of the low-probability

event, the strategy resorts to the greedy approach,
choosing the set of actions with the highest current
value function.
at = argmaxaQ(ϕ(st), θ; a)

6: The selected action group At is used for the output
bandwidth of the semantic communication encoder

7: Get the output data loss value: MSEt
Then rt is awarded by MSEt

8: A new state St+1 is obtained, and ϕt+1 = ϕ(St+1) is
obtained after preprocessing

9: Store (ϕt, At, rt, ϕt+1) in playback memory D
10: Sample a transformation sample data uniformly at ran-

dom from playback memory D: (ϕj , Aj , rj , ϕj+1)
11: Perform a gradient descent step on (yj−Q(ϕj , aj ; θ))

2

with respect to the network parameters θ
12: Every C steps reset Q− = Q
13: end for

FL 

Module

AM 

Module

FL 

Module

AM 

Module

SNR

Input Output
FL 

Module
…

Fig. 2: Attention Fusion module flow chart

C. Training in a Federated Learning Environment

Federated learning [17] is an emerging distributed machine
learning method that allows multiple participants to collabora-
tively train a model without the need to centrally collect and
store data. By keeping data on local devices and only sharing
model parameters or gradients, federated learning protects user
privacy. Since the data and model remain on local servers
and do not need to be transmitted to a central server, the
risk of data breaches is significantly reduced. This method
effectively prevents data from being intercepted or attacked
during transmission. Additionally, traditional centralized train-
ing methods require uploading large amounts of data to a cen-
tral server, whereas federated learning only needs to transmit
updated model parameters or gradients, significantly reduc-
ing bandwidth consumption. More importantly, by integrating
data from different sources, federated learning can generate
models with stronger generalization capabilities. This training
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Fig. 3: Federated learning-based training of semantic commu-
nication model

approach helps models better adapt to different scenarios and
applications, enhancing their overall generalization ability [3].

Applying federated learning to the training of semantic
communication models can enhance data privacy [13] and
improve the model’s generalization ability across different
environments. As shown in Figure 3, this is the training mode
of a semantic communication model in a federated learning
environment. This mode provides models for three different
transmission environments, and these models undergo text
semantic transmission training for 100 epochs. After each
training epoch, the parameters of the three models are saved
and uploaded to the federated server, where they are averaged.
The averaged parameters are then returned to each model.
The three models receive the same averaged parameters, load
them into their respective neural networks, and continue with
semantic training, completing one federated training cycle. A
total of 100 federated training cycles are conducted. The final
averaged parameters represent the training result.

In comparison, our centralized training method involves
training three models across the same three scenarios and
focusing on text semantic transmission for 10,000 epochs.
This is contrasted with the federated learning training mode.
In the subsequent verification experiments, we will evaluate
and compare the performance of models trained using these
two different approaches.

V. NUMERICAL RESULTS

A. Experiment Setup

Our experiments were conducted on a laboratory com-
puter with the following hardware configuration: CPU: Intel®

Core™ i5-8300H @ 2.30 GHz; RAM: 16.0 GB; Operating
System: 64-bit, x64-based processor. The software configu-
ration was as follows: the compiler used was Visual Studio
Code (VSCode), and the deep learning framework employed
was PyTorch.

After training in the federated learning environment, exper-
iments were set up on the model to examine the impact of
adaptive strategies and federated learning training on model
performance. We trained two sets of models for this purpose,

one was trained using an adaptive strategy; the other was
trained with a fixed bandwidth. We used fixed bandwidth to
train the full bandwidth model; 3/4 bandwidth model; 1/2
bandwidth model and 1/4 bandwidth model. They are trained
on the AWGN channel with a SNR [14] ranging from 0 to 20.

The adaptive part of the bandwidth decision is based on
deep reinforcement learning. Set the learning rate: 0.001;
the discount factor for future rewards (default is 0.99); the
parameters of the target network soft update (default is 0.005);
the exploration rate of the ϵ-greedy strategy (default is 1.0); the
maximum size of the replay buffer (default 1000000); batch
size for experience replay (default 256). Pytorch [22] was used
to train these models, using the Adam optimizer [34] with a
learning rate of 0.0001.

In this paper, we utilized the European Parliament [27]
Proceedings dataset, which contains approximately 2 million
sentences and 53 million words. The preprocessing procedure
involved several key steps: First, the text was tokenized into
individual words to facilitate further analysis. Next, sentences
were standardized to fall within a length range of 4 to 30
words, ensuring that only sentences of appropriate length were
retained. Sentences shorter than 4 words or longer than 30
words were discarded to maintain the quality and consistency
of the training data. Finally, the preprocessed dataset was split
into training and test sets. The training set was used for model
training, while the test set was reserved for evaluating model
performance.

The trained model was tested for bandwidth. According
to the test signal-to-noise ratio, it was divided into four
groups: SNR=0; SNR=6; SNR=12; SNR=18. Each group of
experiments adjusted the bandwidth ratio during transmission
as a variable to observe their transmission quality. , the
experimental results are shown in Figure 4. In addition, the
trained model was tested for signal-to-noise ratio. According to
the test bandwidth ratio, it was divided into four groups: band-
width=0.25; bandwidth=0.5; bandwidth=0.75; bandwidth=1.
Each group of experiments adjusted the signal-to-noise ra-
tio during transmission as a variable to observe them. The
transmission quality, and the experimental results are shown in
Figure 5. The transmission quality of the text is represented by
the Bilingual Evaluation Understudy (BLEU) score [24]. For
a sent sentence of length l and a decoded sentence of length
l, BLEU can be expressed as:

logBLEU = min

(
1− lŝ

ls
, 0

)
+

N∑
n=1

un log pn. (11)

Here, BLEU is a number between 0 and 1 that indicates how
similar the decoded text is to the transmitted text, with 1 being
the most similar.

B. Experiment Results

As shown in Figure 4, when the bandwidth ratio is below
0.5, the performance of the adaptive bandwidth model sur-
passes that of the full bandwidth model, the 1/4 bandwidth
model, and the 3/4 bandwidth model, but is inferior to the
1/2 bandwidth model. However, at lower bandwidth ratios,
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Fig. 4: Comparison experiments between bandwidth-adaptive model and fixed bandwidth model under different signal-to-noise
ratios

the adaptive model outperforms most of the fixed bandwidth
models. This is because fixed bandwidth models trained in
high-bandwidth environments struggle to adapt to sudden
bandwidth reductions, resulting in a cliff effect. In contrast,
our adaptive bandwidth model, which is trained under vari-
ous bandwidth conditions, exhibits better generalization and
bandwidth adaptability compared to fixed bandwidth models.
Nonetheless, this averaging adaptive mechanism comes at the
cost of performance in high-bandwidth scenarios.

As shown in Figure 5, four experiments were conducted
with six models across four different bandwidth ratio con-
ditions. From a broad perspective, the transmission perfor-
mance of all models improved as the SNR increased. A
detailed analysis revealed that the performance differences
between models became more pronounced as the bandwidth
ratio decreased. Specifically, the adaptive model and the
federated adaptive model outperformed most fixed bandwidth
models, with the federated adaptive model showing superior
performance compared to the standard adaptive model. It is
evident that model performance improves with better channel
quality. Additionally, the stability and generalization ability
of both adaptive models were significantly enhanced due to
the adaptive averaging effect, and the inclusion of federated
learning further enhanced the adaptability of the model to
varying conditions.

Result Analysis. From these two figures, it is clear that
the performance of different models under varying bandwidth
ratios and SNRs shows that the 1/4 bandwidth model remains
largely unchanged. In contrast, the full bandwidth model,
3/4 bandwidth model, and 1/2 bandwidth model exhibit a
significant performance decline as the bandwidth ratio and
SNR decrease. This means that when the test bandwidth ratio
is lower than the training bandwidth ratio, fixed bandwidth
models fail to adapt to low-bandwidth environments, resulting
in a "cliff-edge" effect.

Table I is a performance comparison between the federated
adaptive model and the standard adaptive model based on the
full-bandwidth basic model. By observing the performance of
the federated adaptive model and the standard adaptive model
in Table I, it can be seen that the federated adaptive model
trained by the federated learning method shows more stable
performance and stronger generalization ability under different
SNR and bandwidth ratio conditions. From Table II, it can
be seen that the adaptive model with federated learning has
improved performance in various situations, especially in low
bandwidth.

Result Analysis. It can be concluded that the model trained
by federated learning can better adapt to low bandwidth and
low signal-to-noise ratio environments.
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Fig. 5: Comparison experiment between bandwidth-adaptive model and fixed bandwidth model under different bandwidths

TABLE I: Performance comparison between adaptive model and full-bandwidth basic model

Adaptive Systems (%) Federated Adaptive Systems (%)

Signal-to-Noise Ratio (dB) 0 6 12 18 0 6 12 18

Bandwidth share 25% 132.0 206.0 205.6 200.0 297.4 386.5 395.8 458.3

Bandwidth share 50% 143.0 162.0 135.0 129.1 167.5 163.0 141.0 141.2

Bandwidth share 75% -18.1 -15.6 -10.5 -9.9 0.5 -13.3 -4.2 -5.1

Bandwidth share 100% -22.3 -15.2 -10.5 -10.0 0.3 -11.9 -6.0 -2.1

TABLE II: Performance comparison between federated adaptive model and basic adaptive model

Federated Adaptive Systems (%)

Signal-to-Noise Ratio (dB) 0 6 12 18

Bandwidth share 25% 71.3 59.0 62.2 83.6

Bandwidth share 50% 8.5 0.3 2.5 4.9

Bandwidth share 75% 22.8 3.4 8.7 6.6

Bandwidth share 100% 29.5 6.7 6.7 10.0
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VI. CONCLUSION

The Social Internet of Things (SIoT) [33] enhances the
intelligence of IoT systems by leveraging social relationships
among devices, providing users with a high-quality service
experience and promoting efficient resource utilization [18].
In SIoT environments, reliable and efficient communication
between devices is essential. Thus, this paper introduces a
deep learning-based semantic communication system with
joint source-channel coding (DeepJSCC), channel adaptation
and bandwidth adaptation. Channel adaptation is achieved
through feature fusion technology, which enables the model to
adapt to various channel conditions. Using deep reinforcement
learning, bandwidth is dynamically allocated under different
signal-to-noise ratio conditions. In addition, by utilizing fed-
erated learning to train the model in different environments,
we enhance the generalization ability of the model while
preserving data privacy [19].

Compared with the similar adaptive semantic communica-
tion model DeepSC-MIMO [32], it improves communication
stability and data security, which are extremely important in
social networks. Our approach improves transmission effi-
ciency and enables information to be conveyed more naturally
and quickly. Applying it to the SIoT can ensure reliable and
high-quality transmission of data in diverse and complex en-
vironments, further improving user experience and providing
personalized services.

Despite the significant progress made, several limitations
and potential directions for future research remain. First, while
the model performs well in controlled laboratory settings,
ensuring its scalability in large-scale SIoT deployments is
still a challenge. Second, practical deployment encounters
issues such as computational resource constraints, device di-
versity, and integration with existing infrastructure. Finally,
although federated learning enhances privacy protection, it also
increases coordination and communication overhead. Future
research should focus on optimizing both federated learning
and deep learning processes to reduce communication costs
and improve training efficiency, especially in scenarios in-
volving a large number of devices. In addition, regarding the
practical application of the system, we believe that based on
its excellent performance under harsh conditions, it can be
used for long-distance communications and communications
in some environments with poor network quality, such as rural
network construction or cross-border network construction.
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