
... 1

Federated Training Generative Adversarial Networks
for Heterogeneous Vehicle Scheduling in IoV

Lizhao Wu, Hui Lin, Xiaoding Wang

Abstract—In autonomous driving environments, Generative
Adversarial Network (GAN) are often used to predict the
future trajectories of objects in the scene, providing decision
support for autonomous driving systems. However, integrating
GAN models into the Internet of Vehicles (IoV) poses numerous
challenges. Firstly, GAN models necessitate user data and exten-
sive computing resources, whereas diverse Intelligent Connected
Vehicle(ICV) possess limited bandwidth and computational ca-
pabilities, making it challenging to deploy models of the same
scale as those in the cloud. Secondly, multi-faceted aspects,
including energy consumption, computation, communication, and
vehicle training scheduling, have yet to be thoroughly examined,
particularly in the context of IoV’s limited resources. To address
above issues, we propose a novel federated learning framework,
Heterogeneous-Vehicle-Scheduling-GAN (HVS-GAN), for train-
ing GANs in resource-constrained IoV environments. HVS-GAN
balances GAN generation quality and training costs in IoV. It
supports multiple ICVs training GAN models of different struc-
tures, breaking the strong assumption of uniform GAN model size
constraints in previous works and enabling collaborative learning
within IoV. Furthermore, to balance quality and training costs,
we incorporate Deep Deterministic Policy Gradients learning
to manage varying model size constraints, training delays, and
training consumption across participating ICVs. Experimental
results and analysis confirm the superiority of our proposed HVS-
GAN solution, which achieves better outcomes in IoV scenarios
with stringent model size constraints compared to state-of-the-art
algorithms.

Index Terms—Internet of Vehicles, Generative Adversarial
Network, Federated Learning, Reinforce Learning, Deep Deter-
ministic Policy Gradients.

I. INTRODUCTION

Generative Adversarial Network (GAN) models have
demonstrated immense potential in autonomous driving envi-
ronments. They are not only widely used to predict the future
trajectories of other vehicles, pedestrians, and other objects
in the scene, providing precise and real-time decision support
for autonomous driving systems and ensuring safe and efficient
driving [1]; but also, GANs can generate highly personalized
content based on users’ driving habits, preferences, and even
emotional states, such as customized navigation routes [2]
and driving entertainment recommendations [3], significantly
enhancing users’ travel comfort and satisfaction.

However, applying GAN models to Internet of Vehi-
cles(IoV) services poses several significant challenges. Firstly,

Lizhao Wu, Hui Lin and Xiaoding Wang are with the College of Computer
and Cyber Security, Fujian Normal University, Fuzhou, 350117, China, Email:
melowlz@yeah.net,linhui@fjnu.edu.cn and wangdin1982@fjnu.edu.cn.

Corresponding authors: Hui Lin, Xiaoding Wang.

GAN models heavily rely on user data and consume sub-
stantial computational resources, while many Intelligent Con-
nected Vehicles (ICV), constrained by hardware and energy
limitations [4], [5], often cannot provide sufficient computing
power to support these demands. Furthermore, even in ICVS
with adequate computational resources, effectively balancing
computational and communication energy consumption to
ensure system sustainability and efficiency remains an urgent
issue.

To address the mismatch between GANs and IoV-supported
services, recent research has delved into foundational strate-
gies in this domain. Firstly, some studies have leveraged
Federated Learning (FL) to facilitate GAN deployment in IoT
scenarios. For instance, FedGAN [6] pioneered the extension
of FL to GANs, setting distinct learning rates for different
components of the GAN network and regularly communicating
with the server. Another study, Cap-GAN [7], introduced a
novel approach where discriminators were trained on User
Equipment (UEs) and generators on the server, reducing
overhead through this separated deployment.

However, the primary challenge in adopting FL systems
stems from limited resources, as client devices participating
in FL (e.g., smartphones, ICVs) exhibit significant variations
in computing power, bandwidth, and other capabilities. Re-
searchers have also endeavored to address FL under resource
constraints. FedProx [8] allows each client to train in dif-
ferent number of iterations based on local resources, but it
presupposes that all clients train the identical model. While
this approach somewhat mitigates the heterogeneity issue, it
does not fundamentally address the mismatch between model
architectures and device computing capabilities. HeteroFL [9]
introduced a novel approach that involves partitioning the
global model horizontally, maintaining the entire depth of
the Deep Neural Network (DNN) architecture on each client.
This strategy adjusts the width partitioning ratio specifically
to accommodate the varying capabilities of heterogeneous
clients, thereby offering a tailored solution to the challenges
posed by diverse client environments. Zhang [10], Zarandi
and Tabassum [11], Chen [12], among others, focused more
on energy consumption issues, formulating an optimization
problem that considers computation delay, communication
delay, bandwidth, and other factors. They also introduced
Reinforcement Learning(RL) methods as schedulers to assist
client selection in addressing these challenges.

Although current research has delved into GAN implemen-
tation methods, frameworks, and application cases in edge
computing scenarios, and considered FL strategies in resource-
constrained environments, these studies remain insufficient

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 2

when confronted with the specific challenges of IoV. In the
IoV environment, ICVs’ computing power and communication
bandwidth are strictly limited, necessitating careful selection
of suitable ICVs to participate in GAN training to ensure both
efficiency and high-quality GAN model performance under
resource constraints.

Therefore, in this paper, we innovatively propose a frame-
work named ”Heterogeneous Vehicle Scheduling Generative
Adversarial Network” (HVS-GAN) to tackle the challenges
faced by GANs training in resource-constrained IoV envi-
ronments, particularly within the context of FL deployment.
We construct an optimization model that focuses not only on
enhancing generation quality but also on optimizing training
costs, while introducing stricter constraints in the form of
differentiated model size limitations for each vehicle. To
overcome this limitation, we integrate heterogeneous model
technology, enabling HVS-GAN to effectively train standard-
sized GAN models in the cloud environment, even under
resource-constrained conditions. Furthermore, we employ the
Deep Deterministic Policy Gradient (DDPG) algorithm to
balance generation quality and training costs, determining
participating ICVs for each aggregation round. This strategy
significantly reduces training costs while ensuring unaffected
GAN model generation quality, achieving an optimized bal-
ance between resource utilization and model performance. The
main contributions of this paper are summarized as follows:

• We investigates the application of FL for GAN in the
resource-constrained IoV scenario, where ICVs have lim-
ited computation and communication capabilities. Tar-
geting this complex scenario, we innovatively formulate
an optimization problem that encapsulates the trade-
off between resource constraints and generation quality,
aiming to achieve high-quality GAN model training under
limited resource conditions.

• Taking into account the unique model size con-
straints faced by each vehicle, we innovatively pro-
pose the Heterogeneous-Vehicle-Scheduling-GAN (HVS-
GAN) framework. This framework ingeniously incorpo-
rates heterogeneous model training methods, enabling dif-
ferent types of ICVs to run GAN models of varying sizes
that match their own resources locally. Meanwhile, HVS-
GAN ensures that these heterogeneous vehicle models
can collaborate and contribute to the optimization of the
global GAN model.

• In HVS-GAN, we tailored a DDPG agent specifically
to learn about the resource conditions and generation
quality of each ICVs, and to optimize the scheduling of
vehicle participation in aggregation, thus addressing the
optimization problem outlined above.

• Rigorous experiments have proven the superiority of our
proposed HVS-GAN solution, which outperforms state-
of-the-art algorithms in scenarios with stringent model
size constraints, achieving better generated quality and
lower communication cost.

The remainder of this article is organized as follows. The
related work is summarized in Section II. Some preliminaries
and the problem are described in Section III. Section V

elaborates the proposed HVS-GAN framework to solve the
problem. In Section VI, simulation results are presented and
discussed. Finally, Section VII concludes this article.

II. RELATED WORK

GAN: Goodfellow [13] et al. first introduce the concept
of GAN, employing two neural networks in a competitive
game-like framework. They taught these networks to learn
the distribution of datasets, thereby enabling generative tasks.
GANs have since garnered widespread adoption across diverse
domains, including Anomaly Detection [14], the Vehicle Tra-
jectory Prediction [15], the Healthcare System [16] and more,
owing to their remarkable ability to generate data. Neverthe-
less, none of above algorithms have taken into account how
to handle the heterogeneity of ICV in the IoV scenario.

FL-Based GAN: To address the above challenges, previ-
ous researchers began to explore how to deploy GANs in
distributed scenarios. FL [17] was proposed for distributed
general CNN model training without exchanging user data.
With the development of FL, distributed GAN training algo-
rithms leveraging this paradigm emerged. FedGAN [18] first
extend FL to GAN, which employs two distinct learning rate
for separate component of GAN network, and periodically
communicate with the server. The parameters of GANs are
notably larger than conventional models, typically encom-
passing both a generator and a discriminator, which means
increase in energy consumption and computational demands
during training process. Recently, CAP-GAN [7] proposed a
method of separately training the discriminator on UEs and
the generator on servers to achieve reduced overhead through
separate deployment , while IFL-GAN [19] proposed maxi-
mum mean discrepancy to accelerate the convergence speed
in heterogeneous data scenario. However, both of them still
cannot support the heterogeneity of ICVs in the IoV network,
particularly for ICVs with low computational capabilities,
which are unable to deploy GAN models of normal size.

Heterogeneous Model Training FL: In IoV, different ICVs
under the same network have different computing capabili-
ties [20]. Therefore, it is difficult to ensure that all ICVs can
run under the original model parameters when deploying FL
in Iot. This problem is called Heterogeneous model training
FL. Previous researchers have proposed a variety of works to
solve this problem. FedProx [8] allows each client to train in
different number of iterations based on local resources, but it
presupposes that all clients train the identical model. While
this approach somewhat mitigates the heterogeneity issue, it
does not fundamentally address the mismatch between model
architectures and device computing capabilities. HeteroFL [9]
introduced a novel approach that involves partitioning the
global model horizontally, maintaining the entire depth of
the DNN architecture on each client. This strategy adjusts
the width partitioning ratio specifically to accommodate the
varying capabilities of heterogeneous clients, thereby offering
a tailored solution to the challenges posed by diverse client
environments. Recently, PerFedMask [21] proposed utilizing
an optimized masking vector for sub-models in ICV segmen-
tation. Moreover, the architectures of the above-mentioned

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 3

TABLE I
HOW THE WORK IN THE EXISTING LITERATURE HANDLES HETEROGENEOUS MODEL CLIENTS UNDER RESOURCE CONSTRAINTS ON TRAINING GAN

Design Choice FL in IoV [10]–[12] FL-Based GAN [7], [24] Heterogeneous
Model Training FL [9] HVS-GAN

Model Partitions Entire model on each Vehicle Entire model on each client
or set global generator on server Partial parameters of model Partial parameters of

discriminator and generator

Client Scheduling Scheduled
according to resource Random select Random select Scheduled by DDPG

according to resource

Training GAN No consideration Consideration No consideration Consideration

algorithms are all targeted at CNN models, and have not been
extended to the training of GANs.

IoV with FL: In IoV networks, where there are a large
number of ICVs with a high number of parameters, select-
ing suitable ICVs with resources for aggregation becomes a
challenging problem in FL. Zhang [10], Zarandi and Tabas-
sum [11], Chen [12] et al. have studied the issue of energy con-
sumption and formulated an optimization problem that takes
into account factors such as computation delay, communica-
tion delay, bandwidth, etc. They also introduced RL methods
as a scheduler to assist in client selection to solve this problem.
Zhang et al. [22] focused on the context of the Industrial IoT
and modeled the costs of training time and training quality.
The total cost is obtained by combining these two costs, and
the agent minimizes this cost by selecting nodes in each round.
In [23], Bourbon and Nagellen issued a technical report on the
integration of RL with FL. They designed and implemented a
DDPG algorithm named SchedulerFL for training participants
in FL settings. However, none of the aforementioned existing
methods have considered the distributed training of GANs in
IoV.

To highlight the distinctiveness of HVS-GAN, Table I
succinctly compares key aspects like model partitioning, client
scheduling, and GAN training with other prevalent methods.

III. PRELIMINARIES
A. FL with GAN

The GAN architecture comprises a discriminator D and a
generator G, engaging in a competitive game facilitated by
neural networks. Their objectives are diametrically opposed:
G strives to convert random noise z into data resembling the
real distribution, while D endeavors to distinguish genuine
from synthetic inputs. This adversarial interplay is governed
by the objective function V (G,D).

min
G

max
D

V (G,D) = Ex∈dr [log(DθD (x))]

+Ex∈dg
[log(1−DθD (GθG (z)))]

(1)

Here, z represents the noise input to the generator, while θG

and θD denote the respective parameters of the generator and
discriminator.

To facilitate the algorithm’s applicability across diverse
GAN models, we standardize the objective function in a
universal format:

min
G

max
D

V (G,D) = Ex∈dr [L(D(x))] + Ex∈dg [L(1−D(x))]
(2)

Here, x represents a sample drawn from a mixed dataset
comprising both generated dg and raw dr distribution. In this
context, raw distribution dr represents the real data distribution
that the GAN model needs to learn. On the other hand,
generated distribution dg is used to generate high-quality data
from noisy data. The objective function employs a concave,
increasing function L(·), which can be tailored to yield various
GAN training variants. For instance, adopting L(t) = || · ||2.
In our approach, we set L(t) = log(t) as depicted in equation
(1), offering a unique perspective on GAN training.

FL encompasses a vast network of UEs U , often numbering
in the hundreds to thousands, where each UE trains a DNN
model locally and contributes to a global update through a cen-
tralized server-orchestrated weight aggregation process. The
FL try to find a global DNN model θ∗ to optimize the objective
function F (θ∗) = Σu∈U

nu

n fu(θ), where du = nu

n denotes
the UE’s local sample size, and fu(θ) = 1

nu
Σi∈du

Li(θ) is
the local objective function of the UE u. Li(θ) represents the
training loss incurred by sample i and du signifies the local
dataset maintained by UE u. With the training process about
GAN in equation (1), The server aggregation phase can be
concisely described as:

F (θG) = Σu∈U
nu

n
fu(θ

G)

F (θD) = Σu∈U
nu

n
fu(θ

D)
(3)

B. Reinforce Learning with Deep Deterministic Policy Gradi-
ent

RL is a goal-oriented learning method. In RL, an agent
interacts with an environment. At each time-step, the agent
observes its environment and selects an action st. Then the
agent receives a reward rt+1 depending of its action on
the environment. The environment changes over the time
with state st+1. Generally speaking, the agent behaves like
a decision maker which learns through a policy π(s). Its goal
is to optimize a long-term reward by interacting with the
environment.

DDPG [23] is a general deep RL algorithm used to address
problems with continuous action spaces [25], [26]. DDPG
establishes a Q function as critic and a policy function as actor
simultaneously. The action-value function Q(s, a|θQ), where
θQ denotes for the critic network parameters, is learned by
using Bellman equation[27]. Hence, the action-value function
under any policy π can be defined as:

Qπ(st, at) = E[R(st, at) + γQπ(st+1, π(st+1))] (4)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 4

And The agent’s objective is to acquire the optimal policy
π∗(s):

π∗(s) = max
a

Q∗(s, a) (5)

where Q∗(s, a) = maxπ Q
π(s, a) represents the optimal

action-value function, the agent strives to attain.

IV. PROBLEM STATEMENT

We consider a system model of the FL consists of intelligent
vehicles [28] which consists of one server and a set ICVs U
in the road network, and each ICV have onboard sensors to
collect data from surrounding environment.

Initially, each ICV develops its unique local models, denoted
as Du for discriminator and Gu for generator, tailored specif-
ically to its individual local dataset du. The process of exe-
cuting these computations locally entails both computational
energy expenditure and latency, which can be mathematically
formulated as:

Ecmp
u = αuCuf

2
u (6)

T cmp
u =

Cu

fu
(7)

Here, αu is the computational efficiency factor, Cu quantifies
the cumulative CPU cycles necessary for ICV u to process
its local dataset, given by Cu = τudu, where τu signifies
the computational overhead for processing a single data; fu
represents the local processing capability of device u.

Since the local generator model Gu and discriminator model
Du training of ICV u completed, the updated local parameters
θGu and θDu from ICVs participating in this round will be sent
to the server. The latency and consumption incurred by the
u in transmitting data to the server over a designated uplink
resource block (RB) are specified as follows:

Tup
u =

b(θGu) + b(θDu)

ru
(8)

Eup
u = ηuT

up
u (9)

where b(θGu) and b(θDu) means the size of model parameters in
bits, consisting of the model parameters of the discriminator
and the generator, respectively. ru denotes the transmission
rate of device u, ηu denotes the transmission power of device
u, βu denotes peak transmission speed achievable from ICV
to the serve, which is calculated by the following formula:

βu = wulog2

(
1 +

pugu
N0wu

)
(10)

where wu(in Hz) denotes the bandwidth of an allocated RB(in
Hz) between the server and the u-th ICV; N0 is the additive
white Gaussian noise power at the server; gu denotes the
channel power gain from ICV u to the server, which is given
by

gu = Lu|hu|2 (11)

where Lu signifies the resultant effect of the distance-based
path loss combined with log-normal shadowing variations, hu

signifies the Rayleigh fading factor, adhering to the distribution
specified by CN(0, 1).

As the server aggregate the localized Gu and Du models
from ICVs, the processing latency and resource utilization at
the server can be expressed as:

T cmp
s =

Cs

fs
(12)

Ecmp
s = αsCsf

2
s (13)

Cs signifies the aggregate CPU cycles needed by the server
to process the associated data; fs is the server processing
capability, αs is the effective capacitance coefficient of com-
putation. After the server has aggregated the Generator G
and global D based on updates from participated ICVs, the
updated parameters of two models θGu and θDu are sent to
all ICVs u ∈ U across the designated downlink connection
communication resource blocks via Device-to-Device links.
Hence, the latency and consumptionfor data transmission from
the server to the ICV u can be formulated as:

T down
u =

b(θGu) + b(θDu)

ru
(14)

Edown
u = ηuT

down
u (15)

The overall system delay per cycle comprises the ICV’s
model training latency, upload delay, download delay, and the
server’s model aggregation latency. As follows:

T̂ = max
u∈U

Tup
u + T (max{max

u∈U
T cmp
u , T cmp

s }+max
u∈K

T down
u)

(16)
where T is the total rounds of aggregation. Furthermore, the
respective peak energy consumption is specified as:

E = max
u∈U

Eup
u + T (max

u∈U
Ecmp

u + Ecmp
s +max

u∈U
Edown

u) (17)

Therefore, the overall system cost is defined as the weighted
combination of energy consumption and latency, expressed as
follows:

Cost = λE + (1− λ)T̂ (18)

where λ ∈ [0, 1] represents the balancing factor between
energy consumption and latency costs. When the entire system
possesses limited power and places greater emphasis on energy
consumption, the balancing factor can be assigned as λ = 1.
Conversely, if the system is engaged in real-time or interactive
tasks that prioritize processing latency, the balancing factor
should be set to λ = 0.

In this paper, we consider a more realistic scenario of
heterogeneity, where each ICV differs in terms of computa-
tional power, processing speed, and network communication
bandwidth. Furthermore, given the large number of ICVs, the
server needs to select appropriate ICVs for training the GAN.
Our goal is to complete the training in the shortest possible

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 5

time while ensuring the performance of the GAN under
resources constraints. Therefore, the problem is to optimize:

min
G,A

max
D

[
Σu∈UVu(G,D)︸ ︷︷ ︸

Object1

+ Cost︸ ︷︷ ︸
Object2

]
s.t. λ ∈ [0, 1],

aut ∈ [0, 1]

Σu∈U ′aut ≤ N

aut Tu ≤ Tmax

ηmin ≤ aut ηu ≤ ηmax

fmin ≤ fu ≤ fmax

b(θGu) + b(θDu) ≤ bumax

(19)

where A = [aut] is a T × U matrix for ICVs selection, with
T the number of rounds and U the number of devices, Cost
represents the total utility of system.

Object1 describes the optimization goal of GAN perfor-
mance, and Object2 describes the total utility cost of the
scheduled ICVs. λ ∈ [0, 1] indicates the balancing factor
of the system utility cost; aut represents the limiting factor
for the binary indicator of ICV selection decision; Σu∈U ′aut
ensures that the number of ICVs selected does not exceed
N in each round, where U ′ is the set of selected ICV each
round; aut Tu ≤ Tmax indicates that the processing latency for
each ICV should not exceed a predefined maximum threshold;
Σu∈U ′wu ≤ Wmax represents the cumulative bandwidth
utilization of all chosen ICVs remains within Wmax; ηmin ≤
aut ηu ≤ ηmax imposes a limit on the transmission power level
for each individual ICV; fmin ≤ fs ≤ fmax indicates that the
allocated computational resources for local processing of each
ICV must not surpass the respective available computational
capacity; b(θGu)+b(θDu) ≤ bumax indicates the model parameter
size constraint for each ICV.

Directly solving problem (19) poses significant challenges.
Firstly, aggregating GAN models with different parameter
sizes trained on different ICVs into a global model is a
difficult task. Although various methods have been proposed
to aggregate heterogeneous models [8], [9], there is no works
deployed specifically for GAN training. Furthermore, ICVs
scheduling decisions also have a profound impact on the
performance of the current model, which in turn influences
subsequent resource allocation and client scheduling decisions,
creating a complex interdependence that further complicates
the problem.

V. FRAMEWORK

To address the aforementioned issues, we propose the HVS-
GAN framework, a method for federated training of GAN
models in IoT scenarios with resource constraints. In the
following chapters, We first introduce the main progress of
HVS-GAN in chapter V-A. Then we introduce heterogeneous
model aggregation techniques in chapter V-B , which enabling
different devices to train GAN models of varying sizes and
contribute to the global model on the server. Finally, we in-
troduce ICVs selection based DDPG in chapter V-C, to tackle
the problem of ICVs selection under resource constraints.

Generator
 𝐺𝑢

Discriminator 𝐷𝑢

Data

Generator 𝐺𝑢 Discriminator 𝐷𝑢

Data Data

Generator 𝐺𝑢 Discriminator 𝐷𝑢

Common ICV Advanced ICV Super ICV

Server

DDPG
Scheduler

Heterogeneous
Model Aggregation

State s

Actor
Network 𝜃𝜋′

Critic
network 𝜃𝑄

Reward 𝑅

 Selected
ICVs 𝑈

Collect ICVs
Level

Collect model
propo𝑡𝑖𝑜𝑛 𝑅𝑘

 Aggregating
model parts of

each level

Global
discriminator

Global
generator

 Download
Models Upload state and model

Update

Target networks

𝜃𝑄′
, 𝜃𝜋′

… …

 Local Train

Fig. 1. HVS-GAN Overview. The workflow includes the following steps: ①
ICVs perform local train on heterogeneous models; ② ICVs upload state and
generator and discriminator model; ③ Server selects ICVs according to the
state; ④ Server aggregates the models of different sizes; ⑤ ICVs download
generator and discriminator;

A. HVS-GAN Framework

To resolving the object1 in problem (19), HVS-GAN allows
heterogeneous ICVs to participate in training and contribute to
the global model. As shown in Fig.1 and Algorithm 1, HVS-
GAN follows the following steps:

Firstly, the server employs the DDPG module to make
decisions and select several ICVs for training. The server get
the selected ICVs at, send heterogeneous model to them. The
selected ICVs receive heterogeneous models that are matched
to their local devices for training. Then ICVs train the G and
D, the formulation as follows:

Dt+1
k = Dt

k +O(∇Dk
LD) (20)

Gt+1
k = Gtk +O(∇Gk

LG) (21)

where O(·) is an optimization function. LD and LG is the loss
function of discriminator D and generator G.

Once the training is complete, the ICVs send model up-
dates to the server. The server accepts updates from the
ICVs and collects states St. Then,the server store experiences
(St, St+1, at, rt) to memory and update the actor network θQ

and critic network θπ . Next, the server performs heterogeneous
model aggregation to get next round model Gt+1 and Dt+1 and
uses the DDPG module to decide which ICVs participate as at
in the next round of training. The server generates sub-models
of generator θGk and θDk based on the limited resources of the
selected ICVs and sends them to the ICVs. After completing
these steps, the next round of training begins.

The framework primarily consists of heterogeneous model
training and ICVs selection based DDPG . We will now talk
about their details.

B. Heterogeneity Aggregation

Inspired by HeteroFL [9], we assign subsets of the global
generator θG and discriminator θD to each ICV in HVS-
GAN that satisfy their resource constraints, and aggregate their

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 6

Algorithm 1 HVS-GAN
Server:
Require: ICVs set U , global GAN parameters θD, θG .

1: for all communication round t = 0, 1, ...T do
2: Select ICVs U ′ by Scheduler;
3: for all ICVs u in at do
4: Count model proportion Ru = bmax

u /2(b(θD) +
b(θG));

5: Generate sub-models (θDu , θGu) based on Ru;
6: Send (θDu , θGu) to selected ICVs;
7: Receive updated (θDu , θGu) from selected ICVs;
8: end for
9: for all layers W in θD and θG do

10: Update each W according equation(29);
11: end for
12: Collect statement st;
13: Update Scheduler acccording euqation(34) and equa-

tion(35);
14: end for
15: return model parameters θD∗, θG∗.
ICV:
Require: Sub-models θDu , θGu from server.

1: for all local round do
2: Update local discriminator Dt+1

u = Dt
u+O(∇Du

LD);
3: Update local generator Gt+1

u = Gtu +O(∇Gu
LG);

4: end for
5: return Updated sub-model parameters (θDu , θGu).

models at the server to solve problem(19). The details of this
process are as follows:

Once the server completes the aggregation of the global
discriminator θD and generator θG for a certain round, the
server utilizes a DDPG module to select the ICVs that will
participate in the next round of training. For a specific ICV
u, the server calculates its model proportion Ru based on its
constraints, using a formula that is:

Ru =
bmax
u /2

b(θD) + b(θG)
(22)

Here, b(θD) and b(θG) represent the model sizes of the global
discriminator and generator in bits, respectively. bmax

u is the
maximum model size that u can support in bits, and the
division by two is due to the fact that the ICV needs to
train both the generator and the discriminator models, and
we assume that the sizes of these two models are similar.
Additionally, we assume that each ICV will select a sub-model
within its maximum tolerable model size bmax

u .
Taking the θG as an example, let’s assume that its certain

hidden layer W ∈ Rlg×kg within it has a dimension of lg and
kg , where lg and kg represent the output and input channel
size of this layer. By multiplying lg and kg with the model
proportion Ru, we can obtain the input channel lu andd output
channel ku that are suitable for the ICV u.

lu = lg ×Ru

ku = kg ×Ru

(23)

𝑾𝟏

𝑾𝟐

𝑾𝟑

 One certain layer
of heterogeneous
model.

 Extract the left upper
matrix of parameters in
different levels.

 Aggregate parameter
matrices of different
levels.

 global model is constructed
by taking the union of all
disjoint sets

𝑾𝟏

𝑾𝟐[: 𝒍𝑹𝟏
, : 𝒌𝑹𝟏

]

𝑾𝟑[: 𝒍𝑹𝟏
, : 𝒌𝑹𝟏

]

𝑾𝟐\𝑾𝟏

𝑾𝟑\𝑾𝟏

𝑾𝟑\𝑾𝟐

Fig. 2. The process of Heterogeneity Aggregation, with W1(gray),
W2(green), and W3(yellow) blocks representing a certain layer of models
in different sizes.

After obtaining the ICV’s input and output channel numbers,
we can take the upper left submatrix of W with a size of
lu × ku as the subset of this layer:

Wu =W[: lu : ku] (24)

After performing such operations on each layer of the
generator parameter θG and discriminator parameter θD, the
server can obtain a subset of the global generator θGu and a
subset of the discriminator θDu , then send these two models to
the ICV for local training.

Once the training is completed by the ICV, the server
collect all the updates for aggregation. First the server sorts
the Ru of all ICVs, then get a list of model proportion
{Ru, ...,Ru′}. ICVs with the same Ru value can be classified
into one category, and we assume there are three different
values {R1,R2,R3}. We assign a class level {c1, c2, c3} to
each of these R values.

We exemplify the process using Fig.2. The equation (25)
shows that the smallest level of model parameter(gray) c1 is
aggregated from all ICVs that contain it.

Wc1 =
1

|U ′|
Σu∈U ′W c1

u (25)

where Wc1 denotes the smallest subset of model parameters
that corresponds to the level c1.

Next, we discuss the aggregation of the next part, as shown
in the equation(26) and the green blocks in figure. The set
difference between part Wc2 (green) and Wc1 (gray) of model
parameters is aggregated from ICVs having Wc2 .

Wc2\Wc1 =
1

|U ′| − |U ′
c1 |

Σu∈(U ′−U ′
c1

)W
c2
u \W c1

u (26)

where, Wc2\Wc1 denotes the set of elements including Wc2

but exclude Wc1 ; U ′ −U ′
c1 denotes among the selected ICVs

but excluding the ICVs only with c1 subset.
We aggregate the Wc3 in similar way as shown in yellow

block and equation(27).

Wc3\Wc2 =
1

|U ′| − |U ′
c2 | − |U ′

c1 |
Σu∈(U ′−U ′

c2
−U ′

c1
)W

c3
u \W c2

u

(27)

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 7

Therefore, We can generalize the formula, for cn level, we
can aggregate the corresponding parts in:

Wcn\Wcn−1 =
Σu∈(U ′−U ′

cn−1
−···−U ′

c1
)W

cn
u \W

cn−1
u

|U ′| − |U ′
cn−1
| − · · · − |U ′

c1 |
(28)

Once all the sub-models of all levels are aggregated, the
global model parametersW are constructed from the union of
all disjoint sets of the partition.

W =Wc1 ∪Wc2\Wc1 ∪ · · · ∪Wcn\Wcn−1 (29)

Descrption above applies to a specific layer within the
global model and each layer of the model is updated and
aggregated in the same way. In a practical framework, we
perform the same operations for every layer of both the global
discriminator θD and the global generator θG .

C. DDPG-Based ICVs Selection

After resolving the training and deployment issues of GAN
models under restrictions on model parameters, we aim to
solve the Object2 of problem(19) through the DDPG module,
with the reducing costs while maintaining the performance
of GAN. The Object2 can be defined by a 3-tuple (S, a, r),
where S, a, and r are the state, action, and reward respectively.

1) State S: During the t−th edge aggregation round, the
system’s state st ∈ S is established as

st = {T down
u,t−1+Tup

u,t+T cmp
u,t , Edown

u,t−1+Eup
u,t+Ecmp

u,t , bumax, ϵ
u
t }

(30)
where T down

u,t−1 and Edown
u,t−1represents the download delay and

consumption of the ICV in the previous round; Tup
u,t and Eup

u,t

represents the download delay and consumption of the ICV
in this round; and T cmp

u,t and Ecmp
u,t represents the delay and

consumption of the ICV’s computation in this round; and bumax

represents the maximum model size in bits; ϵut indicates the
lastest round ICV was selected.

2) Action A: We design the action in the t-th aggregation
round to be at ∈ A. Here, at is the binary ICVs selection
decision.

3) Reward r: Reward serves as an assessment of the
performed action. For problem(19), a straightforward design
way would define the instantaneous objective function in
Object1 and Object2. However, the Σu∈UVu(G,D) can’t be
observed. Therefore, we use the FID index (see chapter VI-A)
as an observation indicator of Σu∈UVu(G,D). Since Object2
can be observed directly, we calculate the reward value through
the following formula:

rt = ζ1[FID(t)− FID(t− 1)]− ζ2Cost(t) (31)

where ζ1 and ζ2 is the hyperparameter to adjust the tradeoff
between the generative quality and cost; FID(t)−FID(t−1)
describes the growth of GAN model performance. When
the growth becomes smaller, it indicates that the training is
approaching convergence. Due to the exceptionally significant
difference between the FID and the COST in practical ex-
periments,we employ two distinct parameters, ζ1 and ζ2, to
control the reward value. 4) ICVs selection process : We
have introduce DDPG optimal goal in the previous chapter

Procedure 2 Scheduler
Select(·)
Require: State matrix ŝt;

1: Selection action At = π(ŝt|θπ);
2: return At.

Update(·)
Require: Updating times T .

1: for all t = 0, 1, ..., T do
2: Sample B = (s, a, r, s′) from memory;
3: Compute y(r, s′)← r + γQ′(s′, π′(s′));
4: Update Actor network:

∇ϕ
1

|B|Σ(s,a,r,s′)∈B(Q(s, a)− y(r, s′))2;
5: Update Critic network:

∇θ
1

|B|Σs∈BQ(s, π(s));
6: Update target network:

ϕ′ ← ρϕ′ + (1− ρ)ϕ, θ′ ← ρθ′ + (1− ρ)θ;
7: end for
8: return None.

III-B, and in this chapter, we will introduce in detail how
DDPG is applied to FedHVS. As we known, DDPG stands
out among various DRL methodologies for problem (19) due
to its proficiency in managing continuous state and action
domains. Employing the actor-critic architecture, the DDPG
model utilizes an actor network to model the policy π, and a
critic network to estimate the action-value function Qπ(s, a).
A target network and an online network, both sharing the
same architecture, constitute either an actor network or a critic
network. This dual-subnetwork structure not only ensures
learning stability but also effectively prevents overestimation,
especially in large-scale problem scenarios.

Let π(st|θπ) and Q(st, at|θQ) Denote the actor and critic
online networks as such, respectively; θπ and θQ are the pa-
rameters of these two model. Let π′(st|θπ

′
) and Q′(st, at|θQ

′
)

Designate the actor and critic target networks separately; θπ
′

and θQ
′

are also the parameter of these two model. To optimize
the critic network, the subsequent loss function is minimized:

L =
1

M ′Σt(Yt −Q(st, at|θQ))2 (32)

where Yt = rt + γQ(st+1, π(st+1|θπ
′
)|θQ′

) and M ′ is the
size of mini-batch. We optimize the actor network along the
direction of ∇θπJ(θπ) ≈ 1

M ′Σat
Q(st, at|θQ)∇θππ(st|θπ)

in order to maximize the policy objective function outlined
below:

J(θπ) = Eθπ [Q(st, π(st|θπ)|θQ)] (33)

where ∇θπ denotes the gradient with respect to θπ . Subse-
quently, the actor and critic target networks undergo a soft
update process as follows:

θπ
′
← ϕθπ + (1− ϕ)θπ

′
(34)

θQ
′
← ϕθQ + (1− ϕ)θQ

′
(35)

where ϕ serves as a hyperparameter regulating the pace of
learning.

The DDPG component integrated into HVS-GAN is out-
lined in the algorithm 2. During each iteration of edge

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 8

aggregation, the agent gathers pertinent state information st
from the surrounding environment. The ICVs contribute their
localized observations alongside the trained models for central
processing. The agent make decisions and select next round
participated ICVs. The transmission latency and energy us-
age associated with state and action data are comparatively
insignificant due to their significantly smaller size compared
to model data. The actor online network outpus action at.
Upon the actor online network outputting action at, we refine
problem(19) to evaluate reward. At the end of the round t, the
agent receives reward rt and transitions to a new state st+1.

An experience replay buffer is incorporated into the agent
to preserve the experience {st, at, rt, st+1} in each round. The
learning procedure initiates once the experience buffer is suffi-
ciently populated. Specifically, a mini-batch of M ′ experiences
is randomly drawn from the replay buffer to facilitate the
training of the DDPG network. Subsequently, the critic and
actor online networks undergo updates by minimizing the loss
function defined in equation(32) and maximizing the policy
objective outlined in equation(33), respectively, followed by
the update of their target networks according to equation(34)
and equation(35). The model achieves convergence over mul-
tiple episodes by mitigating correlations among observations
and exploring diverse environmental states.

VI. EXPERIMENTS

To validate the effectiveness of the HVS-GAN framework,
we conducted performance tests on the GAN model under the
framework, as well as communication performance tests.

A. Experiment Configuration

GAN Model. Following the training configurations of the
baseline models, we configured the GAN network with a
generator comprising 5 layers of Deconvolutional layers and
5 layers of BatchNorm layers. The discriminator consists of
5 layers of Convolutional layers and 3 layers of BatchNorm
layers.

DDPG Model. We defined two network structures in the
DDPG algorithm: the actor network and the critic network.
Both networks consist of three linear layers with 128 neurons
each. The final layer of the actor network outputs a vector of
length equal to the total number of ICVs, while the final layer
of the critic network outputs a single value.

Experimental Environment. In the experiment, all devices
and servers were simulated on a workstation. The workstation
is equipped with a 2.4GHz Intel Core i9-12900 processor
and a NVIDIA RTX A5000 Graphics card. Additionally, the
workstation has 64 GB of memory.

Dataset. We trained the model on the CIFAR10 dataset.
The CIFAR10 dataset comprises 60,000 32x32 color images
distributed across 10 classes, with 6,000 images per class. It
includes 50,000 training images and 10,000 test images. To
simulate data heterogeneity in a real scenario, we applied the
Dirichlet distribution [29] with α = 100 and selected the top
7 categories with the least number of occurrences per device
to simulates a scenario of label skewness.

Test Metrics. The Inception Score [30] (IS) and Frechet
Inception Distance [31] (FID) are metrics used to evaluate
the quality of images generated by generative models. IS
is calculated based on the output of a single, pre-trained
Inceptionv3 image classification model, while FID compares
the distribution of generated images with that of a set of real
images. We use both of them to evaluate the performance of
global GAN model in all algorithm.

Simulation Settings. We defined three types of ICVs with
varying levels: super, advanced, and common, each have
different model size constraints and bandwidth constraints
correspondingly. Super ICV has a model parameter limit of
27.28MB and a bandwidth limit of 9dBm/Hz. Advance ICV
has a model parameter limit of 19.10MB and a bandwidth
limit of 7dBm/Hz. Common ICV has a model parameter
limit of 13.64MB and a bandwidth limit of 5dBm/Hz. We
assume that all ICVs are uniformly distributed within the
coverage area of the server.

For other detailed parameters, each ICV is designed to
process one sample data using 103 CPU cycles per bit,
operating at a processing capability of 3GHz. The additive
white Gaussian noise power is set to −174dBm/Hz. The
batch size for each ICV is 100, with a total of 100 ICVs
involved in the system. The communication iteration is set to
20000, while each ICV performs a single local iteration L = 1.
Tradeoff hyperparameters ζ1 and ζ2 are tuned to 0.65 and
0.02 respectively, and the cost balancing factor λ is set to 0.5.
For the GAN training, a learning rate of 0.0002 is used, with
the global GAN parameters occupying a total of 27.28MB.
For the DDPG, an experience replay buffer of size 4000 is
employed, and separate learning rates of 0.0001 and 0.0002
are assigned for the Actor and Critic networks, respectively.

B. Experiment Results

1) Compared Experiments

Compared method. We choose three different baselines to
compare the performance of HVS-GAN and all the compared
methods adopt the heterogeneous model aggregation method
of LG-FedAvg [32] for comparison:

• CAP-GAN [7]: CAP-GAN is the current SOTA method
for FL of GANs, which focuses on enhancing its ca-
pabilities under the none independent and identically
distributed(Non-IID) data. It proposes to divide the gen-
erator into shared layers and personalized layers.

• FL-GAN [24]: FL-GAN, a synthetic baseline of GAN
algorithms rooted in FL, comprises a cloud server and a
pool of devices, each equipped with a full model. Each
ICV submits its locally trained model to the cloud server
after completing 10 iterations.

• FeGAN [6]: FeGAN is a GAN based on FL that addresses
the Non-IID problem by customizing the weights and lists
of all participating ICVs in each round.

Experiment Scenario. We tested the algorithm in three
different communication and device heterogeneity scenarios.
We deliberately increased the proportion of common ICVs
in more challenging scenarios, allowing us to simulate the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 9

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 00

2

4

6

8

1 0

1 2

1 4

IS

E p o c h e s

S i m p l e S c e n a r i o

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 00

2

4

6

8

1 0

1 2

IS

E p o c h e s

M e d i u m S c e n a r i o

0 5 0 0 0 1 0 0 0 0 1 5 0 0 0 2 0 0 0 00

2

4

6

8

1 0

IS

E p o c h e s

 C A P - G A N
 F e G A N
 F L - G A N
 H V S - G A N

H a r d S c e n a r i o

Fig. 3. The performance of four algorithms in terms of Inception Score metrics under different scenarios.

(a) Hard (b) Medium (c) Simple

(b
)

C
A

P
-G

A
N

(c
)

F
L

-G
A

N
(a

)
H

V
S

-G
A

N
(d

)
F

eG
A

N

Fig. 4. The sample images are generated under three different scenario on
CIFAR10.

impact of device heterogeneity and communication delays on
the performance of different algorithms.

• Simple Scenario: we configure 80% of ICVs as super
vehicles, 10% as advance vehicles, and 10% as common
vehicles to simulate scenario of collaborative IoV for
weak signal in tunnel.

• Medium Scenario: we configure 50% of ICVs as super
vehicles, 30% as advance vehicles, and 20% as common
vehicles to simulate scenario of delivery IoV networking.

• Hard Scenario: we configure 20% of ICVs as super
vehicles, 50% as advance vehicles, and 30% as common
vehicles to simulate scenario of public transport dispatch-
ing.

Results Analysis. The performance differences of FeGAN,
FL-GAN and CAP-GAN are compared in Fig.4 and Fig.3. All
results were used to generate images with the same Gaussian
noise after 20,000 rounds of communication and calculation.
To ensure fairness, we prioritized selecting ICVs with lower
communication overheads among the three comparison meth-
ods, and with the same number of samples scheduled in each
round as that of HVS-GAN.

Fig.4 show the image result of four algorithm. In the Simple
scenario, due to its slow convergence speed, FeGAN still
produces images with considerable noise, while the other
three algorithms perform almost equally. When it comes to

the Medium scenario, CAP-GAN and FedHVS exhibit high
performance, while FL-GAN and FeGAN start to generate data
with more noise. In the Hard scenario, CAP-GAN begins to
produce more noise, and FL-GAN and FeGAN are unable to
generate data with distinguishing features. However, FedHVS
stands out in the Hard scenario, thanks to its scheduling
method based on device communication and performance and
its retention of model updates from heterogeneous ICVs. As
a result, the data generated by HVS-GAN outperforms other
methods in terms of FID metrics and IS. This is because in
IoV scenarios, when only communication conditions are con-
sidered, ICVs with slower communication speeds participate
less frequently, leading to inconsistent training paces among
ICVs, which can cause deviations in their local discriminators
and generators, potentially resulting in overfitting and making
it difficult for the generator to learn the global and accurate
distribution characteristics of the data.

On the other hand, HVS-GAN’s superior performance is
also attributed to heterogeneous model aggregation, which
preserves the characteristics of different models, enabling the
global model to learn the global data distribution. Although
the other compared three methods also adopt the LG-FedAvg
approach to handle heterogeneous characteristics, the results
show that their generators in the Hard scenario have not
yet developed the ability to generate images, which may
require longer training time to converge. Although GAN is
used in our method, this conclusion is mutually verified with
HeteroFL [9].

2) Selection Experiment

No existing works has considered the resource constraints of
ICVs scheduling with GAN training. Therefore, we maintain
the same hyperparameters as the comparison experiment. We
will observer the changes in the reward value in hard scenarios;
the performance of DDPG by replacing the DDPG module in
HVS-GAN with different baselines; the numbers of different
ICVs and value of FID under different ζ1. The baselines
consist of replacing the DDPG module in HVS-GAN with
the following modules:

1) Greedy Association(GA) [33]: ICVs are assigned to
servers based on the highest available bandwidth.

2) Random Selection(RS) [17]: The server randomly selects
a predetermined number of ICVs for each aggregation cycle,
with the selection count being adjustable.

The left top one in Fig.5 plots the reward as the number
of epochs increases, showcasing its convergence behavior. We
observe that during the first 200 epochs, the reward remains

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

... 10

0 2 5 0 0 5 0 0 0 7 5 0 0 1 0 0 0 00

1 0

2 0

3 0

Re
wa

rd

E p o c h e s

�R e w a r d

5 6 7 8 9 1 05 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

En
erg

y c
on

sum
pti

on

A v e r a g e n u m b e r o f a g g r e g a t e d U E s i n e a c h r o u n d

 G A
 R S
 D D P G (H V S - G A N)

0 . 0 0 . 3 0 . 6 0 . 90
2
4
6
8

1 0
1 2
1 4
1 6

Nu
mb

er
of

sel
ect

ed
IC

Vs

� � � � � � � � � �

 N u m b e r o f s u p e r I C V s
 N u m b e r o f a d v a n c e I C V s
 N u m b e r o f c o m m o n I C V s

0 . 0 0 . 3 0 . 6 0 . 96 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0
����
������

� � � � � � � � � �

FID

0 . 0 0 . 3 0 . 6 0 . 9 6 0

9 0

1 2 0

1 5 0

1 8 0

2 1 0

2 4 0

� � � � � � � � � �

CO
ST

Fig. 5. Convergence of reward (left top), comparation with two baseline on
cost (right top) ,ICV selection in different ζ1 value(left bottom) and FID in
different ζ1 value(right bottom).

relatively low and stable. This is due to the fact that the
DDPG parameters are initialized randomly and memory buffer
is not filled. The DDPG converges to the maximum reward
about 5000 epochs. In other words, it can schedule more
ICVs to participate in the FL tasks through ICVs selection
and association, enabling better GAN performance within a
shorter cost consumption.

The right top one in Fig.5 depicts the relationship between
the energy consumption and the average number of partici-
pating ICVs per round under different schemes. The results
show that as long as the number of selected ICVs remains
constant, the proposed DDPG algorithm consistently achieves
the lowest cost in completing its tasks. Compared to the GA
and RS, the improvement offered by the DDPG algorithm
becomes more pronounced as the number of selected ICVs
increases. For instance, when the number of selected ICVs is
increased from five to ten, the extra cost required by the GA
algorithm, compared to our approach, increases from 34.3%
to 53%. When all ten ICVs participate in each aggregation
round, the RS algorithm performs comparably to our proposed
algorithm, yielding the same cost.

The bottom left in Fig.5 illustrates how different ζ1 values
affect the scheduling of DDPG. It can be seen that as ζ1
increases, the reward tends to make DDPG pay more attention
to the quality of GAN generation, so it will choose to schedule
more super ICVs instead of common ICVs to participate in
aggregation, while the number of advanced ICVs can maintain
a relatively stable number. The bottom right also confirms this
point. When the ζ1 value increases, the FID value decreases
significantly, indicating that the generation quality of GAN has
been improved. However, due to the scheduling of more super
ICVs for training, the cost also increases accordingly. This
proves that our method can adjust the parameter ζ1 to make
DDPG adapt to the scheduling priorities of different scenarios.

VII. CONCLUSION

In this paper, we delve into the application of FL in GAN
training within the context of Internet of Vehicles. Our pro-
posed approach encapsulates an optimization model that not
only strives to elevate the quality of generated content but also
minimizes training costs. Subsequently, we introduce HVS-
GAN, a tailored solution designed to refine the challenges
encountered during the FL training process for GANs. Ex-
perimental findings conclusively demonstrate that HVS-GAN
effectively sustains high generation quality while significantly
reducing communication costs through its innovative DDPG
selection mode.

REFERENCES

[1] V. Mistry, B. Vaidya, and H. T. Mouftah, “Evaluation
of lstm gan for trajectory prediction in connected and
autonomous vehicles,” in 2024 International Wireless
Communications and Mobile Computing (IWCMC),
2024, pp. 226–231.

[2] Z. Wang, J. Zhan, C. Duan, X. Guan, P. Lu, and
K. Yang, “A review of vehicle detection techniques
for intelligent vehicles,” IEEE Transactions on Neu-
ral Networks and Learning Systems, vol. 34, no. 8,
pp. 3811–3831, 2023.

[3] R. Zhang, K. Xiong, H. Du, et al., Generative ai-
enabled vehicular networks: Fundamentals, framework,
and case study, 2023. arXiv: 2304.11098 [cs.NI].

[4] H. Du, R. Zhang, D. Niyato, et al., “Exploring collab-
orative distributed diffusion-based ai-generated content
(aigc) in wireless networks,” IEEE Network, vol. 38,
no. 3, pp. 178–186, 2024.

[5] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hos-
sain, “Mobility-aware proactive edge caching for con-
nected vehicles using federated learning,” IEEE Trans-
actions on Intelligent Transportation Systems, vol. 22,
no. 8, pp. 5341–5351, 2021.

[6] R. Guerraoui, A. Guirguis, A.-M. Kermarrec, and E. L.
Merrer, “Fegan: Scaling distributed gans,” in Proceed-
ings of the 21st International Middleware Confer-
ence, ser. Middleware ’20, Delft, Netherlands: Associ-
ation for Computing Machinery, 2020, 193–206, ISBN:
9781450381536.

[7] J. Zhang, L. Zhao, K. Yu, G. Min, A. Y. Al-Dubai, and
A. Y. Zomaya, “A novel federated learning scheme for
generative adversarial networks,” IEEE Transactions on
Mobile Computing, vol. 23, no. 5, pp. 3633–3649, 2024.

[8] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar,
and V. Smith, “Federated optimization in heterogeneous
networks,” in Proceedings of the Third Conference on
Machine Learning and Systems, MLSys 2020, Austin,
TX, USA, March 2-4, 2020, I. S. Dhillon, D. S. Papail-
iopoulos, and V. Sze, Eds., mlsys.org, 2020.

[9] E. Diao, J. Ding, and V. Tarokh, “Heterofl: Computa-
tion and communication efficient federated learning for
heterogeneous clients,” in International Conference on
Learning Representations, 2021.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2304.11098

... 11

[10] Y. Zhang, J. Hu, G. Min, X. Chen, and N. Georgalas,
“Joint charging scheduling and computation offloading
in ev-assisted edge computing: A safe drl approach,”
IEEE Transactions on Mobile Computing, vol. 23, no. 9,
pp. 8757–8772, 2024.

[11] S. Zarandi and H. Tabassum, “Federated double deep
q-learning for joint delay and energy minimization
in iot networks,” in IEEE International Conference
on Communications Workshops, ICC Workshops 2021,
Montreal, QC, Canada, June 14-23, 2021, IEEE, 2021,
pp. 1–6.

[12] Y. Chen, Z. Liu, Y. Zhang, Y. Wu, X. Chen, and
L. Zhao, “Deep reinforcement learning-based dynamic
resource management for mobile edge computing in
industrial internet of things,” IEEE Trans. Ind. Infor-
matics, vol. 17, no. 7, pp. 4925–4934, 2021.

[13] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et
al., “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[14] C. Huang, J. Wen, Y. Xu, et al., “Self-supervised atten-
tive generative adversarial networks for video anomaly
detection,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 34, no. 11, pp. 9389–9403, 2023.

[15] L. Zhao, Y. Liu, A. Y. Al-Dubai, A. Y. Zomaya, G.
Min, and A. Hawbani, “A novel generation-adversarial-
network-based vehicle trajectory prediction method for
intelligent vehicular networks,” IEEE Internet of Things
Journal, vol. 8, no. 3, pp. 2066–2077, 2021.

[16] Z. Shen, F. Ding, A. Jolfaei, K. Yadav, S. Vashisht,
and K. Yu, “Deformablegan: Generating medical images
with improved integrity for healthcare cyber physical
systems,” IEEE Transactions on Network Science and
Engineering, vol. 10, no. 5, pp. 2584–2596, 2023.

[17] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Artificial
intelligence and statistics, PMLR, 2017, pp. 1273–1282.

[18] M. Rasouli, T. Sun, and R. Rajagopal, Fedgan: Fed-
erated generative adversarial networks for distributed
data, 2020. arXiv: 2006.07228 [cs.LG].

[19] W. Li, J. Chen, Z. Wang, Z. Shen, C. Ma, and X. Cui,
“Ifl-gan: Improved federated learning generative adver-
sarial network with maximum mean discrepancy model
aggregation,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 34, no. 12, pp. 10 502–
10 515, 2023.

[20] A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H.
Amini, “A survey on federated learning for resource-
constrained iot devices,” IEEE Internet of Things Jour-
nal, vol. 9, no. 1, pp. 1–24, 2022.

[21] M. Setayesh, X. Li, and V. W. S. Wong, “Perfedmask:
Personalized federated learning with optimized masking
vectors,” in The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023, OpenReview.net, 2023.

[22] P. Zhang, C. Wang, C. Jiang, and Z. Han, “Deep rein-
forcement learning assisted federated learning algorithm
for data management of iiot,” IEEE Transactions on

Industrial Informatics, vol. 17, no. 12, pp. 8475–8484,
2021.

[23] T. N. Benjamin BOURBON, “Federated reinforcement
learning,” Reporter about Reinforcement Learning in
Federated Learning. 2023.

[24] Z. Ma, Y. Liu, Y. Miao, et al., “Flgan: Gan-based
unbiased federated learning under non-iid settings,”
IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 36, no. 4, pp. 1566–1581, 2024.

[25] J. Wang, J. Hu, J. Mills, G. Min, M. Xia, and N.
Georgalas, “Federated ensemble model-based reinforce-
ment learning in edge computing,” IEEE Transactions
on Parallel and Distributed Systems, vol. 34, no. 6,
pp. 1848–1859, 2023.

[26] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya,
and N. Georgalas, “Dependent task offloading for edge
computing based on deep reinforcement learning,” IEEE
Transactions on Computers, vol. 71, no. 10, pp. 2449–
2461, 2022.

[27] R. Bellman, “Dynamic programming,” science,
vol. 153, no. 3731, pp. 34–37, 1966.

[28] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik,
A. T. Suresh, and D. Bacon, “Federated learning: Strate-
gies for improving communication efficiency,” CoRR,
vol. abs/1610.05492, 2016. arXiv: 1610.05492.

[29] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the
effects of non-identical data distribution for federated
visual classification,” arXiv preprint arXiv:1909.06335,
2019.

[30] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,
A. Radford, and X. Chen, “Improved techniques for
training gans,” Advances in neural information process-
ing systems, vol. 29, 2016.

[31] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “Gans trained by a two time-scale update
rule converge to a local nash equilibrium,” Advances in
neural information processing systems, vol. 30, 2017.

[32] P. P. Liang, T. Liu, Z. Liu, R. Salakhutdinov, and
L. Morency, “Think locally, act globally: Federated
learning with local and global representations,” CoRR,
vol. abs/2001.01523, 2020. arXiv: 2001.01523.

[33] M. Mehta and C. Shao, “A greedy agglomerative frame-
work for clustered federated learning,” IEEE Trans-
actions on Industrial Informatics, vol. 19, no. 12,
pp. 11 856–11 867, 2023.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3506159

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Fujian Normal University. Downloaded on December 03,2024 at 12:09:43 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/2006.07228
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/2001.01523

	Introduction
	Related Work
	PRELIMINARIES
	FL with GAN
	Reinforce Learning with Deep Deterministic Policy Gradient

	Problem Statement
	Framework
	HVS-GAN Framework
	Heterogeneity Aggregation
	DDPG-Based ICVs Selection

	Experiments
	Experiment Configuration
	Experiment Results
	Compared Experiments
	Selection Experiment

	Conclusion

