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The h-extra diagnosability and g-good-neighbor diagnosability are two important diagnos-
tic strategies at system-level that can significantly enhance the system’s self-diagnosing 
capability. The h-extra diagnosability ensures that every component of the system after 
removing a set of faulty vertices has at least h + 1 vertices. The g-good-neighbor 
diagnosability guarantees that after removing some faulty vertices, every vertex in 
the remaining system has at least g neighbors. In this paper, we analyze the extra 
diagnosability and good-neighbor diagnosability in a well-known n-dimensional alternating 
group graph AGn proposed for multiprocessor systems under the PMC model. We first 
establish that the 1-extra diagnosability of AGn (n ≥ 5) is 4n − 10. Then we prove that 
the 2-extra diagnosability of AGn (n ≥ 5) is 6n − 17. Next, we address that the 3-extra 
diagnosability of AGn (n ≥ 5) is 8n −25. Finally, we obtain that the g-restricted connectivity 
and the g-good-neighbor diagnosability of AGn (n ≥ 5) are (2g + 2)n − 2g+2 − 4 + g and 
(2g + 2)n − 2g+2 − 4 + 2g for 1 ≤ g ≤ 2, respectively.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Processor failure is inevitable with the increasing sizes of multiprocessor systems. To ensure the stable running of the 
systems, we must find out the faulty processors to repair or replace them to maintain the high availability of the system. 
Therefore, fault diagnosis of interconnection networks has become increasingly important due to the rapid development of 
multiprocessor systems.

The process of identifying faulty processors by analyzing the outcome of mutual tests among processors is called system-
level diagnosis. Preparata, Metze, and Chien [23] proposed a foundation of system diagnostic model—Preparata, Metze, and 
Chien (PMC) model. Under the PMC model, all tests are performed between two adjacent processors, and a test result is 
reliable (resp., unreliable) if the tester is fault-free (resp., faulty). Obviously, a faulty processor cannot yield correct test 
result.

Zhang and Yang [35] proposed the h-extra diagnosability, which is a generalization of conditional diagnosability [1,19,20]. 
The h-extra diagnosability is defined under the assumption that every component of the system after removing a set of 
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faulty vertices has more than h vertices. Xu et al. [33] explored the extra diagnosability of arrangement graphs. Han and 
Wang [7] gave the h-extra conditional diagnosability of n-folded hypercubes for 0 ≤ h ≤ n − 4. Wang et al. [28] established 
the 3-extra diagnosability of bubble-sort star graph networks. Wang and Yang [29] proposed the 2-extra diagnosability of 
n-dimensional alternating group network ANn , which is different from AGn . In 2015, Zhang and Yang [35] gave the h-extra 
diagnosability of n-hypercubes for n − 4 ≤ h ≤ 3n − 7. Zhu and Zhang [36] extended their result to n − 3 ≤ h ≤ 3n − 7 under 
the PMC model in 2016.

In 2010, Peng et al. [16,22] first proposed the notion of g-good-neighbor diagnosability, defined as the maximum number t
such that a graph G remains t-diagnosable under the condition that every healthy vertex has at least g fault-free neighbors. 
It is formulated into the question: for a network G(V , E), if the faulty set F ⊂ V (G) satisfies the condition that each vertex 
v in G − F has at least g good neighbors, then what is the maximum t such that G is still t-diagnosable? The answer to this 
question for a network of arbitrary topology is obviously intractable. The g-good-neighbor diagnosability of hypercubes [22]
is proposed by considering the known g-restricted connectivity and the size of the g-dimensional hypercube (Q g ). Yuan et 
al. [34] gave the g-good-neighbor diagnosability of k-ary n-cubes. Xu et al. [32] also proposed the g-good-neighbor diag-
nosability of (n, k)-star graphs by combining the known g-restricted connectivity with the size of the (g + 1)-dimensional 
complete graph (K g+1). Gu et al. [6] gave a short note on the {1, 2}-good-neighbor diagnosability of balanced hypercubes. 
Lin et al. [18] established the g-good-neighbor diagnosability of arrangement graphs by exploring the known g-restricted 
connectivity and the size of K g+1. Wei and Xu [30] also gave g-good-neighbor diagnosability of (n, k)-star networks. Li and 
Lu [15] proposed g-good-neighbor conditional diagnosability of star graphs. In 2017, Jirimutu and Wang [11] established 
the 1-good-neighbor diagnosability of alternating group networks ANn . In 2018, Wei and Xu [31] explored the {1, 2}-good-
neighbor conditional diagnosability of regular graphs. Also, Lin et al. [17] established the relationship between g-restricted 
connectivity and g-good-neighbor fault diagnosability of general triangle-free regular networks.

In 1993, Jwo et al. [12] first proposed the n-dimensional alternating group graph AGn as a topology of interconnection 
network for multiprocessor systems. The n-dimensional alternating group graph AGn possesses sufficient amount of good 
properties including cycle-embedding [2,25], and small diameter [12]. Moreover, the alternating group graph is not only 
pancyclic and hamiltonian-connected [3], but also panconnected [9]. It also has a fault-free longest path [24] and vertex 
pancyclicity [26]. Furthermore, Lin et al. [21] established the extra fault tolerance and conditional diagnosability of AGn

in 2015. There is another type of interconnection network based on alternating group called the n-dimensional alternating 
group network ANn [10], which is different from the n-dimensional alternating group graph AGn [12] investigated in this 
paper. Both of the AGn and ANn are Cayley graphs, but with different generating sets. Consequently, they have distinct 
adjacency manners. Roughly speaking, the edges of AGn are generated by (12i) and (1i2) for i = 3, . . ., n, while the edges 
of ANn are generated by (123), (132) and (12)(3i) for i ∈ {4, . . . , n}.

We were motivated by the recent research on the g-extra diagnosability of the (n, k)-arrangement graph [33] under the 
PMC model, and the 2-extra diagnosability of alternating group network ANn [29]. Moreover, Wang and Ren [27] investi-
gated the 2-extra diagnosability of alternating group graph AGn . We extend this result to {1, 2, 3}-extra diagnosability of 
AGn . First, we establish that the 1-extra diagnosability of AGn (n ≥ 5) under the PMC model is 4n − 10. Then we prove 
that the 2-extra diagnosability of AGn (n ≥ 5) under the PMC model is 6n − 17. Next, we address that the 3-extra diag-
nosability of AGn (n ≥ 5) under the PMC model is 8n − 25. Finally, motivated by the g-good-neighbor diagnosability of the 
(n, k)-arrangement graph [18] under the PMC model, we tackle that the g-restricted connectivity and the g-good-neighbor 
diagnosability of AGn (n ≥ 5) are (2g + 2)n − 2g+2 − 4 + g and (2g + 2)n − 2g+2 − 4 + 2g for 1 ≤ g ≤ 2, respectively.

Organization. The remainder of this paper is organized as follows. Section 2 introduces some preliminaries for this paper. 
The h-extra diagnosability of AGn is addressed under the PMC model in Section 3. Section 4 proposes the g-restricted 
connectivity and the g-good-neighbor diagnosability of AGn under the PMC model. Section 5 concludes this paper.

2. Preliminaries

We present some necessary terms in the graph theory in this section. Then we propose the definitions of extra diag-
nosability and good-neighbor diagnosability under the PMC model. Moreover, we show the definition of an n-dimensional 
alternating group graph AGn .

2.1. Terminologies and notations

The notation G = (V (G), E(G)) represents an interconnection network, where V (G) is the vertex-set and E(G) is the 
edge-set. Also, the terms |V (G)| and |E(G)| denote the numbers of vertices and edges of G , respectively.

A subgraph H of G , denoted by H ⊆ G , is a graph in which V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph of G induced 
by a subset S of V (G), denoted by G[S], is the graph with the vertex-set S and the edge-set {uv | uv ∈ E(G), u, v ∈ S}. Let 
G1, G2, . . . , Gm be m subgraphs of G , we set 

⋃m
i=1 Gi = G[⋃m

i=1 V (Gi)] and 
⋂m

i=1 Gi = G[⋂m
i=1 V (Gi)]. When G is a graph 

and F ⊆ V (G), G − F denotes a graph obtained by removing all vertices in F from G and deleting those edges with at least 
one end-vertex in F , simultaneously. Let M and N be any two distinct sets of V (G). Let M � N = (M − N) ∪ (N − M) =
{x | x ∈ M ∪ N, x /∈ M ∩ N}. We also denote E[M, N] to be the set of all edges between M and N .
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Fig. 1. An illustration of a distinguishable pair (F1, F2) under the PMC model.

The neighborhood NG (v) of vertex v in G is {u ∈ V (G) | uv ∈ E(G)}. Let NG [v] = NG(v) ∪ {v}. We define NG (S) = {v ∈
V (G) − S | ∃u ∈ S, uv ∈ E(G)} = (

⋃
u∈S N(u)) − S . Let NG [S] = NG(S) ∪ S . We also denote by |N(v)| the degree d(v) of 

vertex v . Let δ(G) = min{d(u) | u ∈ V (G)} be the minimum degree of G . A path in a graph is a sequence of distinct vertices 
so that there are edges joining consecutive vertices, with the length being the number of vertices in the sequence minus 1. 
A cycle is a path of length at least 3 where there is an edge joining the first and last vertices. A path (or cycle) of length k is 
called a k-path (or k-cycle). We use d(u, v) to denote the distance between u and v , the length of a shortest path between 
u and v in G .

2.2. Extra diagnosability and good-neighbor diagnosability

The fault-set of G is the set of all faulty vertices of G . We adopt the reasonable assumption that a vertex is capable of 
testing another vertex if and only if there is a direct communication link between them.

A test assignment for a multiprocessor system G is a collection of tests (u, v) for some adjacent pairs of vertices. If uv is 
any edge of E(G), then u and v can test each other. Throughout this paper, we assume that each vertex tests another vertex 
whenever there is an edge between them and all these tests are gathered in a test assignment.

This paper adopts the PMC model [23], which assumes that a fault-free vertex can correctly evaluate all neighbors, 
whereas the outcome of a test conducted by a faulty vertex is completely unreliable.

Under the PMC model, Lai et al. [13] provided a necessary and sufficient condition to test whether a pair of faulty sets 
is distinguishable.

Lemma 1. [13,23] Let G = (V (G), E(G)) be a multiprocessor system. Then for any two sets F1, F2 ⊆ V (G) with F1 �= F2 , (F1, F2) is 
a distinguishable pair under the PMC model if and only if there exists a vertex u ∈ V (G) − (F1 ∪ F2), which is adjacent to a vertex 
v ∈ F1�F2 (see Fig. 1).

Since it is impossible that all neighbors of some processors are simultaneously faulty, Zhang and Yang [35] proposed the 
h-extra diagnosability.

Definition 1. [35] (1) A set F is called an h-extra vertex-set if each remaining component in G − F has at least h + 1 vertices.
(2) A system G is h-extra t-diagnosable under the PMC model if and only if for each pair of distinct faulty h-extra 

vertex-sets F1, F2 ⊆ V (G) such that |F1| ≤ t and |F2| ≤ t , F1 and F2 are distinguishable under the PMC model.

(3) The h-extra diagnosability of G under the PMC model, denoted as t̃ p
h (G), is the maximum value of t such that G is 

h-extra t-diagnosable.

Motivated by the idea of conditional diagnosability[13], Peng et al.[22] proposed the g-good-neighbor diagnosability with 
the condition that every fault-free vertex in the system has at least g fault-free neighbors.

Definition 2. [22] (1) A set F is called a g-good-neighbor vertex-set of G if |N(v) ∩ (V (G) − F )| ≥ g for every vertex v in 
V (G) − F .

(2) A system G = (V (G), E(G)) is g-good-neighbor t-diagnosable if each distinct pair of g-good-neighbor vertex-sets F1
and F2 of V (G) with |F1| ≤ t , |F2| ≤ t are distinguishable.

(3) The g-good-neighbor diagnosability t p
g (G) of a graph G under the PMC model is the maximum value of t such that 

G is g-good-neighbor t-diagnosable.

2.3. Alternating group graph

Let 〈n〉 = {1, . . . , n − 1, n} and let ζ = ζ1ζ2 . . . ζn be a permutation of elements in 〈n〉 where ζα ∈ 〈n〉 for 1 ≤ α ≤ n and 
ζα �= ζβ for 1 ≤ α �= β ≤ n. A pair of elements ζα and ζβ is said to be an inversion of ζ if ζα < ζβ whenever 1 ≤ β < α ≤ n. 
An even permutation is a permutation with an even number of inversions. Let An denote the set of all even permutations 
over 〈n〉.
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Fig. 2. An illustration of a 4-alternating group graph.

Definition 3. [12] The n-dimensional alternating group graph AGn consists of vertex-set V (AGn) = An and edge-set 
E(AGn) = {ζη | η is the permutation obtained from ζ by rotating the symbols in positions 1, 2, and α from left to right or 
from right to left for some α ∈ {3, . . . , n − 1, n}}.

It can be seen that AGn is regular of degree 2n − 4, |V (AGn)| = n!
2 and |E(AGn)| = (n−2)n!

2 . Fig. 2 describes an example 
of AG4.

Denote by Aα
n (n ≥ 3 and 1 ≤ α ≤ n) the subset of An consisting of all even permutations with α in the n-th position, 

and denote by AGα
n the subgraph of AGn induced by Aα

n . It implies that AGα
n is isomorphic to AGn−1 for any α ∈ 〈n〉. For 

convenience, let AG I
n = ⋃

i∈I AGi
n for any subset I ∈ 〈n〉 throughout this paper. The n-dimensional alternating group graph is 

composed of n disjoint copies of (n −1)-dimensional alternating group graphs such that AGα
n connects AGβ

n (1 ≤ α �= β ≤ n) 
by (n − 2)! disjointed edges due to the hierarchical structure. These (n − 2)! disjointed edges are called external edges with 
the form ζη where ζ = γ β · · ·α, η = αγ · · ·β or ζ = βγ · · ·α, η = γα · · ·β for γ ∈ 〈n〉 − {α, β}. Let Eα,β

n (AGn) be the set 
of edges in AGn connecting AGα

n and AGβ
n for 1 ≤ α �= β ≤ n. On the contrast, the edges connecting vertices in the same 

subgraph are called internal edges. In particular, for each internal edge ζη with ζ = γ β · · · δ · · ·α and η = βδ · · ·γ · · ·α in 
AGα

n , there are two adjacent vertices ζ ′ = αγ · · · δ · · ·β and η′ = δα · · ·γ · · ·β in AGβ
n such that {ζ, ζ ′, η′, η} is a 4-cycle in 

AGn . This property is called the 4-cycle structure of ζη. Note that the vertices ζ ′ and η′ are uniquely determined by the 
4-cycle structure of ζη. Moreover, every vertex ζ ∈ V (AGα

n ) lies on exactly 2n − 6 internal edges and two external edges. 
Furthermore, the two end-vertices, connecting a vertex via these two external edges are in distinct induced subgraphs.

Lemma 2. An n-dimensional alternating group graph AGn has the following combinatorial properties.
(1) [12] AGn is (2n − 4)-regular and κ(AGn) = δ(AGn) = 2n − 4 for n ≥ 3.
(2) [12] The two external neighbors of every vertex of AGi

n are in distinct (n − 1)-dimensional subgraphs for n ≥ 4.

(3) [12] There are (n − 2)! disjoint cross edges between every two distinct AGi
n and AG j

n for 1 ≤ i �= j ≤ n and n ≥ 4.
(4) [8,21] Let ζ, η be any two vertices of AGn. If ζη /∈ E(AGn), then |N(ζ ) ∩ N(η)| ≤ 2. If ζη ∈ E(AGn), then |N(ζ ) ∩ N(η)| = 1.

Latifi et al. [14] introduced the g-restricted connectivity, which implies that any vertex has no fewer than g neighbors 
in any remaining component.

Definition 4. [5] Given a graph G and two nonnegative integers h and g .
(1) An h-extra vertex-cut of G is the set of vertices whose deletion disconnects G and leaves each remaining compo-

nent with at least h + 1 vertices. The h-extra connectivity of G , denoted by κ(h)
0 (G), is the minimum cardinality of h-extra 

vertex-cuts.
(2) An g-restricted vertex-cut of G is the set of vertices whose deletion disconnects G and the minimum degree of each 

remaining component is no less than g . The g-restricted connectivity of G , denoted by κ g(G), is the minimum cardinality of 
g-restricted vertex-cuts.

Lemma 3. [21] Let AGn (n ≥ 5) be the n-dimensional alternating group graph.
(1) The 1-extra connectivity of AGn is κ(1)

0 (AGn) = 4n − 11. Furthermore, let S = uv be an edge in AGn such that u =
1234 · · · i · · ·n and v = 2431 · · · i · · ·n. It can be deduced that N(V (S)) is a 1-extra vertex-cut of AGn.

(2) The 2-extra connectivity of AGn is κ(2)
0 (AGn) = 6n − 19. Furthermore, let S = P2 = {u, v, w} be a 2-path of AGn such that 

u = 1234 · · · i · · ·n, v = 2431 · · · i · · ·n and w = 3124 · · · i · · ·n. It can be deduced that N(V (S)) is a 2-extra vertex-cut of AGn.
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Fig. 3. An illustration that there is no edge between F1 � F2 and V (AGn − F1 − F2) when |V (S)| = 2.

(3) The 3-extra connectivity of AGn is κ(3)
0 (AGn) = 8n − 28. Furthermore, let S = C4 = {u, v, w, x} be a 4-cycle in AGn such 

that u = 1234 · · · i · · ·n, v = 3124 · · · i · · ·n, w = 4321 · · · i · · ·n and x = 2431 · · · i · · ·n. It can be deduced that N(V (S)) is a 3-extra 
vertex-cut of AGn.

3. Extra diagnosability of AGn under the PMC model

Wang and Yang [29] proposed the 2-extra diagnosability of ANn under the PMC model. In this section, we determine 
the h-extra diagnosability t̃h

p
(AGn) of AGn under the PMC model. First, we propose an upper bound of t̃h

p
(AGn) by the 

construction method. Then the lower bound of the t̃h
p
(AGn) is presented by the h-extra connectivity [21] listed as follows.

Theorem 1. Let AGn (n ≥ 5) be the n-dimensional alternating group graph. The 1-extra diagnosability of AGn under the PMC model 
is ̃t1

p
(AGn) = 4n − 10.

Proof. We first prove that t̃1
p
(AGn) ≤ 4n − 10. Let S = uv be an edge in AGn (n ≥ 5) with u = 1234 · · · i · · ·n and v =

2431 · · · i · · ·n. We have

N({u, v}) = (
⋃

5≤i≤n Ni)
⋃

N0,

where

Ni = {2i34 · · ·1 · · · (n − 1)n, i134 · · · 2 · · · (n − 1)n,

i231 · · ·4 · · · (n − 1)n,4i31 · · · 2 · · · (n − 1)n}
for 5 ≤ i ≤ n, and

N0 = {2314 · · · (n − 1)n,4132 · · · (n − 1)n,3241 · · · (n − 1)n,

3124 · · · (n − 1)n,4321 · · · (n − 1)n}.
Also, we have |N(V (S))| = |N({u, v})| = 4n − 11. Let F1 = N(V (S)) and F2 = N[V (S)]. We have

|F1| = 4n − 11, |F2| = 4n − 9

and each component in AGn − N[V (S)] has more than one vertex by Lemma 3 (1). Hence, N(V (S)) is a 1-extra vertex-cut 
of AGn . Therefore,

|F1|, |F2| ≤ 4n − 9

and both F1 and F2 are 1-extra vertex-sets of AGn .
Since F1 � F2 = V (S), there is no edge between F1 � F2 and V (AGn − F1 − F2) (see Fig. 3). By Lemma 1, F1 and F2 are 

indistinguishable under the PMC model. By Definition 1, t̃1
p
(AGn) ≤ 4n − 10.

Next, we prove the lower bound of 1-extra diagnosability of AGn by contradiction. Suppose that t̃1
p
(AGn) ≤ 4n − 11. Let 

F1 and F2 be two distinct 1-extra vertex-sets of AGn such that (F1, F2) is an indistinguishable pair with |F1|, |F2| ≤ 4n −10.
For n ≥ 5, we have

|V (AGn)| − |F1 ∪ F2| ≥ n!
2

− 2(4n − 10) > 0.

Thus,

V (AGn − F1 − F2) �= ∅.

By Lemma 1 and the fact that F1 and F2 are indistinguishable, E[F1 � F2, V (AGn − F1 − F2)] = ∅. Hence, the vertices of 
F1�F2 have no neighbors outside of F1 ∪ F2 and the vertices of V (AGn − F1 − F2) have no neighbors in F1 � F2. By the 
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Fig. 4. An illustration that AGn − (F1 ∩ F2) is disconnected and every component contains more than one vertex.

fact that F1 and F2 are two distinct 1-extra vertex-sets of AGn , every component in AGn − F1 and AGn − F2 contains more 
than one vertex. When F1 ∩ F2 is deleted, AGn − (F1 ∩ F2) is disconnected and every component contains more than one 
vertex (see Fig. 4). By Definition 4 (1), F1 ∩ F2 is a 1-extra vertex-cut of AGn . By Lemma 3 (1), we have that

|F1 ∩ F2| ≥ 4n − 11.

Since F1 �= F2, by the symmetry of AGn , assume that F1 − F2 �= ∅. Since F2 is a 1-extra vertex-set of AGn , every 
component of AGn − F2 contains more than one vertex. Since E[F1 � F2, V (AGn − F1 − F2)] = ∅, every component of 
AGn[F1 − F2] contains more than one vertex. That is |F1 − F2| ≥ 2. Then

|F1| = |F1 − F2| + |F1 ∩ F2|
≥ 2 + 4n − 11
= 4n − 9,

which contradicts that |F1| ≤ 4n − 10.
Hence, t̃1

p
(AGn) = 4n − 10. �

Theorem 2. Let AGn (n ≥ 5) be the n-dimensional alternating group graph. The 2-extra diagnosability of AGn under the PMC model 
is ̃t2

p
(AGn) = 6n − 17.

Proof. We first prove that t̃2
p
(AGn) ≤ 6n −17. Let S = P2 = {u, v, w} be a 2-path in AGn (n ≥ 5) with u = 1234 · · · i · · ·n, v =

2431 · · · i · · ·n and w = 3124 · · · i · · ·n. Obviously, P2 is in AGn
n . Furthermore, we have

N(V (S)) = (
⋃

5≤i≤n Ni)
⋃

N0,

where

Ni = {2i34 · · ·1 · · · (n − 1)n, i134 · · · 2 · · · (n − 1)n, i231 · · · 4 · · · (n − 1)n,

4i31 · · ·2 · · · (n − 1)n, i324 · · · 1 · · · (n − 1)n,1i24 · · · 3 · · · (n − 1)n}
for 5 ≤ i ≤ n, and

N0 = {2314 · · · (n − 1)n,4132 · · · (n − 1)n,3241 · · · (n − 1)n,

4321 · · · (n − 1)n,1423 · · · (n − 1)n}.
Also, we have |N(V (S))| = 6n − 19. Let F1 = N(V (S)) and F2 = N[V (S)]. We have

|F1| = 6n − 19, |F2| = 6n − 16,

and each component in AGn − N[V (S)] has more than two vertices by Lemma 3 (2). Hence, N(V (S)) is a 2-extra vertex-cut 
of AGn . Therefore,

|F1|, |F2| ≤ 6n − 16,

and both F1 and F2 are 2-extra vertex-sets of AGn .
Since F1 � F2 = V (S), there is no edge between F1 � F2 and V (AGn − F1 − F2) (see Fig. 5). By Lemma 1, F1 and F2 are 

indistinguishable under the PMC model. By Definition 1, t̃2
p
(AGn) ≤ 6n − 17.
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Fig. 5. An illustration that there is no edge between F1 � F2 and V (AGn − F1 − F2) when |V (S)| = 3.

Fig. 6. An illustration that AGn − (F1 ∩ F2) is disconnected and every component contains more than two vertices.

Next, we prove the lower bound of 2-extra diagnosability of AGn by contradiction. Suppose that t̃2
p
(AGn) ≤ 6n − 18. Let 

F1 and F2 be two distinct 2-extra vertex-sets such that (F1, F2) is an indistinguishable pair with |F1|, |F2| ≤ 6n − 17.
Similar to the proof of Theorem 1, we can deduce that V (AGn − F1 − F2) �= ∅ and the vertices of F1�F2 have no 

neighbors outside of F1 ∪ F2 and the vertices of V (AGn − F1 − F2) have no neighbors in F1 � F2. By the fact that F1 and F2

are two distinct 2-extra vertex-sets, every component in AGn − F1 and AGn − F2 contains more than two vertices. When 
F1 ∩ F2 is deleted, AGn − (F1 ∩ F2) is disconnected and every component contains more than two vertices (see Fig. 6). By 
Definition 4 (1), F1 ∩ F2 is a 2-extra vertex-cut of AGn . By Lemma 3 (2), we have that |F1 ∩ F2| ≥ 6n − 19. Since F1 �= F2, 
by the symmetry of AGn , assume that F1 − F2 �= ∅. Since F2 is a 2-extra vertex-set of AGn , every component of AGn − F2

contains more than two vertices. Since E[F1 � F2, V (AGn − F1 − F2)] = ∅, every component of AGn[F1 − F2] contains more 
than two vertices. That is |F1 − F2| ≥ 3. Then

|F1| = |F1 − F2| + |F1 ∩ F2|
≥ 3 + 6n − 19
= 6n − 16,

which contradicts that |F1| ≤ 6n − 17.
Hence, t̃2

p
(AGn) = 6n − 17. �

Theorem 3. Let AGn (n ≥ 5) be the n-dimensional alternating group graph. The 3-extra diagnosability of AGn under the PMC model 
is ̃t3

p
(AGn) = 8n − 25.

Proof. We first prove that t̃3
p
(AGn) ≤ 8n − 25. Let S = {1234 · · · i · · · (n − 1)n, 3124 · · · i · · · (n − 1)n, 4321 · · · i · · · (n − 1)n, 

2431 · · · i · · · (n − 1)n} be a 4-cycle in AGn (n ≥ 5). We have

N(V (S)) = (
⋃

5≤i≤n Ni)
⋃

N0,

where

Ni = {2i34 · · ·1 · · · (n − 1)n, i134 · · · 2 · · · (n − 1)n, i231 · · · 4 · · · (n − 1)n,

4i31 · · ·2 · · · (n − 1)n, i324 · · · 1 · · · (n − 1)n,1i24 · · · 3 · · · (n − 1)n,

3i21 · · ·4 · · · (n − 1)n, i421 · · · 3 · · · (n − 1)n}
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Fig. 7. An illustration that there is no edge between F1 � F2 and V (AGn − F1 − F2) when |V (S)| = 4.

Fig. 8. An illustration that AGn − (F1 ∩ F2) is disconnected and every component contains more than three vertices.

for 5 ≤ i ≤ n, and

N0 = {4132 · · · (n − 1)n,2314 · · · (n − 1)n,3241 · · · (n − 1)n,1423 · · · (n − 1)n}.
Also, we have |N(V (S))| = 8n − 28. Let F1 = N(V (S)) and F2 = N[V (S)]. Hence,

|F1| = 8n − 28, |F2| = 8n − 24

and each component in AGn − N[V (S)] has more than three vertices by Lemma 3 (3). Hence, N(V (S)) is a 3-extra vertex-cut 
of AGn . Therefore,

|F1|, |F2| ≤ 8n − 24

and both F1 and F2 are 3-extra vertex-sets of AGn .
Since F1 � F2 = V (S), there is no edge between F1 � F2 and V (AGn − F1 − F2) (see Fig. 7). By Lemma 1, F1 and F2 are 

indistinguishable of AGn under the PMC model. By Definition 1, t̃3
p
(AGn) ≤ 8n − 25.

Next, we prove the lower bound of 3-extra diagnosability of AGn by contradiction. Suppose that t̃3
p
(AGn) ≤ 8n − 26. Let 

F1 and F2 be two distinct 3-extra vertex-sets such that (F1, F2) is an indistinguishable pair with |F1|, |F2| ≤ 8n − 25.
Similar to the proof of Theorem 1, we can deduce that V (AGn − F1 − F2) �= ∅ and the vertices of F1�F2 have no 

neighbors outside of F1 ∪ F2 and the vertices of V (AGn − F1 − F2) have no neighbors in F1 � F2. By the fact that F1 and F2

are two distinct 3-extra vertex-sets, every component in AGn − F1 and AGn − F2 contains more than three vertices. When 
F1 ∩ F2 is deleted, AGn − (F1 ∩ F2) is disconnected and every component contains more than three vertices (see Fig. 8). By 
Definition 4 (1), F1 ∩ F2 is a 3-extra vertex-cut of AGn . By Lemma 3 (3), we have that |F1 ∩ F2| ≥ 8n − 28. Since F1 �= F2, 
by the symmetry of AGn , assume that F1 − F2 �= ∅. Since F2 is a 3-extra vertex-set of AGn , every component of AGn − F2

contains more than three vertices. Since E[F1 � F2, V (AGn − F1 − F2)] = ∅, every component of AGn[F1 − F2] contains more 
than three vertices. That is |F1 − F2| ≥ 4. Then
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|F1| = |F1 − F2| + |F1 ∩ F2|
≥ 4 + 8n − 28
= 8n − 24,

which contradicts that |F1| ≤ 8n − 25.
Hence, t̃3

p
(AGn) = 8n − 25. �

4. The g-good-neighbor diagnosability of AGn under the PMC model

In this section, we will determine the g-good-neighbor diagnosability of AGn under the PMC model, making use of the 
following fault tolerance properties of the AGn .

Lemma 4. [4,8] Let D be a subset of V (AGn) (n ≥ 5) such that |D| ≤ 4n − 11. Then AGn − D satisfies one of the following conditions.
(1) AGn − D is connected;
(2) AGn − D has two components, one of which is a singleton;
(3) AGn − D has two components, one of which is an edge. Furthermore, |D| = 4n − 11 and D is formed by the neighbors of the 

edge.

Lemma 5. [8] Let D be a subset of V (AGn) (n ≥ 5) such that |D| ≤ 6n − 19. Then, AGn − D satisfies one of the following conditions.
(1) AGn − D is connected;
(2) AGn − D has two components, one of which is a singleton, an edge or a 2-path;
(3) AGn − D has three components, two of which are both singletons, respectively.

Theorem 4. Let AGn (n ≥ 5) be an n-dimensional alternating group graph. Then the 1-restricted connectivity is κ1(AGn) = 4n − 11. 
Furthermore, let S = uv be an edge in AGn (n ≥ 5) such that u = 1234 · · · i · · ·n and v = 2431 · · · i · · ·n. It can be deduced that 
N(V (S)) is a 1-restricted vertex-cut of AGn.

Proof. First, we prove that κ1(AGn) ≥ 4n −11. Suppose that κ1(AGn) < 4n −11. Let F be a minimum 1-restricted vertex-cut 
of AGn . Then |F | = κ1(AGn) < 4n − 11. By Lemma 4, AGn − F has two components: a singleton and a large component. It 
contradicts that F is a 1-restricted vertex-cut of AGn . Therefore, κ1(AGn) ≥ 4n − 11.

Next, we prove that the upper bound of κ1(AGn) is 4n − 11. Let S = uv be an edge of AGn such that u = 1234 · · · i · · ·n
and v = 2431 · · · i · · ·n. We have

N(V (S)) = (
⋃

5≤i≤n Ni)
⋃

N0,

where

Ni = {2i34 · · ·1 · · · (n − 1)n, i134 · · · 2 · · · (n − 1)n,

i231 · · ·4 · · · (n − 1)n,4i31 · · · 2 · · · (n − 1)n}
for 5 ≤ i ≤ n, and

N0 = {2314 · · · (n − 1)n,4132 · · · (n − 1)n,3241 · · · (n − 1)n,

3124 · · · (n − 1)n,4321 · · · (n − 1)n}.
Also, we have |N(V (S))| = 4n − 11.

We will prove that N(V (S)) is a 1-restricted vertex-cut of AGn . Since uv ∈ E(AGn
n), by Lemma 2 (2), u has two external 

neighbors in different subgraphs AG1
n and AG2

n , and v has two external neighbors in different subgraphs AG2
n and AG4

n . 
Hence, there exist at most two vertices of AG j

n ( j ∈ {1, 2, 4}) in N(V (S)). By Lemma 2 (1), κ(AGn−1) = 2n − 6 > 2 for n ≥ 5. 
Hence, AG j

n − N
AG j

n
(V (S)) ( j ∈ {1, 2, 4}) is connected. By Lemma 2 (3), there are (n − 2)! disjointed edges between AGt1

n

and AGt2
n for t1, t2 ∈ 〈n〉 − {n} and t1 �= t2. Since (n − 2)! > 4 for n ≥ 5, AGt1

n − N
AG

t1
n

(V (S)) connects AGt2
n − N

AG
t2
n

(V (S)). 

By the arbitrariness of t1, t2 ∈ 〈n〉 − {n} and t1 �= t2, AG〈n〉−{n}
n − ⋃n−1

j=1 N
AG j

n
(V (S)) is connected (see Fig. 9).

Let x ∈ V (AGn
n − N AGn

n
[V (S)]). By Lemma 2 (2), x has two external neighbors x′ and x′′ . By Lemma 2 (2), x′ and x′′ are 

not in 
⋃n−1

j=1 N
AG j

n
(V (S)). (Otherwise, assume that x′ ∈ ⋃n−1

j=1 N
AG j

n
(V (S)). Hence, x′ has two external neighbors y ∈ V (S)

in subgraph AGn
n and x ∈ V (AGn

n − N[V (S)]) in subgraph AGn
n . It implies that x′ has two external neighbors in the same 

subgraph, which contradicts to Lemma 2 (2).) Thus, x′ and x′′ are in AG〈n〉−{n}
n − ⋃n−1

j=1 N
AG j

n
(V (S)). Hence, x is connected 

to AG〈n〉−{n}
n − ⋃n−1

j=1 N
AG j

n
(V (S)). By the arbitrariness of x ∈ V (AGn

n − N[V (S)]), AGn − N[V (S)] is connected. Therefore, 
AGn − N(V (S)) has two components: AGn − N[V (S)] and S such that δ(AGn − N[V (S)]) ≥ 1 and δ(S) ≥ 1. Hence, N(V (S))

is a 1-restricted vertex-cut of AGn by Definition 4 (2). By Definition 4 (2), κ1(AGn) ≤ |N(V (S))| = 4n − 11.
Therefore, κ1(AGn) = 4n − 11 for n ≥ 5 and N(V (S)) is a 1-restricted vertex-cut of AGn . �
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Fig. 9. An illustration that AG〈n〉−{n}
n − ⋃n−1

j=1 N
AG j

n
(V (S)) is connected.

Theorem 5. Let AGn (n ≥ 5) be an n-dimensional alternating group graph. Then, the 2-restricted connectivity is κ2(AGn) = 6n − 18. 
Furthermore, let C3 = {u, v, w} be a 3-cycle in AGn (n ≥ 5) such that u = 1234 · · · i · · ·n, v = 2431 · · · i · · ·n and w = 4132 · · · i · · ·n. 
It can be deduced that N(V (C3)) is a 2-restricted vertex-cut of AGn.

Proof. First, we prove that κ2(AGn) ≥ 6n −18. Suppose that κ2(AGn) < 6n −18. Let F be a minimum 2-restricted vertex-cut 
of AGn , |F | = κ2(AGn) < 6n − 18. By Lemma 5, AGn − F has a singleton and a large component; or has an edge and a large 
component; or has a 2-path and a large component; or has two singletons and a large component. It contradicts that F is a 
2-restricted vertex-cut of AGn . Hence, κ2(AGn) ≥ 6n − 18.

Next, we prove that κ2(AGn) ≤ 6n − 18. Let C3 = {u, v, w} be a 3-cycle in AGn such that u = 1234 · · · i · · ·n, v =
2431 · · · i · · ·n and w = 4132 · · · i · · ·n. Obviously, C3 is in AGn

n . Furthermore, we have

N(V (C3)) = (
⋃

5≤i≤n Ni)
⋃

N0,

where

Ni = {2i34 · · ·1 · · · (n − 1)n, i134 · · · 2 · · · (n − 1)n,4i31 · · · 2 · · · (n − 1)n,

i231 · · ·4 · · · (n − 1)n,1i32 · · · 4 · · · (n − 1)n, i432 · · · 1 · · · (n − 1)n}
for 5 ≤ i ≤ n, and

N0 = {2314 · · · (n − 1)n,3124 · · · (n − 1)n,3241 · · · (n − 1)n,

4321 · · · (n − 1)n,3412 · · · (n − 1)n,1342 · · · (n − 1)n}.
Also, we have |N(V (C3))| = 6n − 18.

We will prove that N(V (C3)) is a 2-restricted vertex-cut of AGn . By Lemma 2 (2), two external neighbors of u are in 
two subgraphs AG1

n and AG2
n , respectively, two external neighbors of v are in two subgraphs AG4

n and AG2
n , respectively, 

and two external neighbors of w are in two subgraphs AG1
n and AG4

n , respectively. Hence, there exist at most two vertices 
of AG j

n ( j ∈ {1, 2, 4}), which are in N(V (C3)). By Lemma 2 (1), κ(AGn−1) = 2n − 6 > 2 for n ≥ 5. Hence, AG j
n − N

AG j
n
(V (C3))

( j ∈ {1, 2, 4}) is connected. By Lemma 2 (3), there are (n − 2)! disjointed edges between AGt1
n and AGt2

n for t1, t2 ∈ 〈n〉 − {n}
and t1 �= t2. Since (n − 2)! > 4 for n ≥ 5, AGt1

n − N
AG

t1
n

(V (C3)) connects AGt2
n − N

AG
t2
n

(V (C3)). By the arbitrariness of t1, t2 ∈
〈n〉 − {n} and t1 �= t2, AG〈n〉−{n}

n − ⋃n−1
j=1 N

AG j
n
(V (C3)) is connected (see Fig. 10).

Let x ∈ V (AGn
n − N[V (C3)]). By Lemma 2 (2), x has two external neighbors x′ and x′′ . By Lemma 2 (2), both x′ and x′′ are 

not in 
⋃n−1

j=1 N
AG j

n
(V (C3)). (Otherwise, assume that x′ ∈ ⋃n−1

j=1 N
AG j

n
(V (C3)). Hence, x′ has two external neighbors y ∈ V (C3)

in subgraph AGn
n and x ∈ V (AGn

n − N[V (C3)]) in subgraph AGn
n . It implies that x′ has two external neighbors in the same 

subgraph, which contradicts to Lemma 2 (2).) Thus, x′ and x′′ are in AG〈n〉−{n}
n − ⋃n−1

j=1 N
AG j

n
(V (C3)). Hence, x is connected 

to AG〈n〉−{n}
n − ⋃n−1

j=1 N
AG j

n
(V (C3)). By the arbitrariness of x ∈ V (AGn

n − N[V (C3)]), AGn − N[V (C3)] is connected. Next, we 
need to prove that |N AGn−N[V (C3)](x)| ≥ 2 for any x ∈ V (AGn − N[V (C3)]). If x ∈ V (AGn

n − N[V (C3)]), then x has two external 
neighbors x′ and x′′ in V (AG〈n〉−{n}

n − ⋃n−1
j=1 N

AG j
n
(V (C3))). Hence, |N AGn−N[V (C3)](x)| ≥ |N

AG〈n〉−{n}
n −⋃n−1

j=1 N
AG

j
n
(V (C3))

(x)| ≥ 2. If 

x ∈ V (AG j
n − N j (V (C3))) for any j ∈ {1, 2, 4}, then x has at least 2n − 6 − 2 ≥ 2 neighbors in V (AG j

n − N j (V (C3))) for 

AGn AGn
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Fig. 10. An illustration that AG〈n〉−{n}
n − ⋃n−1

j=1 N
AG j

n
(V (C3)) is connected.

Fig. 11. An illustration that (F1, F2) is an indistinguishable pair of AGn under the PMC model.

n ≥ 5 by Lemma 2 (1). Hence, |N AGn−N[V (C3)](x)| ≥ |N
AG j

n−N
AG

j
n
(V (C3))

(x)| ≥ 2. If x ∈ V (AGi
n) for any i ∈ 〈n〉 − {n, 1, 2, 4}, 

then x has 2n − 6 ≥ 4 neighbors in V (AGi
n − N AGi

n
(V (C3))) for n ≥ 5 by Lemma 2 (1). Hence, |N AGn−N[V (C3)](x)| ≥

|N AGi
n−N

AGi
n
(V (C3))(x)| ≥ 2. By the arbitrariness of j ∈ {1, 2, 4} and i ∈ 〈n〉 − {n, 1, 2, 4}, |N AGn−N[V (C3)](x)| ≥ 2 for any 

x ∈ V (AGn − N[V (C3)]). Therefore, AGn − N(V (C3)) has two components: AGn − N[V (C3)] and C3 such that δ(AGn −
N[V (C3)]) ≥ 2 and δ(C3) ≥ 2. Hence, by Definition 4 (2), N(V (C3)) is a 2-restricted vertex-cut of AGn . By Definition 4
(2), κ2(AGn) ≤ |N(V (C3))| = 6n − 18. Therefore, κ2(AGn) = 6n − 18 for n ≥ 5 and N(V (C3)) is a 2-restricted vertex-cut of 
AGn . �

To find the g-good-neighbor diagnosability t p
g (AGn) under the PMC model, we first show, by construction, that t p

g (AGn)

is no more than (2g + 2)n − 2g+2 − 4 + 2g for 1 ≤ g ≤ 2.

Theorem 6. Let AGn (n ≥ 5) be an n-dimensional alternating group graph. The upper bound of g-good-neighbor diagnosability of 
AGn under the PMC model is (2g + 2)n − 2g+2 − 4 + 2g for 1 ≤ g ≤ 2.

Proof. Let B ∼= K g+1 be a complete subgraph of AGn for 1 ≤ g ≤ 2. Let F1 = N(V (B)) and F2 = N[V (B)] (see Fig. 11). By 
Theorem 4 and Theorem 5,

|F1| = (2g + 2)n − 2g+2 − 4 + g, |F2| = (2g + 2)n − 2g+2 − 3 + 2g,

and δ(AGn − F2) ≥ g . By Definition 2 (1), F1 and F2 are two g-good-neighbor vertex-sets of V (AGn) with

|F1| ≤ (2g + 2)n − 2g+2 − 3 + 2g, |F2| ≤ (2g + 2)n − 2g+2 − 3 + 2g.

On the other hand, since V (B) = F1 � F2, N(V (B)) = F1 and F1 ⊂ F2, there is no edge between V (AGn − F1 − F2) and F1 �
F2. By Lemma 1, (F1, F2) is an indistinguishable pair of AGn under the PMC model. By Definition 2 (2), the n-dimensional 
alternating group graph AGn is not g-good-neighbor [(2g + 2)n − 2g+2 − 3 + 2g]-diagnosable under the PMC model. By 
Definition 2 (3), the upper bound of g-good-neighbor diagnosability of AGn is
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Fig. 12. An illustration that F1 ∩ F2 is a g-good-neighbor vertex-set in AGn .

t p
g (AGn) ≤ (2g + 2)n − 2g+2 − 4 + 2g

under the PMC model for 1 ≤ g ≤ 2. Hence, Theorem 6 holds. �
Theorem 7. Let AGn (n ≥ 5) be an n-dimensional alternating group graph. The lower bound of g-good-neighbor diagnosability of 
AGn under the PMC model is (2g + 2)n − 2g+2 − 4 + 2g for 1 ≤ g ≤ 2.

Proof. By Definition 2 (3), we just need to show that AGn is g-good-neighbor [(2g + 2)n − 2g+2 − 4 + 2g]-diagnosable. By 
Definition 2 (2), to prove that AGn is g-good-neighbor [(2g + 2)n − 2g+2 − 4 + 2g]-diagnosable, it is equivalent to prove 
that for every two distinct g-good-neighbor vertex-sets F1 and F2 of V (AGn) with

|F1| ≤ (2g + 2)n − 2g+2 − 4 + 2g and |F2| ≤ (2g + 2)n − 2g+2 − 4 + 2g,

F1 and F2 must be distinguishable.
We prove this statement by contradiction. Suppose that there are two distinct g-good-neighbor vertex-sets F1 and F2

with |F1| ≤ (2g + 2)n − 2g+2 − 4 + 2g and |F2| ≤ (2g + 2)n − 2g+2 − 4 + 2g , but (F1, F2) is an indistinguishable pair. Now 
we consider all the possible cases such that F1 and F2 are indistinguishable. By Lemma 1, we have V (AGn) = F1 ∪ F2 or 
V (AGn) �= F1 ∪ F2 but there exists no edge between V (AGn − F1 − F2) and F1 � F2. By the symmetry of AGn , assume that 
F2 − F1 �= ∅. We will show that each of the following cases deduces a contradiction against our assumption.

Case 1. V (AGn) = F1 ∪ F2.
For n ≥ 5, 1 ≤ g ≤ 2 and V (AGn) = F1 ∪ F2, we have

n!
2

= |V (AGn)| > 2[(2g + 2)n − 2g+2 − 4 + 2g] ≥ |F1| + |F2| ≥ |V (AGn)|,
which is a contradiction.

Case 2. V (AGn) �= F1 ∪ F2 but there exists no edge between V (AGn − F1 − F2) and F1 � F2.
By the assumption that F2 − F1 �= ∅ and F1 is a g-good-neighbor vertex-set, any vertex in F2 − F1 has at least g good 

neighbors in AGn[F2 − F1]. We have |F2 − F1| ≥ g + 1. Since F1 and F2 are both g-good-neighbor vertex-sets, F1 ∩ F2 is also 
a g-good-neighbor vertex-set (see Fig. 12). In addition, since there are no edges between V (AGn − F1 − F2) and F1 � F2, 
AGn − (F1 ∩ F2) is disconnected and any component of AGn − (F1 ∩ F2) has the minimum degree g . Hence, F1 ∩ F2 is a 
g-restricted vertex-cut of AGn . By Theorem 4 and Theorem 5,

|F1 ∩ F2| ≥ (2g + 2)n − 2g+2 − 4 + g.

Therefore, we have

|F2| = |F2 − F1| + |F1 ∩ F2|
≥ g + 1 + (2g + 2)n − 2g+2 − 4 + g
= (2g + 2)n − 2g+2 − 3 + 2g,

which contradicts against |F2| ≤ (2g + 2)n − 2g+2 − 4 + 2g .
Based on the above discussion, we conclude that t p

g (AGn) ≥ (2g + 2)n − 2g+2 − 4 + 2g . Hence, Theorem 7 holds. �
Combining Theorem 6 and Theorem 7, we have the following theorem.



48 Y. Huang et al. / Theoretical Computer Science 795 (2019) 36–49
Table 1
Extra and good-neighbor diagnosability of AGn (n ≥ 5) under PMC model.

Number h = 1 h = 2 h = 3

Extra connectivity [21] κ
(1)
0 (AGn) = 4n − 11 κ

(2)
0 (AGn) = 6n − 19 κ

(3)
0 (AGn) = 8n − 28

Extra diagnosability t̃1
p
(AGn) = 4n − 10 t̃2

p
(AGn) = 6n − 17 t̃3

p
(AGn) = 8n − 25

Table 2
Good-neighbor diagnosability of AGn (n ≥ 5) under PMC model.

Number g = 1 g = 2

Restricted connectivity κ1(AGn) = 4n − 11 κ2(AGn) = 6n − 18
Good-neighbor diagnosability t p

1 (AGn) = 4n − 10 t p
2 (AGn) = 6n − 16

Theorem 8. Let AGn (n ≥ 5) be an n-dimensional alternating group graph. Let t p
g (AGn) denote the g-good-neighbor diagnosability 

of AGn under the PMC model. We have t p
g (AGn) = (2g + 2)n − 2g+2 − 4 + 2g for 1 ≤ g ≤ 2.

Furthermore, we add two tables (see Table 1 and Table 2) to summarize the main results in order to make them more 
clearly.

These two tables reveal the relationship between extra (resp., restricted) connectivity and extra (resp., good-neighbor) 
diagnosability of AGn , which is a regular graph with 3-cycle.

5. Conclusion

In this paper, we first establish that the 1-extra diagnosability of AGn under the PMC model is 4n −10 for n ≥ 5. Then we 
prove that the 2-extra diagnosability of AGn under the PMC model is 6n − 17 for n ≥ 5. Next, we address that the 3-extra 
diagnosability of AGn under the PMC model is 8n − 25 for n ≥ 5. Finally, we obtain that the g-restricted connectivity and 
the g-good-neighbor diagnosability of AGn (n ≥ 5) are (2g + 2)n − 2g+2 − 4 + g and (2g + 2)n − 2g+2 − 4 + 2g for 1 ≤ g ≤ 2, 
respectively.

In future, we will apply the h-extra and g-good-neighbor diagnosability into mobile social networks (MSNs). In particular, 
we will consider the detection of malicious users in MSNs.
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