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Abstract: Cognitive radio networks (CRNs) are vulnerable to spoofing attacks due to their wireless and cognitive nature. Since
the traditional cryptographic authentication can hardly prevent such attacks in CRNs, the physical-layer authentication has been
investigated for recent years. To achieve a light-weight physical-layer authentication, a rollout partially observable Markov
decision process-based algorithm, named RoPOMDP, is proposed in this study. In general, RoPOMDP formulates the physical-
layer authentication as a zero-sum game, based on which a hypothesis test upon channel vectors is developed. That allows us
to design the gains for both spoofers and receivers based on Bayesian risks for the game, in which the spoofing attack
probability is predicted by a non-linear function approximation utilising v-support vector regression. Then, a RoPOMDP is
employed to estimate the optimal threshold for the test statistic such that spoofing attacks can be detected. The theoretical
analysis and simulations indicate that: (i) RoPOMDP improves the spoofing detection accuracy; (ii) as a light-weight algorithm,
the complexity of RoPOMDP is lower than contemporary ones.

1Introduction
Since the introduction of cognitive radios was first proposed by
Mitola and Maguire [1] in 1999. Cognitive radio networks (CRNs)
have since emerged, where the cognitive users (CUs) can use idle
frequency spectrum bands without affecting the primary users,
thereby improving the utilisation of spectrum resources and solving
the problem of spectrum shortage. However, the wireless and
cognitive nature of CRN makes it susceptible to many security
threats. For example, some spoofer uses faked media access control
(MAC) addresses to send false perception reports [2]. Thus, having
an effective authentication mechanism could improve the security
of CRNs.

While it remains difficult to fully address spoofing attacks in
CRNs, several physical-layer authentication (PHY-authentication)
techniques have been proposed to address this challenge. These
techniques use properties of channels such as received signal
strengths (RSSs) [3–5], channel impulse response [6, 7], and
channel state information (CSI) [8–10] to discriminates senders.
The accuracy of such physical-layer authentication depends on the
authentication threshold. Thus, it is important to choose the right
threshold. In [11], Liang et al. use a pre-assigned threshold and
adaptive threshold to detect spoofing attacks. In [3], the spatial
correlation of RSS is used to detect spoofing attacks. The
proximity-based authentication in [5] uses the RSS variations in
proximity tests at mobile stations. In [8], CSI is used to distinguish
radio transmitters with similar signal fingerprints. The time-
varying carrier frequency offset between transmit and receive pairs
is used in authentication [12]. The channel phase response in a
multi-carrier system that can be used for physical layer
authentication is introduced in [7]. The principle of indirect
reciprocity is applied to solve the wide range of attacks in wireless
networks [13]. The frequency hopping strategy in [14] is used by
secondary users to update their anti-jamming strategy with
incomplete knowledge. In [15], a two-level game model is
introduced to study the joint threat of high-level persistent threat
attackers and insider. There exist a series of machine learning-
based authentication strategies. In [16, 17], the interactions
between a receiver and a spoofing attacker are modelled as a zero-
sum authentication game. Then a reinforcement-learning is applied
to choose the optimal test threshold for improving the accuracy of

authentication. However, such a method requires a fixed attack
probability. In [18], Bhunia et al. propose a defence mechanism of
random learning to solve the interference. Ota et al. [19] applied
reinforcement learning to wireless networks. The event detection
algorithm proposed in [20] that speeds up the event detection in
wireless sensor networks and actor networks, in which
reinforcement learning technology helps each actor move towards
the event. In [21], a slope authentication at physical-layer is
proposed that overcomes the drawbacks of additional bandwidth
requirement and the entire data message corruption in time-
division multiplexed tag and authentication with superimposed tag
respectively. Xiaoying et al. [22] proposed a PHY-layer security
authentication scheme that takes advantage of channel randomness
to detect spoofing attacks in wireless networks. In [23], a physical
layer cheat detector based on Q-learning is proposed, and a
physical layer authentication game is constructed. Liang et al. [24]
proposed a cheat detector based on Dyna-Q to improve the
authentication speed. Recently, Liang et al. [25] proposed a logistic
regression-based authentication to remove the assumption on the
known channel model, and thus applicable to more generic
wireless networks. In [26], a PHY-layer spoofing detection
algorithm for multiple-input multiple-output systems based on Q-
learning is proposed, in which the receiver applies the
reinforcement learning technique to achieve the optimal test
threshold via trials in a dynamic game without knowing the system
parameters, such as the channel time variation and spoofing cost.
In [27], Pan et al. proposed a threshold-free PHY-authentication
method based on machine learning, which replaces the traditional
threshold-based decision-making with more adaptive classification.
Xiaozhen et al. [28] proposed a reinforcement learning-based
physical authentication scheme to resist rogue edge attackers
whose goal is to send spoofing signals to attack vehicle ad hoc
networks. While the above-stated techniques are machine learning-
based strategies, they are not light-weighted, i.e. these machine
learning-based strategies can detect the spoofing attack, but their
complexities are too high to apply to users with limited computing
resources in CRNs.

Our contribution. In this study, we propose a light-weight
physical layer authentication algorithm [rollout partially observable
Markov decision process-based algorithm (RoPOMDP)]. In
general, RoPOMDP consists of a v-support vector regression (v-
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SVR)-based spoofing packet prediction and a rollout-based
hypothesis test for physical layer authentication. Thus, the detail of
our contribution is listed as follows:

(i) To detect spoofing packets in CRNs, we first formulate the
PHY-authentication as a zero-sum game, based on which a
hypothesis test upon channel vectors is developed. Then, we obtain
the gains of both spoofers and receivers based on Bayesian risks
for the PHY-authentication game, in which the spoofing attack
probability is predicted by a non-linear function approximation
utilising v–SVR. Owing to the reason that both channel model and
spoofing model are unknown by the receiver, a RoPOMDP is
employed to estimate the optimal threshold for the test statistic in
the PHY-authentication game based on observation of the radio
environment.
(ii) The theoretical analysis and simulations indicate that (i)
RoPOMDP improves the spoofing detection accuracy and (ii) the
complexity of RoPOMDP is lower than contemporary algorithms,
i.e. the Q-learning-based PHY-authentication algorithm.

The rest of the paper is organised as follows. The system model
is introduced in Section 2. The strategies are elaborated in Section
3. Section 4 gives the theoretical analysis of the complexity of
RoPOMDP, with the results of validation experiments presented.
Section 5 gives the concluding remarks of this paper.

2System model
In this study, a CRN that consists of a receiver and N transmitters is
considered. The MAC address of the ith transmitter (node) is
denoted by MACi. Accordingly, the node of MACi is denoted by ni,
while the spoofing one that claims to have MACi is denoted by ni′.
Each node is assumed to have the information of the centre
frequency f 0 and bandwidth W. The channel response is sampled at
M different tones in frequency f ∈ [ f 0 − W /2, f 0 + W /2]. The RSS
indicator (RSSI) vector of the kth packet claimed to have the MAC
address i is denoted by ri

k = [ri, m
k ], where ri, m

k  is the RSSI of the mth
tone for the ith transmitter. Owing to the fact that potential spoofers
can impersonate another node with a fake MAC address, the
receiver requires a PHY-authentication technique, which usually
adopts the hypothesis test on channel response to detect spoofing
attacks, i.e. an elaborately designed hypothesis test can determine
whether a packet with a channel vector ri

k is sent by the node with
MAC address i. Based on RSSI, a hypothesis test can be
constructed as follows.

Let null hypothesis H0 indicate that the node with MAC address
i sends the kth packet, while the alternative hypothesis H1

represents that the spoofer sends the kth packet with MAC address
i. Thus, we have

H0:g(ri
k) = i (1)

H1:g(ri
k) ≠ i, (2)

where g(ri
k) denotes the MAC address of the node that sends the kth

packet with channel vector ri
k. The probability of a legitimate

packet being considered as a spoofing one, which is the false alarm
rate α, is given by

α = Pr(H1 H0) (3)

Similarly, the miss detection rate β is the probability that a
spoofing packet is classified as a legitimate one, which is given by

β = Pr(H0 H1) (4)

Then, the probability of accepting a legitimate packet is
Pr(H0 H0) = 1 − α, while rejecting a spoofing packet is denoted by
Pr(H1 H1) = 1 − β. In this study, we consider the spoofing detector
w.r.t channel frequency responses instead of RSSIs. In this
scenario, the receiver obtains a channel vector denoted by Hi

k from

transmitter i for the kth packet and then stores the channel records
denoted by H^

i

k
 for transmitter i. Note that interferences from other

sources are considered as noises. Thus, Hi
k and H

^

i

k
 are noisy

versions of the true channel response Hi
k and the measured one H

^

i

k
,

respectively, i.e.

Hi
k = Hi

k + N1 (5)

H
^

i

k
= H

^

i

k
+ N2, (6)

where N1 and N2 are i.i.d complex Gaussian noise samples C(0, σ
2).

In addition, we also assume small channel time variations, small
estimation errors, zero phase drift between channel measurements
and frequency-selective Rayleigh channel models. Thus, the
generalised likelihood ratio test L chosen is given by

L = ∥ Hi
k − H

^

i

k
∥2 . (7)

Thus, the hypothesis test performed by the receiver is given by

L ≶
H1

H0

θ . (8)

In this study, we focus on finding the optimal threshold θ∗ for (8).

3Proposed PHY-authentication strategy
The proposed strategy, RoPOMDP, consists of (i) an attack
probability prediction and (ii) a hypothesis test based on the zero-
sum game, both of which collaborate to detect spoofing packets.
The flowchart of RoPOMDP is given in Fig. 1. 

3.1 Attack probability prediction

It is essential to predict the number of spoofing packets by a
specific timeslot so as to calculate the attack probability p [23], in
which the v-SVR is employed. In general, the number of spoofing

Fig. 1 Flowchart of proposed strategy
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packets yi at the timeslot ti among T packets is given in a linear
function as

yi = f (xi) = (w ⋅ xi) + b, (9)

where w = {w1, w2, …, wd} and xi ∈ R
d represents the state at the

timeslot ti that consists of historical observations. The v-SVR is
trained based on samples {xi, yi} by minimising the regularised risk
function

1
2

∥ w ∥2 + C ⋅
1
l
∑
i = 1

l

yi − f (xi)
ε

(10)

to obtain the optimal w, where C is a constant determining the
trade-off between minimising training errors and minimising the
model complexity term ∥ w ∥2. To estimate function (9) from
training samples, we proceed as follows [29]. At each point xi, we
allow an error of ε. Everything above ε is captured in slack
variables ξi

( ∗ ) (( ∗ ) implies both the variables with and without
asterisks)), which are penalised in the objective function via a
regularisation constant M, to be chosen a priori. The size of ε is
traded off against model complexity and slack variables via a
constant v as

min . τ(w, ξ
( ∗ ), ε) =

1
2

∥ w ∥2 + M[vε +
1
l
∑
i = 1

l

(ξi + ξi
∗)] (11)

s . t . (wxi + b) − yi ≤ ε + ξi, (12)

yi − (wxi + b) ≤ ε + ξi
∗, (13)

ξi
∗ ≥ 0, ε ≥ 0. (14)

For the constraints, we introduce multipliers αi, αi
( ∗ ), ηi

( ∗ ), β ≥ 0, and
obtain the Lagrangian

L(w, b, α
( ∗ ), β, ξ

( ∗ ), ε, η
( ∗ )) =

1
2

∥ w ∥2 + Mvε +
M

l
∑
i = 1

l

(ξi + ξi
∗)

−βε − ∑
i = 1

l

(ηiξi + ηi
∗
ξi

∗)

− ∑
i = 1

l

αi(ξi + yi − (w ⋅ xi) − b + ε)

− ∑
i = 1

l

αi
∗(ξi

∗ + (w ⋅ xi) + b − yi + ε)

(15)

In fact, minimising (11) equals to

min
w, ε, b, ξi

( ∗ )
max

αi
( ∗ ), β, ηi

( ∗ )
L(w, b, α

( ∗ ), β, ξ
( ∗ ), ε, η

( ∗ )), (16)

the dual of which is given by

max
αi

( ∗ ), β, ηi
( ∗ )

min
w, ε, b, ξi

( ∗ )
L(w, b, α

( ∗ ), β, ξ
( ∗ ), ε, η

( ∗ )), (17)

Thus, (15) should be minimised over the primal variables
w, ε, b, ξi

( ∗ ). Let the derivatives with respect to the primal variables
equal to zero yields:

w = ∑
i

(αi
∗ − αi)xi (18)

M ⋅ v − ∑
i

(αi + αi
∗) − β = 0 (19)

∑
i = 1

l

(αi
∗ − αi) = 0 (20)

M

l
− αi

( ∗ ) − ηi
( ∗ ) = 0 (21)

Substituting (18)–(21) into (15), we then rewrite the constraints to
describe the v-SVR optimisation problem

max . W(α( ∗ )) = ∑
i = 1

l

(αi
∗ − αi)yi

−
1
2 ∑

i, j = 1

l

(αi
∗ − αi)(αj

∗ − αj)k(xi, xj),

(22)

s . t . ∑
i = 1

l

(αi
∗ − αi) = 0, (23)

αi
( ∗ ) ∈ 0,

M

l
, (24)

∑
i = 1

l

(αi
∗ + αi) ≤ M ⋅ v, (25)

where kernel k(x, y) = exp( − ∥ x − y ∥2 /2σ
2) is substituted for the

dot product in some feature space-related to input space via a non-
linear map Φ as

k(x, y) = (Φ(x) ⋅ Φ(y)) . (26)

Eventually, the v-SVR can be deduced as

yi = ∑
i = 1

l

(αi
∗ − αi)k(xi, x) + b . (27)

In this study, we assume the receiver receives T packets in each
timeslot. Thus, the probability that a received packet is a spoofing
one at timeslot ti is estimated as

pi =
f (xi)
T

. (28)

3.2 Hypothesis test based on zero-sum game

We formulate the PHY-authentication as a zero-sum game to
discover the optimal threshold θ∗ for the test statistic L given in (7).
Similar to the literature [23], let Cx, y denote the payoff for the
receiver choosing hypothesis Hx in the case of hypothesis Hy,
x, y ∈ {0, 1}. We denote the gain of accepting a packet sent by the
node with MAC address i as gi

l, while the gain of rejecting a
spoofing packet claimed to have MAC address i is denoted by gi

s.
Let γi denote the cost of rejecting a legitimate packet sent by the
node with MAC address i. Thus, we have

C0, 0 = gi
l − G − C (29)

C0, 1 = − G − C (30)

C1, 0 = − γi − C (31)

C1, 1 = gi
s − C . (32)

where C and G represent costs of physical-layer and high-layer
authentications, respectively. Accordingly, the Bayesian risk R(i) of
the spoofing detection for a packet from transmitter i is then given
by
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R(i) = ∑
x = 0

1

∑
y = 0

1

Cx, yPr(Hx Hy)Pr(Hy)

= (gi
l − G − C)(1 − α)(1 − p) − (G + C)βp

−(γi + C)α(1 − p) + (gi
s − C)(1 − β)p,

(33)

where p is estimated by v-SVR as we described in the previous
section. Since the PHY-authentication is formulated as a zero-sum
game, we have ur(θ, p) = R(i) = − us(θ, p), where ur(θ, p) and
us(θ, p) denote the utility of the receiver and spoofer, respectively.
Note that the Nash equilibrium (NE) of a game consists of the best
response strategies such that no player can increase its utility by
unilaterally choosing a different strategy [23]. Let the NE of the
PHY-authentication game is denoted by (θ∗, y

∗). This indicates the
receiver chooses the test threshold θ

∗ to maximise his/her utility
ur(θ

∗, p
∗) in the spoofing detection, while the spoofer aims to

maximise his/her utility us(θ
∗, p

∗). Thus, the optimal threshold θ
∗

satisfies

θ
∗ = arg max

θ ≥ 0
ur(θ, p) . (34)

However, θ
∗ depends on the channel model and spoofing model,

which are not always known by the receiver. To solve this problem,
we apply a partially observable Markov decision process
(POMDP) to calculate θ

∗ based on observations of the radio
environment. First, we denote the state observed by the receiver in
the nth time slot as sn = [αn − 1, βn − 1] ∈ S, which consists of the
false alarm rate and miss detection rate of authentication in the
previous time slot, while S denotes the state set. Accordingly, the
action set denoted by A = [θl]1 ≤ l ≤ K consists of K level thresholds,
in which each action an ∈ A is chosen based on state sn. In addition,
each receiver is assumed to obtain T packets in each time slot.
Thus, the utility after receiving T packets at state sn with action θn,
denoted by U(sn, θn), is then given by

U(sn, θn) = ∑
k = (n − 1)T + 1

nT

ur
k(θn, pn) . (35)

Note that several Q-value approximation methods [30, 31] have
been proposed for large state-space Markov decision processes. In
this study, we consider the policy rollout [30]. In general, the
policy-rollout method estimates the Q-value for each belief state
and each action by averaging the evaluated accumulated costs from
several Monte–Carlo simulation runs using a given base policy
rather than calculating the expectation of Q-value over the entire
state space. To apply the rollout framework to POMDP, we first
give the expected utility over a horizon of H steps as

JH(s0) = E ∑
k = 0

H − 1

∫ U(sk, θ)dp(sk) , (36)

while the optimal value of which is denoted by JH
∗ (s0). Accordingly,

the Q-value function of state s is then given by

QH(s, θ) = ∫ U(s, θ)dp(s) + E JH − 1
∗ (s′) , (37)

where JH − 1
∗ (s′) is the optimal value over H − 1 steps starting at the

next state s′. Thus, the upper bound on the QH(s, θ) can be obtained
by maximising

Q
^

H(s, θ) =
1
N

∑
i = 1

N

g(s(i), θ) + J
^
H − 1(s′(i)) , (38)

where s(i) and s′(i) represent the sample for state s and s′ during the
Monte–Carlo simulation. Accordingly, the optimal action, which is
the optimal threshold θ∗, at timeslot k is chosen as

θk
∗ = arg max

θ ∈ A
QH(sk, θ) . (39)

It is worth mentioning that p(sk) can be obtained by the particle
filter [32] and the parameter initiation of which can be obtained
from real experiences. For example, the receiver updates the
experience records for each state–action pair, which consists of the
occurrence count vector τ, the occurrence count vector of the next
state τ′, and the state transition probability Ψ. The count vector τ′
for the current experience increases by 1, i.e.

τ′(sn, an, sn + 1) ← τ′(sn, an, sn + 1) + 1. (40)

The occurrence count vector τ consists of all the possible
realisations of sn + 1 as

τ(sn, an) ← ∑
s′ ∈ S

τ′(sn, an, s′) . (41)

The state transition probability from the current state sn to the next
state sn + 1 by action an maps state action pair (sn, an) to the
distribution of state sn + 1. Accordingly, the transition probability,
which is denoted by Ψ(sn, an, sn + 1), is given as

Ψ(sn, xn, sn + 1) ←
τ′(sn, xn, sn + 1)

τ(sn, xn)
. (42)

Once the optimal threshold θ∗ is obtained, one could employ (8)
to determine whether the packet is a spoofing one or not in the
physical layer. If both the PHY-layer and higher-layer
authentications accept, then the packet is accepted. Also, the
reference channel vector H^

i is updated as H^

i

k
= Hi

k once packets of

node i is accepted; otherwise, H^

i

k
= H

^

i

k − 1
. Then, we summarise the

RoPOMDP in Algorithm 1 (see Fig. 2). 

4Performance analysis
4.1 Theoretical analysis

In this section, we are going to prove the advantage of RoPOMDP
over Q-learning-based strategies [14, 18–20, 23, 24] denoted by QA

in terms of complexity.
 

Theorem 1: The complexity of RoPOMDP is lower than QA.
 

Proof: RoPOMDP consists of three efficient algorithms which
are the spoofing packet prediction, the hypothesis test construction,
and the PHY-authentication game. Since the spoofing packets
differ by time, the non-linear function approximation utilising v-
SVR is employed to accurately estimate the attack probability p at a

Fig. 2 Algorithm 1: RoPOMDP-based spoofing detection algorithm
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given time. The PHY-authentication game is developed utilising a
policy RoPOMDP to calculate the optimal threshold for the
hypothesis test to detect spoofing packets. The complexity of the
RoPOMDP depends on the number of state S , the step number N′
and Monte–Carlo simulation runs N, which is O( S ). Compared
with QA, the complexity of which is at least O( A ∥ S ),
RoPOMDP is more light-weighted.□

4.2 Validation experiment

4.2.1 Parameter setup: Experiments were implemented on
universal software radio peripherals (USRPs), each of which
equipped with a single antenna is used to operate using the IEEE
802.11a/g standard working at 2.4 GHz with a bandwidth within
[50, 200] MHz and performed in an indoor environment (see Fig.
3) to analyse the performance of the proposed spoofing detection
scheme RoPOMDP. Owing to the generalised likelihood ratio test
(7), the corresponding false alarm rate and the missed detection
rate of the hypotheses test as in the spoofing detection [33] are
given by

α(θ) = 1 − Fχ2M
2

2θρ

2σ
2 + bρσ

2 (43)

β(θ) = 1 − Fχ2M
2

2θρ

2σ
2 + (1 + κ)ρσ

2 (44)

where σ2 is the average power gain from the legitimate transmitter
at the receiver, κ represents the ratio of the channel gain of the
spoofer to that of the legitimate transmitter, Fχ2M

2 ( . ) denotes the
cumulative distribution function of the chi-square distribution with
2M degrees of freedom, ρ is the signal-to-interference-plus-noise
ratio (SINR) of the packets sent by the legitimate transmitter, and b
is the relative change in the channel gain due to environmental
changes.

First, we give the performance evaluation of the spoofing
detection game at NE (see Fig. 4) of the proposed strategy in
optimal test threshold θ∗, optimal attack probability p

∗, false alarm
rate in the detection and utility of the receiver, respectively. Then,
performance comparisons are implemented between the proposed
rollout-based strategy, the fixed threshold based PHY-
authentication strategy (i.e. making decisions based on (8) w.r.t a
fixed threshold), and the Q-learning based PHY-authentication
strategy [24] in terms of average error rates and utility first. The
experiment parameters are listed in Table 1. Note that the action set
is chosen based on the assumption that the attack probability is
chosen as p = 0.75.

4.2.2 Experiment results: In Fig. 4a, it is clear that the optimal
test threshold increases with the channel time variation b to avoid
rejecting. As shown in Fig. 4b, a spoofer tends to fail with large
channel variations, as the test statistic increases with b in the
presence of spoofer. Both false alarm rate and missed detection rate
at the NE increase with b as shown in Fig. 4c. This is because it is
a challenge to distinguish transmitters according to their channel
states under significant radio environmental changes. In addition,
both false alarm rate and missed detection rate decrease with SINR,
when the channel estimation error at the receiver decreases with
SINR. It is clear that the spoofing detection still achieves good
performance with α = 0.02 and β = 0.01 as κ = 3 dB, b = 0.2, and
ρ = 10 dB. Fig. 4d shows that the detection accuracy increases as
the utility of the receiver increases with κ and ρ. For example, if
b = 0.2 and ρ = 10 dB, the utility of the receiver for κ = 0 dB
increases to 5.95 from 5.89 for κ = − 3 dB.

Figs. 5 and 6 show the performance comparison between our
proposed strategy and baseline approaches with nodes 2, 12, and
14 pretending to be node 10 in a topology as shown in Fig. 3. In
Fig. 5, both false alarm rate and miss detection rate for all schemes
decrease with the bandwidth. It is clear that if the bandwidth is 200 
MHz, the false alarm rate and miss detection rate of the proposed
strategy approach 0.01. The false alarm rate and miss detection rate
of the fixed threshold strategy are up to 0.041 and 0.0296,
respectively, as the bandwidth is 150 MHz compared with that of
the proposed strategy of only 0.0005 and 0.0007. It is clear that the
proposed rollout-based strategy performs better than others. As
shown in Fig. 6, the average utility of the receiver increases at least
by 0.0323 if the bandwidth is 150 MHz. Obviously, the proposed
rollout-based strategy outperforms baseline approaches. Note that a
higher utility suggests a better threshold referring to (39). That

Fig. 3 Network topology of the experiments in a 10 × 15 × 3m3 office
room, consisting of 14 transmitters and a receiver

 

Fig. 4 Performance of the spoofing detection game at the NE in
(a) Optimal test threshold θ∗, (b) Optimal attack probability p∗, (c) False alarm rate in
the detection, (d) Utility of the receiver

 
Table 1 Experiment setup
Par. Des. Val.
C physical-layer authentication cost 1
G high-layer authentication cost 3
gl

i gain of accepting a legitimate packet 10

ri cost of rejecting a legitimate packet 20

gi
s gain of rejecting a spoofing packet 10

f 0 information of center frequency 2.4 GHz
W channel bandwidth [50, 200] MHz
M number of different tones 5
θ threshold [0.01, 0.14]
b relative time variation power [0.02, 0.2]
κ channel gain ratio (0, − 3)dB

ρ SINR of packets from ni (10, 20) dB
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explains why the proposed strategy has a lower miss detection rate
and a lower false alarm rate as well.

It is obvious that the miss detection rate increases with the
number of nodes (see Fig. 7) except the rollout-based strategy. The
reason behind that is the optimal threshold θ∗ could not match the
optimal one for a specific spoofer. If the cost of accepting a
spoofing packet is smaller than that to reject a legitimate packet,
the receiver tends to restrict the false alarm in the learning process.
Although the Q-learning-based strategy performs better than the
fixed threshold one, it is still no match for the proposed strategy.
As shown in Fig. 8, the average utility of the receiver for all
strategies decreases with the number of nodes as the detection error
rate increases. The reason behind that is there could be more
spoofers involved as the number of nodes increases. Although the
proposed strategy outperforms baseline approaches, the optimal
threshold is hard to obtain such that the utility drops.

5Conclusions
Owing to the wireless and cognitive nature of CRNs, spoofers
intend to send false perception reports with fake MAC addresses
for impersonating other honest CUs. To solve this problem, a light-
weight physical-layer authentication algorithm RoPOMDP is
developed based on channel frequency responses. Be specific,
RoPOMDP first formulates the PHY-authentication as a zero-sum
game, based on which a hypothesis test upon channel vectors is
developed. Accordingly, the gains of both spoofers and receivers of
the game are obtained w.r.t Bayesian risks, where the spoofing
attack probability is predicted by applying a v-SVR-based
approximation function. Then, a RoPOMDP is designed to
estimate the optimal threshold for the test statistic in the PHY-
authentication game. The theoretical analysis and simulations show
that RoPOMDP outperforms the Q-learning-based authentication
algorithms in both spoofing detection accuracy and complexity.
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